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`p-Multiresolution Analysis: How to Reduce Ringing
and Sparsify the Error
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Abstract—We propose to design the reduction operator of an
image pyramid so as to minimize the approximation error in the

-sense (not restricted to the usual = 2), where can take non-
integer values. The underlying image model is specified using shift-
invariant basis functions, such as B-splines. The solution is well-de-
fined and determined by an iterative optimization algorithm based
on digital filtering. Its convergence is accelerated by the use of first
and second order derivatives. For close to 1, we show that the
ringing is reduced and that the histogram of the detail image is
sparse as compared with the standard case, where= 2.

Index Terms—Banach spaces, multiresolution, non-Euclidean
norms, splines.

I. INTRODUCTION

M ULTIRESOLUTION analysis is a simple yet very pow-
erful concept which goes back to the pioneering works

of Rosenfeld [1] and Burt and Adelson [2]. Instead of a fixed
size pixel array, one considers a hierarchical image description
at multiple resolution levels; typically, a series of fine-to-coarse
approximations which are stored in a pyramid data structure.
Such pyramids are extremely useful for speeding up compu-
tations. In fact, there are multiscale versions of most image
processing algorithms. The main advantages of multiscale pro-
cessing are the following.

• Computational speed:Since there are much fewer pixels
at the coarser levels of the pyramid, iterative algorithms
that switch between resolution levels require less compu-
tation and have faster convergence.

• Spatial resolution adaptation:Many image processing
algorithms operate on very localized neighborhoods and
it makes good sense to adapt the resolution in an optimal
fashion. This is especially true with iterative schemes
which proceed by successive refinement—here the reso-
lution should be linked to the step size of the algorithm.

• Increased robustness:In the context of iterative algo-
rithms, the smoothing effect of the pyramid reduces the
likelihood of getting trapped in local extrema.

• Analogies can be made with the hierarchical organization
of the human primary visual cortex.
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Multiresolution analysis also plays a central role in the theory
of the wavelet transform, which provides a nonredundant repre-
sentation of images across scales. Here too, the applications in
image processing and computer vision are numerous, and often
very successful [3]–[5].

One of the earliest and most popular examples of pyramid
is due to Burt and Adelson [2]. Their Gaussian filtering, how-
ever, produces excessive smoothing, which leads to some loss
of image details. Higher-quality image approximation can be
obtained by designing a reduction filter that is optimum in the
least-squares sense, or by using the lowpass branch of a wavelet
decomposition algorithm [6], [7]. Another option is to use spline
pyramids that minimize either the or the -approximation
error [8], [9]. These latter representations are especially attrac-
tive for continuous/discrete multiscale processing. The nice fea-
ture of these pyramids is that they can all be implemented using
a combination of filters and sampling rate converters. Of course,
the critical aspect here is filter design—a standard requirement
is the biorthogonality of the reduction and expansion opera-
tors [10]. Unfortunately, simplicity also comes at a price and
these pyramids suffer from limitations that are inherent to linear
methods; in particular, edge blurring (when the smoothing is
too strong, e.g., the Gaussian pyramid), aliasing (when it is not
enough), and ringing artifacts (when the filters have a sharp
cutoff). Thus, the selection of a suitable multiresolution model
is essentially a question of compromise: higher order spline
or wavelet approximations generally yield better energy com-
paction but they also give rise to larger Gibbs oscillations as the
functions become more and more bandlimited [11].

An attractive alternative to linear pyramids is to go nonlinear.
Several authors have proposed to replace the linear pyramid fil-
ters by nonlinear ones including the median and morphological
operators [12]–[16]. However, these so-called morphological
pyramids are generally not meant to provide a continuous/dis-
crete representation. Nonlinear filters can also introduce distor-
tions that make the reduced images visually unpleasant.

In this paper, we will pursue another approach and intro-
duce spline pyramids that are optimal for-norms. Note that
the choice of a spline model in this context is equivalent to
specifying the expansion mechanism, i.e., polynomial spline
interpolation. Thus, the challenge is to come up with a corre-
sponding reduction operator that produces visually pleasant re-
sults without aliasing and with minimal ringing artifacts. The
information lost by the reduction operator should be as little as
possible. Normally, this corresponds to difference images which
are sparse—contain a lot of small-valued elements.

