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Summary

Key Takeaways

• Super-resolution is the art of recovering spikes from their low-pass projections.

• Over the last decade specifically, several significant advancements linked with
mathematical guarantees and recovery algorithms have been made.

• Most super-resolution algorithms rely on a two-step procedure: deconvolution
followed by high-resolution frequency estimation.

• However, for this to work, exact bandwidth of low-pass filter must be known;
an assumption that is central to the mathematical model of super-resolution.

• On the flip side, when it comes to practice, smoothness rather than bandlimit-
edness is a much more applicable property.

• Since smooth pulses decay quickly, one may still capitalize on the existing
super-resolution algorithms provided that the essential bandwidth is known.

• This problem has not been discussed in literature and is the theme of our work.

• We propose a bandwidth selection criterion which works by minimizing a proxy
of estimation error that is dependent of bandwidth.

Setup for Super-resolution of Sparse Signals

Given N time-domain, sampled measurements, y (nT ) of the continuous signal

y (t) =
∑K−1

k=0
ckφ (t − tk), (1)

the super-resolution problem seeks to recover the 2K unknowns {ck, tk}K−1
k=0 assum-

ing that: (A1) K and φ are known; and (A2) φ is bandlimited (its Fourier transform
is compactly supported). The notion of sparsity naturally finds its way in the super-
resolution problem because y (t) = (φ ∗ s) (t) where s is a continuous-time, K-sparse
signal

s (t) =
∑K−1

k=0
ckδ (t − tk), tk ∈ [0, τ) . (2)

Recovery Strategy

Typical recovery procedure in the super-resolution problem exploits the struc-
ture of sparse signal. This is done in two steps:y1 Deconvolution.

Here ŝ (nω0) is estimated by using,

ŝ (nω0) =
ŷ (nω0)

φ̂ (nω0)
=

K−1∑
k=0

cke
−nω0tk , nω0 ∈ [−Ω,Ω]

where Ω is the bandwidth of φ.y2 Parameter Estimation.
Once ŝ (nω0) is computed, its parametric/sinusoidal form is then used
for estimating unknowns {ck, tk}K−1

k=0 using high resolution spectral
estimation methods, fitting approaches or recently developed convex-
optimization based approaches.

Super-resolution is Sensitive to Bandwidth

Bandwidth Affects Reconstruction

Varying Ω arbitrarily, leads to the following scenarios.

• When Ω is such that N < 2K, the parameter estimation by fitting will fail
as the system is under-determined.

• Gradually increasing Ω such that 2Kω0 ≤ Ω < Ω0 leads to over-sampling
and hence to performance enhancement of the spectral estimation methods.

• Understandably, when Ω approaches the heuristically chosen Ω0, the de-
convolution step becomes ill-posed.

Towards a Bandwidth Selection Principle

Typically, in practice, φ is smooth and the selection criterion for bandwidth parameter
Ω is unclear. Consider the case of noisy measurements m (t) = y (t) + e (t) where
e (t) is bounded noise. Dividing m̂(ω) by φ̂ (i.e. deconvolving), we obtain

m̂ (ω)

φ̂(ω)
=

∑K−1

k=0
cke

−ωtk + êφ (ω) , |ω| 6 Ω (3)

|êφ (ω)| =
∣∣∣ ê(ω)

φ̂(ω)

∣∣∣ 6 η ·
(

min|ω|6Ω

∣∣∣φ̂(ω)
∣∣∣)−1

︸ ︷︷ ︸
:=εΩ

. (4)

The bandwidth selection criterion is given by, Ωopt = arg minΩ G(Ω,D)εΩ.

In the above, G(Ω,D) upper-bounds a quantity linearized condition number κ(`),

sup
θ∈D,k∈[0,K−1]

κ
(2k+1)

(θ,Ω) 6 G (Ω,D) , θ := {ck, tk}K−1
k=0 ∈ R2K

.

More precisely, κ(m) is the `1 norm of the m-th row of the matrix J†, where J is the
Jacobian matrix representing ŝ (nω0), and (·)† is the Moore-Penrose pseudo-inverse.

Theorem: Suppose that ∀θ ∈ D ⊂ R2K , the amplitudes are bounded: 0 < A1 ≤
|ck| ≤ A2, and the minimal distance Mδ = mink 6=` |tk − t`| > ∆ > 0 is also
bounded. There exist constants {Ck}3

k=1, depending on A1, A2, K, such that the
following bounds hold.

• Well-separated Regime If ∆ > C1/Ω, then κ(`) 6 C2/Ω, ` = 1, 3, . . . , 2K− 1.

• Single Cluster Regime If Mδ < 2πK/Ω, then κ(`) 6 (C3/Ω) (Ω∆)2K−2.

Optimal Bandwidth Computation
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