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ABSTRACT

We focus on image restoration that consists in regularizing
a quadratic data-fidelity term with the standard `1 sparse-
enforcing norm. We propose a novel algorithmic approach
to solve this optimization problem. Our idea amounts to
approximating the result of the restoration as a linear sum
of basic thresholds (e.g. soft-thresholds) weighted by un-
known coefficients. The few coefficients of this expansion
are obtained by minimizing the equivalent low-dimensional
`1-norm regularized objective function, which can be solved
efficiently with standard convex optimization techniques, e.g.
iterative reweighted least square (IRLS). By iterating this
process, we claim that we reach the global minimum of the
objective function. Experimentally we discover that very few
iterations are required before we reach the convergence.

Index Terms— Image deconvolution, Iterative Shrinkage
Threshold (IST), sparsity, thresholding, Linear Expansion of
Thresholds (LET)

1. INTRODUCTION

1.1. Problem formulation

Consider the standard image restoration problem: given the
degraded measurements y = Hx + n, find a good estima-
tion of the original signal x. Here H models certain linear
transformations between the original image x and measure-
ments y. Specifically, H can be the convolution matrix for
deblurring problems, Radon transform in tomography recon-
structions, or missing partial pixels for inpainting problems,
etc. And n is the additive noise whose energy is known or
can be robustly estimated with median filtering [1]. In many
cases, H is ill-conditioned, which precludes the possibility
to apply inverse filtering to the measurements. One way to
overcome ill-conditioning difficulty is to consider the mini-
mization of the following objective function:

J(c) = ‖y −HWc‖22 + λ‖c‖1 (1)
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where x = Wc. Here ‖y − HWc‖22 is a data-fitting term
and ‖c‖1 =

∑
i |ci| is a `1-norm regularization. And W

is some transformation that maps the signal to the transfor-
mation domain, e.g. wavelet. The underlying reasoning to
use `1-norm regularization is that natural images often have
sparse representations in some transformation domains, typ-
ically wavelet [2, 3, 4, 5, 6], or curvelet [7] and `1 mini-
mization tends to enforce sparsity of the reconstructed signal.
Image restoration is known to be efficient when images are
processed in transformed domains where natural images have
sparse representations. Specifically, in wavelet-based image
restoration algorithms, W is the wavelet synthesis matrix and
c is the corresponding wavelet coefficients.

1.2. Previous algorithms

The optimization problem (1) is closely related to basis pur-
suit [8] criterion and least absolute shrinkage and selection
operator [9] (LASSO), which has been known to statistics
community for decades. Computational complexity in most
image processing problems prevents the usefulness of stan-
dard convex optimization algorithms, such as interior point
methods. Other approaches that can readily handle large scale
problems can be adopted, including gradient methods [10,
11], fix-point continuation methods [12], gradient projection
methods [5], and iterative shrinkage threshold (IST) meth-
ods [6, 3].

IST is probably one of the most popular methods because
of its simplicity. It requires one matrix multiplication of H
and HT followed by the shrinkage step:

c(n+1) = θλτ/2

(
c(n) − τWTHT

(
HWc(n) − y

))
(2)

where θα(t) = sign(t) max(|t| − α, 0) is the soft-threshold
function and τ is the IST step size. It can be derived with
expectation maximization (EM) [2] or a more generalized ma-
jorization minimization (MM) approach [4]. However, it is
recognized that IST is a slow-converging algorithm [13, 14].
Recent efforts to speed up IST led to the emergence of algo-
rithms like TwIST [15], FISTA [13], and NESTA [10, 11].
They all can be categorized as gradient-based methods that
take into account previous two or more iterates results.
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Fig. 1. Schematical view of LET deconvolution. LET coefficients
are obtained by minimizaing the objective function value (1). The
reconstructed signal is then feedback to the next iterate.

Another class of algorithms, which is related to iterated
reweighted least square (IRLS), has attracted significant
amount of attentions, e.g. iterative reweighted shrinkage [4],
which exhibits much faster convergence rate compared than
the IST algorithm.