The paper is organized as follows. In Section II, we present
a Banach-space formulation of the problem and prove that the
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solution is well defined. In Section III, we propose a digital fil-
tering-based procedure that computes the solution iteratively.
The computational overhead of the iterative approach is small,
and we expect the generation of the pyramid to account for only
a very small part of the total effort in a typical multiscale al-
gorithm. In Sections IV and V, we compare the approximations
obtained for different s and orders of the approximation func-
tions, respectively. We end with a discussion of our results in
Section VI.

II. M ULTIRESOLUTION SUBSPACES OF

In this section, we present the theoretical basis of our method.
We justify the choice of our continuous/discrete model and show
that our approximation problem has a well-defined solution.

A. Definitions and Notation

The norm of a sequence is defined as

(1)

with and the special case .
The -transform of a signal , is denoted by

If we make , we recover the Fourier transform.
The symbol denotes the downsampling operator by the

integer factor ; it is defined as

The dual operator represents upsampling by the integer
factor

if divides ,

elsewhere.

B. Approximation Signal Model

Our signal model [cf. (2)] is similar to the ones encountered
in wavelet theory. For simplicity, we will present the theory in
1-D. The extension to multiple dimensions is straightforward
through the use of tensor product basis functions. The use of a
separable model implies that the expansion mechanism is sepa-
rable as well; the reduction mechanism, on the other hand, will
not be separable unless we are dealing with the classical case

(least squares approximation).
Specifically, we choose to represent all signals in terms of

shifted basis functions, which are typically sampled B-splines.
A discrete signal, e.g., , will always denote the samples on
the finest grid. Its coarser level approximation at resolution

will use basis functions that are a translated version of
some template :

(2)

Fig. 1. Reduction/expansion system for an integer scaling factorN .
Reduction: the signal is reduced by a factorN so as to minimize thè -norm of
the error. Expander: upsampling and filtering, as specified by the approximation
model [see (2)].

In other words, is entirely specified by its coefficients.
These are the quantities that are stored in the pyramid; at each
level there is exactly one such number per node. The template

should be interpreted as an expansion (or interpolation) filter
which maps the coefficients sequence(coarse level of the
pyramid) to the finest resolution level on which the signals are
defined (cf. the right hand side of Fig. 1). We are using the sub-
script in to indicate that the expansion filter depends on

(typically, a spline interpolator with an expansion factor).
In the sequel, we will sometimes leave out this dependence to
simplify the notation. The corresponding approximation space
is

(3)

It is clearly convex and -integer shift-invariant, i.e.,
iff .

For our formulation, it is essential that be a closed sub-
space of to ensure a well-defined solution of our approxima-
tion problem. This will be the case if forms a
-stable (or -Riesz) basis (for a similar definition in the con-

tinuous framework cf. [17])

(4)

with , .
This norm equivalence implies that (by letting )

and that and are isomorphic Banach spaces.
This above condition is ensured by the following theorem that

is proven in the Appendix.
Theorem 1: If and is a -Riesz

basis for some then it is also a -Riesz basis for
.

Consequently, if is in and generates a Riesz basis in the
conventional -sense, then it is automatically also-stable for
any . The following result by Aldroubiet al.[18] gives a simple
way to check if generates a Riesz basis or not.

Theorem 2: is a -Riesz basis if and only
if
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C. Discrete/Continuous Multiresolution; B-Splines as Basis
Functions

The filter is obtained by sampling at the integers
a continuous basis function dilated by , i.e.,

. We make this choice because we want the in-
terpolated version of our approximated signal to belong to the
space , i.e.,

, while its samples belong to [cf.
(3)]. This yields a consistent discrete/continuous signal repre-
sentation. The advantage of this joint model is the possibility
of applying continuously defined operators commonly used in
image processing such as derivatives or geometrical transfor-
mations. B-splines are examples of continuous basis functions
that we consider appropriate for this multiresolution analysis.
The main reasons for this choice are their maximal order of ap-
proximation for a given support (key consideration for compu-
tational efficiency) [19]; splines are also smooth and well-be-
haved (piecewise polynomials) and their simple analytic form
facilitates their manipulation [20]. In addition, they satisfy a
two-scale relation which makes them appropriate for multiscale
processing [8]. Finally, as the coefficients of the filterfor the
B-splines belong to and generate a Riesz basis of[21], they
satisfy the conditions on to have be a closed subspace of

(see Section III-B).

D. Projection Theorem in Banach Spaces

Given the discrete signal , we would like to find the
approximation that minimizes the error .
The projection theorem in Banach spaces (i.e.,) [22] states
that, since is a convex closed subspace offor any ,
there exists such that

(5)

Thus, is the best approximation ofin , in the -sense.
We denote . For , is unique. Unicity
is lost for and ; nevertheless, all the minima are
global, ensuring that the solution to our approximation problem
is well-defined. Thus, our initial problem of calculating the min-
imum error approximation translates into calculating the coeffi-
cients in (2) that describe the projection.

III. OPTIMAL APPROXIMATION

In this section, we refer to the state-of-the-art algorithm to
calculate -projections. We then turn to more general-pro-
jections and present a novel iterative algorithm based on digital
filtering.

A. Optimal Approximation in

We will start by presenting the solution of Aldroubiet al.[18].
For , our space is a Hilbert space, i.e., a Banach space with
an inner product. In that case, the calculation of takes the
simpler form

(6)

Fig. 2. Optimal reducer for̀ -norms: antialiasing filter and downsampler.

where is the (unique) dual function of, i.e., and

(biorthonormality).
The coefficients of the orthogonal projection of the input

signal onto are given by

(7)

where

The corresponding reduction/expansion digital filtering
system is shown in Fig. 1. In this particular case, the reduction

is implemented via a prefilter followed by a downsampler as
shown in Fig. 2. Note that the Riesz condition ensures that the

filter exists and is always well-defined.

B. Optimal Approximation in

Now, we deal with the general case of finding an optimal
-approximation. The difficulty of working in Banach spaces

is the lack of an inner product. Practically, this means that the
solution cannot be computed by a one step linear algorithm. In
this section, we develop an iterative optimization procedure that
takes advantage of linear filtering and of the calculation of first
and second order derivatives.

The -norm of the approximation error is a
convex function of the coefficients , which ensures that its
local minima are also global. This is because of the constitutive
definition of a norm (esp., triangle inequality and semilinearity)
and because the errordepends linearly on. The consequence
is that a gradient-based optimization algorithm with adaptive
steps will always converge to the global minimum. However,
since for the norm of the error is only piecewise dif-
ferentiable, we must be prepared to encounter some difficulties
(slower convergence) asgets close to 1.

1) Theoretical Derivation of the Optimization Algo-
rithm: To speed up convergence, we propose a robust
optimization algorithm, the formulation of which is Hes-
sian-based. The idea behind it is to optimize the coefficients
each in turn and to express the norm of the error as a second
order polynomial which is easily minimized. The update
formula for the vector of coefficients is then derived.

Mathematically, we justify our algorithm as follows: If we fix
an index in the expression for, we have

(8)
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Fig. 3. Optimal reducer for̀ -norms: Reducer 1: Gradient estimation. Reducer 2: Diagonal of the Hessian estimation. The value of� that minimizes the error
at each iteration is calculated using a line search algorithm. The filters are reversed versions of the original ones:h (k) = h(�k).

Fig. 4. One iteration of the algorithm that evaluates� optimal.

Then, we rewrite the norm of the error as

(9)

We minimize the last expression as a function ofconsid-
ering as independent of , in order to get the update
formula. Thus, if we know ,
we obtain the update vector of coefficients by calcu-
lating for each index

(10)
and then .

We now show that this algorithm can also be interpreted as
a gradient-based or quasi-Newton search procedure. The partial
derivative of the norm of the error with respect to is

with . The second order partial derivative is

with ; these define the entries of the
(infinite dimensional) Hessian matrix .

The update formula for the usual Hessian algorithm [23] takes
the form where is the gradient (vector of
partial derivatives) and is the Hessian (matrix of second order
partial derivatives). Here, the Hessian matrix is essentially diag-
onal dominant because is decaying away from the origin.

It is therefore legitimate to use the following simplified update
formula

(11)

where we have also introduced a step size.
If we make , we have the equivalence with formula

(10). In the following of the paper, we will call “Hessian fixed”
the algorithm described by (11) with .

We will see that the advantage of the Hessian over the gra-
dient-based methods is its efficiency, especially whengets
close to 1. It costs slightly more per iteration because the di-
agonal of the Hessian has to be evaluated in addition to the gra-
dient, but we will show how to compute it efficiently, using fil-
tering and downsampling.