2. ITERATIVE LET RESTORATION

From our previous experience in image denoising, we know
that it is possible to have a good approximation of the orig-
inal signal by decomposing the denoising process into a lin-
ear combination of elementary processes (or linear expansion
of thresholds, i.e. LET) [16, 17]. Here we adopt the same
principle by representing the wavelet coefficients c that mini-
mizes (1) with a set of basis thresholding functions weighted
by unknown coefficients:

c = F(y) =

K∑
k=1

akFk(y)

where Fk(y) for k = 1, . . . ,K are LET bases and ak’s are
coefficients to be determined. Therefore, our goal is to find
the optimal function (or more specifically the ak’s for a given
set of Fk(y)) that maps the measurements y to the recon-
structed signal c iteratively. The optimality is in the sense
that the reconstructed signal gives minimal objective function
values in (1):

c(n+1) =

K∑

k=1

akFk
(
y, c(n), c(n−1)

)
(3)

where ak = arg minak J
(∑K

k=1 akFk
(
y, c(n), c(n−1)

))
.

At each iteration, the LET bases depend on both the measure-
ments y, current and previous iterate c(n), c(n−1) (Fig. 1).
We include the previous iterate for faster convergence, as
in FISTA [13] and TwIST [15]. If we substitute the LET
representation (3) of the reconstructed signal c into (1), the
resultant objective function is till convex in ak’s but with
much smaller dimension. The minimization can be easily
achieved with standard convex optimization methods and
leads to ĉ = c(∞). We can then reconstruct the solution
x̂ = Wĉ.

2.1. LET bases

In principle, we have the freedom to include arbitrary LET
bases in (3). However, for simplicity (and also for the sake

of convergence: see below), we only focus on one specific
set of LET expansions, which follows naturally from the IST
algorithm. A good choice of LET restoration bases Fk are of
the form:

Θ1 = c(n−1)

Θ2 = c(n)

Θ3 = θλτ/2

(
c(n) − τWTHT(HWc(n) − y)

)
(4)

Θ4 = (WTHTHW + µI)−1
(
c(n) −Θ3

)
(5)

Notice that the third basis (4) is exactly the same as the shrink-
age step in IST, where λ is the regularization weight and τ is
the step-size. The fourth basis (5) can be treated as the result
obtained with optimization techniques that involves the regu-
larized Hessian of the data-fitting term in J(c). Here instead
of using the exact gradient, c − Θ3 is used, which behaves
similarly to a gradient for J(c). With the LET approach, we
can prove that global convergence is guaranteed provided one
of the LET bases is a soft-threshold (4), without any limitation
on the value of τ . Due to lack of space, the proof of this claim
is left for a future publication. Here instead of choosing µ
empirically for best performance, we use several Θ4 with dif-
ferent but fixed µ’s for the LET bases. The LET coefficients
balance the influence of each basis via the minimization of
objective function J(c).

2.2. Computing LET coefficients

At each iteration, the LET coefficients are obtained by min-
imizing the objective function J(c). To this aim, we use it-
erated reweighted least square (IRLS), which is found to be
efficient to solve `1 regularized minimization [4, 19]. It is
generally difficult to implement IRLS for image restoration
problems because of the need to solve a very large linear sys-
tem of equations [4, 15, 20]. But we do not have the same
issue in LET restoration approach. Indeed, if we introduce
(3) into (1), then we only need to solve a small linear system
of equations at each iteration: M(n)a = b where a and b are
K × 1 vectors and M(n) is a K ×K matrix, given by:

M(n) = (HWFk)
T
(HWFl) +

1

2
λFT

kD
(n)Fl

b = (HWFk)
T
y

Here D(n) is a diagonal matrix with
[
D(n)

]
i,i

= 1

|c(n)
i |

. Ob-

serve that the dimensionality is reduced dramatically from the
size of image NM to the degree of freedom of LET bases K
for an N ×M image (K � NM ).

3. SIMULATION RESULTS AND DISCUSSIONS

In this section, we illustrate the iterative LET (i-LET) restora-
tion approach with wavelet deconvolution problems. Several
convolution kernels are used in experiments, including
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• type 1: 9× 9 uniform blur
• type 2: hi,j = 1/(1 + i2 + j2) for i, j = −7, . . . , 7

• type 3: hi,j = [1, 4, 6, 4, 1]T[1, 4, 6, 4, 1]/256

The additive noise level is varied with blurred signal-to-noise-
ratio (BSNR) ranging from 40dB to 10dB. In all experiments,
we use sym8 decimated wavelet transform (DWT) with three
levels and the test image is 256 × 256 cameraman. The `1
regularization weights λ in (1) are chosen consistently for all
cases based on the noise level σ2 and the wavelet coefficients
c of the original image: λ = σ2NM

‖c‖1 for anN×M image. We
choose τ based on the regularization weight λ in (4) with1

τ = 150/λ, and three different µ’s in (5) with µ1 = 10−2λ,
µ2 = 10−1λ, and µ3 = λ. Therefore, we have six LET bases
in total. Note that these parameter settings do not need to
be finely adjusted: the optimization of the LET coefficients
automatically performs the finer tuning.