2) Implementation of the Optimization Algorithm:We de-
scribe now the modular structure of the optimization algorithm
designed to calculate the coefficientsof the -approximation
signal. The implementation uses two reduce operations (Fig. 3)
followed by an expander (Fig. 1). The update vector is
obtained from the error in three steps. First, gradient estimation
(Fig. 3—upper branch), then, inverse of the diagonal of the Hes-
sian estimation (Fig. 3—lower branch). Those are finally com-
bined and multiplied by the step sizeto provide the update
vector . The diagram of Fig. 1 shows how to recompute
the error at the given iteration.

The value of the step size in (11) can be made optimal in
the sense of minimizing the error as much as possible at each
step. The idea is to remark that we are minimizing

(12)

with according to (11). In practice, we
estimate an upper ( ) and lower ( ) bound for . This
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Fig. 5. Convergence of the algorithm for different values ofp. Each graph illustrates the decrease of the criterium (i.e., the increase of the SNR) as a function of
the number of iterations. The axes are logarithmic. Results for: (a)p = 3:0 and� = 0:00045, (b)p = 2:0 and� = 0:12, (c)p = 1:2 and� = 1:0,
and (d)p = 1:05 and� = 2:0.

value is optimized by using a line search algorithm that re-
duces by two the length of the interval at each
step. Fig. 4 describes one iteration of the algorithm. The search
for the optimal is made acceptable in terms of computational
overhead by choosing initial bounds close to the optimal, i.e.,
those calculated in the preceding iteration. If and

then the convergence is ensured by the convexity
of . Note that for we have an exact formula to calcu-
late optimal that amounts to minimizing a second order poly-
nomial. We observe from Tables I and II that the line search
algorithm requires approximately 10–14 iterations when
in order to yield an optimal step size. The test image is the
one in Fig. 6—top. Cubic splines are chosen for the interpola-
tion and the scale is reduced by a factor of two.

Fig. 5 represents a typical example of convergence of the al-
gorithm for the minimization of the -approximation error. The
test signal and the parameters are the same as for the example
given above. Each graph shows the decrease of the criterion [in-
crease of the SNR dB], measured

as a function of the number of iterations for different values of
. The results are shown in decibels. Four variants of our algo-

rithm are compared: Either gradient or Hessian-based with the
parameter calculated in an optimal fashion; gradient-based
with fixed; Hessian-based as given by (11) with . In
all cases, our initial guess was . We observe in Fig. 5(a)
that for high values of ( in this case), the performances
of the Hessian-based and gradient optimal algorithms are very
similar. The convergence of the gradient-based algorithms with

fixed is worse. Fig. 5(b) is a special case as we deal with the
convergence of the least-squares approximations. Here, the di-
agonal of the Hessian is constant and independent of the input,
which implies that the Hessian and gradient-based algorithms
that use the same strategy for determiningare equivalent.
On the other hand, we observe a slightly faster increase of the

SNR for the algorithms with optimal over the other ones.
Fig. 5(c) and (d) demonstrate the behavior of the algorithms
with s close to 1 ( and , respectively). Here,
the algorithms with optimal converges in less iterations than
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TABLE I
GRADIENT ALGORITHM: AVERAGE (AND STANDARD DEVIATION) NUMBER OF

ITERATIONS OF THELINE SEARCH ALGORITHM (FIG. 4)

TABLE II
HESSIAN ALGORITHM: AVERAGE (AND STANDARD DEVIATION) NUMBER OF

ITERATIONS OF THELINE SEARCH ALGORITHM (FIG. 4)

their counterparts in a global sense.We observea slower decrease
of the error in the first iterations of the gradient method with

fixed, due to the conservative step size we have chosen to
ensure convergence when we are close to the solution. The
Hessian algorithm moves as fast as the version that uses the
optimal at the beginning but afterwards; it gets slower as the
diagonal of the Hessian gets larger forclose to 1 [when
the denominator of (10) becomes ].
Note that this behavior is not intuitive.

In conclusion, we recommend the Hessian-based, fixed
step-size algorithm when as it gives almost the same
performance as the one that uses line search. Forclose to 1,
the algorithms that take advantage ofoptimal are more robust
at the price of an added computational cost. Note that each iter-
ation has a complexity comparable to that of the-projection.
What makes the -algorithm computationally more expensive
is the number of iterations required for reaching the solution.
Based on the results in Fig. 5, we may conclude that 10–20
iterations are necessary. However, we found empirically that if
instead of we start with the -solution, we save of the
order of ten iterations for .

C. Generation of Image Pyramids

If the basis functions used to specify satisfy a two-scale
relation, then the dyadic multiresolution for the linear case has
the nestedness property of the vector spaces:

[18], [24]. The discrete wavelet transform
that minimizes the -norm exploits this nestedness by com-
puting the projection at one scale from the previous finer ap-
proximation. This hierarchical approach is not appropriate here.
In principle, one should always go back to the finest scale to
compute the coarse level approximations because of the non-
linear structure of the reduction operator.

In Fig. 6, we illustrate this distinction. We have generated the
pyramid on the left hand side using the optimal approach
(we take the finest resolution image as initial image to calculate
all coarser approximations). The pyramid on the right hand side
is suboptimal in the sense that each coarse-level approximation
is computed from the previous finer level approximation. The

reconstruction error is measured by the SNRas defined before
(here, ). It is evident that the error of the approximation
at level 1 is the same in both cases (26.11 dB) as we start from
the same image. As expected, the error is slightly larger for the
suboptimal [18.74 dB (level 2) and 14.53 dB (level 3)] than for
optimal [18.99 dB (level 2) and 14.77 dB (level 3)] pyramid.
In practice, these differences are not significant and it is quite
justifiable to use the step-wise suboptimal approach to minimize
computation. Nevertheless, in the following tests we did not use
the recursive downsampling approach but the direct one.

IV. COMPARISON OFAPPROXIMATIONS FORDIFFERENT s

In this section, we characterize the pyramid decompositions
for different values of . We observe two effects: The ringing
is reduced and the histogram of the error gets sparser asgets
closer to 1.

A. Ringing

To illustrate the reduction of the ringing, we show in Fig. 7
the low-resolution approximations (reduced 1 : 4) of the image
from Fig. 6—top, as a function of. Here, the basis functions
are cubic B-splines and the images are interpolated back to the
original size. Observe the overshooting (ringing) for highs in
Fig. 7(a) and (b). It appears around the nucleus and border of
the cells. On the other hand, in Fig. 7(c) and (d) the images are
much less textured. Subjectively, these approximations are more
pleasant visually because the regions are more nearly homoge-
neous.

B. Histogram Sparcity

Now, we center our attention on the study of the histograms
corresponding to the detail images. Ideally, we would like our
error image to be as sparse as possible, with an histogram pre-
senting a high peak at zero. This would indicate that a large por-
tion of the image is reproduced in the low-resolution approxima-
tion. With this idea in mind, we compare in Figs. 8 and 9 the his-
tograms of the detail images for different values offor a series
of biomedical images. In all cases, the sparsest detail histograms
correspond tos close to 1, indicating that the gray value in the
original image is more frequently kept in the low resolution ap-
proximation than for largers. For images in which the amount
of noise (due to the characteristics of the image modality) is
moderate or low, the height of the peak at zero is impressive.

Furthermore, combining the visual information from the
approximated images and the detail histogram, we can derive
the following conclusions: The near zero values in the detail
histogram correspond to “large” objects in the original image
where the term “large” is relative to the current scale. In other
words, the “large” objects and background are kept in the
approximation image while “small” objects are retained in
the detail images. In addition, we benefit from an excellent
preservation of the shape structures for lows. The images are
more blurred for high (see Fig. 7).

The height of the peak at zero and the spread of the detail
histogram depend heavily on the characteristics of the image.
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Fig. 6. Optimal versus suboptimal` pyramid.

The peak is higher (resp., lower), if there is more (resp., less)
edge information in the original image. The averaging effect
characteristic of the least-squares approximation leads to a detail
histogramwithaGaussianappearance.Asgrows, theaveraging
gets evenmoreaccentuated.Thespread increases with the degree
of uniformity of the original histogram, independently of.

Quantitative results for the images in Fig. 7 are given in
Table III. Each column correspond to the results coming from a
different -approximation. The table displays the values of the

SNR , the Kullback–Leibler distance between the histograms
of the original and low resolution images and the entropy of the
residues for each of the calculated-approximations.