We compare the proposed i-LET deconvolution method
with the-state-of-art algorithms: FISTA [13] and SALSA [18]
in terms of iterations required to reach the same objective
function value. Since FISTA is an extension to Nesterov’s al-
gorithms and it has been reported to outperform NESTA [21],
we do not include the results of NESTA here. Table 1 sum-
marizes the results obtained from experiments for deconvolu-
tion problems with decimated wavelet transform. The objec-
tive function values at convergence are obtained by running
FISTA with 1000 iterations yielding c

(1000)
FISTA and the number

of iterations required for other algorithms to reach 1.001 ×
J
(
c
(1000)
FISTA

)
are compared. When the algorithm does not reach

the value after running 1000 iterations, we report it as “does
not converge” (DNC). In all cases, the LET deconvolution
outperforms SALSA and FISTA in terms of iteration num-
bers required. In our current implementation, one i-LET iter-
ation takes 2.7 times the execution time per FISTA iteration.
This means that our approach is already faster than FISTA and
SALSA in a number of practical cases. In addition, we may
expect further gain by a more careful choice of LET bases
and a more efficient implementation. Experiments with other
images than cameraman with the same settings have led to
similar results (not shown here).

The i-LET approach is also capable of handling restora-
tion problems when redundant transforms are used, which are
known to provide better reconstruction quality. Here we use
4-level undecimated Haar wavelet transform. Unfortunately,
FISTA and SALSA do not perform well, maybe due to the de-
fault parameter settings in the current software distributions.
Then the i-LET approach outperforms both of them signifi-
cantly. We include one example when the image is blurred
with type 2 convolution kernel with 30dB BSNR. The regu-
larization parameter λ is chosen in a way such that the basis-
pursuit criterion is met, i.e. ‖y − Hx̂‖22 = NMσ2 for an
N ×M image. The restoration result as well as the evolution

1Notice again that we do not need to limit the value of τ , contrary to what
is required for the IST.

Table 1. Iteration # required to reach convergence
BSNR 40 35 30 25 20 15 10

Method cameraman 256× 256, type 1 blur

FISTA 282 187 116 60 33 18 8

SALSA 29 52 78 166 DNC DNC DNC

i-LET 22 21 19 14 11 9 5

Method cameraman 256× 256, type 2 blur

FISTA 182 110 69 33 21 11 6

SALSA 19 35 71 168 DNC DNC DNC

i-LET 16 13 11 8 6 5 3

Method cameraman 256× 256, type 3 blur

FISTA 341 199 120 55 14 8 4

SALSA 46 74 158 423 DNC DNC DNC

i-LET 38 37 32 23 9 6 5

of objective function values are shown in Fig. 2. The deconvo-
lution result obtained with DWT under the same experiment
conditions is also shown for comparison.

4. CONCLUSIONS

In this paper, we have proposed a novel framework to solve
the `1 image restoration problem by expanding the restora-
tion process onto a basis of elementary processes, whose indi-
vidual effect is weighted by coefficients — LET coefficients.
Results obtained from standard deconvolution benchmark ex-
periments show that the LET scheme has significant speed
improvements under various experiment settings consistently.

Compared with conventional algorithms, several advan-
tages of the LET approach are notable: 1) Dimensionality of
the problem is reduced dramatically from the size of images
to the degree of freedom of LET bases K. 2) The linear rela-
tionships between the reconstruction ĉ and LET coefficients
ak simplify the original optimization problem. For a given
merit criterion, e.g. minimizing the objective function (1),
the solution can be obtained by solving a much smaller lin-
ear system of equations. 3) The LET scheme is flexible and
extensible. Even though we exemplify the LET reconstruc-
tion approach with a particular set of LET bases for image
deconvolution problems, the LET framework does not spec-
ify what kind of bases should be included. The algorithm can
always take the best of each LET basis via the adjustment of
the linear coefficients ak.
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(a) Blurred noisy measurements

(b) Result with i-LET (DWT) (c) Result with i-LET (UDWT)
PSNR=26.56dB PSNR=27.57dB

(d) Convergence comparison for FISTA, SALSA, and i-LET
for DWT case for UDWT case
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Fig. 2. Blurred measurements and deconvolution results obtained
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mated wavelet transform (DWT) and redundant wavelet transform
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