We observe that the results are consistent: The minimum
-error (maximum SNR ) is achieved for the corresponding
-approximation in each case. The results of the Kull-

back–Leibler distance clearly indicate that the histogram of the
image is best preserved for values ofclose to 1. The entropy
of the difference image also tends to get smaller forclose to 1.
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Fig. 7. Expanded version of the approximations calculated using cubic splines at scale 4 for different values ofp. (a)` -optimal, (b)` -optimal, (c)` -optimal,
and (d)` -optimal.

Note that the last results concerning the Kullback–Leibler and
entropy measures are nothing but manifestations of the fact that

-approximation tries to preserve the original image values.
Thus, our conclusion is that the most promising scheme is the
-approximation because of the following properties.

• Preservation of the structure shapes at different scales
which is appropriate for object detection.

• Reduction of ringing and spurious textures.
• The point structures are presented only at the finest scales

of the detail images. This may be an advantage for some
applications, for example, in the detection of microcalci-
fications on mammographies.

V. COMPARISON OFAPPROXIMATIONS FORDIFFERENTORDERS

We now examine the choice of the degree of our spline basis
functions. Mainly, we are concerned with the tradeoff between
quality of approximation and computational complexity.

For our experiments we have chosen to compare approxima-
tions (reduction 1 : 4) calculated using B-splines of degrees 0,
1, 3, and 5 as basis functions. The results are shown in Figs. 10
and 11 for and , respectively. We observe
that the blocking artifacts typical of piecewise constant spline
approximation [Figs. 10(a) and 11(a)] disappear for higher
order splines. Most observers will also agree that the subjective
quality of spline approximations withs close to 1 (Fig. 11)
is better than (Fig. 10) for all degrees. Note that for the
least-squares case the ringing gets visibly accentuated as the
spline degree increases, while this is less the case for .

In Table IV, we give the SNR and entropy of the difference
image that correspond to theand approximations calculated
for different spline degrees. We observe that we have lower
values of the entropy (maximum SNR) with s close to 1 when
using spline basis of the same degree. The minimum-error is
reached for the higher order splines. This finding is consistent
with the standard theory of splines [25], [26]: as the degree
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Fig. 8. (a) Biomedical images, (b) corresponding histogram, and (c) histogram of the detail images (original minus the approximated version at scale2 using
cubic splines as basis functions) for different values ofp. Note the high peak at zero forp close to 1.

increases, the spline approximation converges to Shannon’s
solution which minimizes the -error when the function is
bandlimited or very lowpass (usual case for an image). The
main drawback of the least-squares distance measure is that
it does not penalize enough oscillations and ringing artifacts.
Interestingly, if one looks at the -approximation, the optimal
model turns out to be the cubic spline ( ). The fact
that too high an order splines are not good with respect to

-approximations is not surprising because the basis functions
tend to whose samples are not in . This is also
consistent with the fact that the -distance is the one that
penalizes ringing most.

The -cubic splines are also best in terms of data compres-
sion (entropy minimization), combining a good order of approx-
imation with a reduction of artifacts.

VI. DISCUSSION

A. -Pyramid Versus Median Pyramid

As mentioned in the introduction, median pyramids have
been widely used in the literature because of their desirable
properties of edge and detail preservation [15], [27].

The reducer operator of the median pyramids computes the
decimated version of a median filter output. We can, as with our
method, either start from the original image for all the resolution
levels, or apply the successive refinement scheme. As we have
already pointed out before, the results will be different.

Our model is equivalent to a median pyramid in one particular
case: while minimizing the error in the -sense and using as
the B-spline of degree zero as the interpolation function. If the
quality of the low-order interpolation is not satisfactory (e.g.,
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Fig. 9. (a) Test images, (b) corresponding histogram, and (c) histogram of the detail images (original minus the approximated version at scale 2 usingcubic
splines as basis functions) for different values ofp. Note the high peak at zero forp close to 1.

TABLE III
SNR MEASURESCORRESPONDING TO THEIMAGES IN FIG. 7

because of blocking artifacts), we can simply increase the ap-
proximation order by increasing the spline degree. We will still
be optimal in the -sense but our reduction operator will no
longer correspond to a median filter. Naturally, the approxima-
tion error decreases as our interpolation model improves.

The advantages of our -approximation model over a clas-
sical median pyramid can be summarized as follows.

• The reduction operator is consistent with our approxima-
tion model.

• The error is minimized in a well-defined sense.

• The existence of an underlying continuous model allows
for the evaluation of continuously-defined operators.

• The model is flexible as it is possible to tune the parameter
and the degree of the B-spline which determines the

space in which the original image is projected.

B. Perceptual Relevance of theMetric

There are two related aspects when computing and evaluating
image approximations that should be considered:
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Fig. 10. Comparison of the least-squares (p = 2:0) approximations calculated at scale 4 for different degrees of the splines. (a)n = 0, (b) n = 1, (c)n = 3,
and (d)n = 5. See Table IV for quantitative error information.

• the optimization criterion and the algorithm (-projec-
tion) used to approximate the input signal;

• the -metric used to measure the approximation error.

Obviously, if we know the metric that best matches our visual
perception of image quality, it makes good sense to use the cor-
responding approximation algorithm.

From a perceptual point of view, what we consider to be a
good result depends on the sensitivity of the human observer
to details at different frequencies and contrasts [28]. From the
examples collected in this paper and our experimentation with
the algorithms, we are tempted to conclude that the-projec-
tions look perceptually better than the ones obtained with larger
values of . On the other hand, the error images for-projec-
tions also contain details and features that are more noticeable
visually. This is consistent with the observation that-approx-
imation has a stronger tendency than others to simplify images.

In [29], DeVoreet al.performed experiments to determine the
-norm that best matched the response of the visual system.

They concluded that the -norm was the most appropriate for

measuring image compression errors. They used these results
to justify their nonlinear wavelet-based compression algorithm.
Their findings correlate well with our results. It is clear from the
images that we have presented that ringing is disturbing visually.
The -norm comes out best because it is the one that penalizes
the oscillations most (esp., ringing due to the is bounded if
we measure it with the norm whereas it is not with ).

VII. CONCLUSIONS

We have presented a theoretical framework for obtaining mul-
tiresolution image approximations with non-Euclidean norms.
In addition, we have proposed an efficient iterative algorithm
based on digital filtering to calculate these approximations. In
the experimental part, we found -pyramids to be the most
promising ones. Overall, they led to better feature preservation
and resulted in less ringing artifacts. They also produced the
sparsest error images which is relevant for coding applications.
These are all properties that should make them useful for mul-
tiscale processing.
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Fig. 11. Comparison of thè -approximations calculated at scale 4 for different degrees of the splines. (a)n = 0, (b) n = 1, (c) n = 3, and (d)n = 5. See
Table IV for quantitative error information.

TABLE IV
SNR MEASURES ANDENTROPYCORRESPONDING TO THÈ AND ` -APPROXIMATIONS FORDIFFERENTSCALES AND DEGREES OF THESPLINE BASIS FUNCTIONS

Another interesting finding is that cubic splines gave the best
results among all other splines when the approximation was done
in the -norm. Unlike the -ranking which always gives the
advantage to higher-order approximations, this result correlates

wellwith the fact that thecubicsplinemodel isoften thepreferred
one in applications [20]. Again, this supports the general percep-
tion that cubic B-splines offer the best compromise in terms of
approximation power versus the support of the basis functions.
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APPENDIX

Our proof of Theorem 1 was inspired by the work of Aldroubi
et al.[17] who considered -Riesz basis in a continuous frame-
work. It makes use of two classical results

Proposition 1 (Young’s Inequality):If and
then .

Lemma 1 (Wiener’s Lemma):Let with
, then is in as well.

These are used to establish the following.
Lemma 2: Let generate a -shift-invariant -Riesz

basis. Then, its -dual defined by with
, is in as well.

Proof: Thanks to Young’s inequality, we have that
because

Since is a -Riesz basis, the autocorrelation
function

is positive definite (cf. Theorem 2). The conditions of Wiener’s
lemma are met, thus, implies that belongs to as

well. We show that by using Young’s inequality and the
fact that upsampling does not change the value of the norm

We can now proceed with the proof of Theorem 1.
Proof: The goal is to establish upper and lower bounds in

the norm equivalence

The upper bound is easily localized using Young’s Inequality
and the fact that

To determine a lower bound we will work with the dual filter
which is in as well, as a consequence of Lemma 2. Since
and are biorthogonal, we have that

with . So, we have found such as
.
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