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ABSTRACT

We propose to design the reduction operator of an image pyramid so as to minimize the approximation error in the
`p sense (not restricted to the usual p = 2), where p can take non-integer values. The underlying image model is
speci�ed using arbitrary shift-invariant basis functions such as splines. The solution is determined by an iterative
optimization algorithm, based on digital �ltering. Its convergence is accelerated by the use of �rst and second
derivatives. For p = 1, our modi�ed pyramid is robust to outliers; edges are preserved better than in the standard
case where p = 2. For 1 < p < 2, the pyramid decomposition combines the qualities of `1 and `2 approximations.
The method is applied to edge detection and its improved performance over the standard formulation is determined.
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1. INTRODUCTION

An image pyramid is a series of �ne-to-coarse approximations of an original image using basis functions of increasing
size.1 Pyramids are especially useful for implementing multiscale image-processing algorithms such as contour
detection and object recognition2.3 As listed below, multiscale processing has many advantageous features:

� The adaptation of resolution is suitable for coarse-to-�ne multigrid iteration strategies.

� Iterative algorithms that proceed by successive re�nements usually require less computations and have faster
convergence.

� In the context of iterative algorithms, the smoothing e�ect of the pyramid reduces the likelihood of getting
trapped in local extrema, which increases robustness.

� Analogies can be made with the hierarchical organization of the human primary visual cortex.

The earliest and most popular example of a pyramid is due to Burt and Adelson.1 Their Gaussian �ltering,
however, produces excessive smoothing, which leads to some loss of image details. Higher-quality image reduction
can be obtained by designing a reduction �lter that is optimum in the least-squares sense,4 or by using the lowpass
branch of a wavelet decomposition algorithm5.6 Another option is to use spline pyramids that minimize either the
`2 or the L2 approximation error7.8 These latter representations are especially attractive for continuous/discrete
multiscale processing. However, linear techniques also present some limitations such as edge blurring and ringing
artifacts (a combination of Gibbs phenomenon and aliasing).

A possible alternative to linear pyramids is to go nonlinear and to take advantage of morphological operators9.10

However, those are generally not meant to provide a continuous/discrete representation. They are not optimal in
any well-de�ned sense as will be shown here. In addition, they introduce distortions which can make the reduced
images visually unpleasant.

In this paper, we introduce spline pyramids that are optimal for `p-norms. Note that this metric is optimal in
a maximum-likelihood sense for the generalized Gaussian model.11 We present a Banach-space formulation of the
problem. The solution is well-de�ned and is found using iterative algorithms and digital �ltering techniques. The
computational overhead of the iterative approach is small, and the generation of the pyramid is expected to account
for a very small part of the total e�ort of the multiscale process.

Splines will be selected as basis functions due to their excellent approximation properties,12 a minimum support
for a given order, and their simple explicit form that makes them easy to manipulate.



2. MULTIRESOLUTION SUBSPACES OF `p

We reduce the size of the signal by a factor N by specifying the approximation signal model

~sk =
X
l

clh(k �Nl) (1)

The cl's are the coeÆcients that describe our signal in the subspace

VN =

(
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X
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clh(k �Nl) : c 2 `p

)
\ `p

The spaces fVNgN2N de�ne a multiresolution of `p i�:

� : : : � V2 � V1 � V0 = `p (nested subspaces)

� VN is closed 8N 2 N

� the sequences hl de�ned by hl(k) = h(k �Nl) are a Riesz basis of VN in the `p sense; i.e.,
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with 0 < A;B < 1. Note that the basis functions are translated by multiples of N ; this corresponds to a
coarsening of the grid by a factor N . In multiple dimensions, we use tensor product basis functions.

The �lter h is obtained by sampling a continuous basis function ' dilated by N , i.e., hk = '
�
k
N

�
, for every

integer value of k. B-splines are appropriate examples of continuously-de�ned basis functions. The advantage of this
discrete/continuous model is the possibility of applying continuously-de�ned operators, which are commonly used in
image processing such as gradients and derivatives.

Given the discrete samples of an image s 2 `p, we would like to �nd its minimum error approximation ~s. The
projection theorem in Banach spaces (here, `p) states that, given V a convex closed subspace of `p, for any sequence
s, there exists ~s 2 V such that

ks� ~sk`p = d(s; V ) = inf
sV 2V

ks� sV k`p (3)

Thus, ~s is the best approximation of s by the vectors in V , in the `p sense. We denote ~s = PV s. For 1 < p <1, ~s is
unique. Even if uniqueness is lost for p = 1 and p =1, all the minima are global. Our initial problem of calculating
the minimum error approximation translates to calculating the coeÆcients c that describe the projection ~s = PVN s

of a discrete image s 2 `p in the space VN de�ned by our approximation signal model.

3. OPTIMAL APPROXIMATION

This section will begin by reviewing the state-of-the-art algorithm to calculate `2-projections. We will then present
a novel iterative algorithm based on digital �ltering to calculate `p-projections, which is a generalization of the `2
algorithm. The `2 and `p projections are based on the previously described approximation signal model and both
take advantage of the discrete multiresolution mentioned in Section 2.

3.1. Optimal Approximation in `2

Aldroubi et al13 present a solution for the previously described c coeÆcients in `2, i.e. in Hilbert space which is
equivalent to a Banach space with an inner product. In `2, the calculation of PV s takes the simple form

~s = PVN s =
X
l

hs;�hlihl (4)



�h is the dual function of h; i.e., �h 2 VN and h�hk; hli = Æk�l (biorthonormality).

The coeÆcients ck of the orthogonal projection of the discrete image sequence s into VN are given by

ck = [�hT � s]#N (k) (5)

where
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k=0 H(ej
2�k
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2�k
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: (6)

The corresponding reduction/expansion digital �ltering system is shown in Figure 1. The reduction is carried out
by an antialiasing �lter and a downsampler while the expansion is performed by an upsampler and a synthesis �lter.
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Figure 1. Optimal reduction/expansion digital �ltering system for an integer scaling factorN . Reducer: Antialiasing
�lter and downsampler. Expander: Upsampler and synthesis �lter.

The spline multiresolution has the nested property of the vector spaces, thanks to the underlying continu-
ous/discrete signal model. Aldroubi et al13 showed that the spline projection enjoys the iterative property PVN s =
PVNPVN�1s. It is thus identical to build a one-step `2 projection onto VN than to project �rst onto VL with (L < N)
and then project the result onto VN .

3.2. Optimal Approximation in `p

This section will focus on �nding an optimal `p-approximation. The drawback of working in Banach spaces is the
lack of an inner product. In this section, we present a new solution to the problem. The new iterative optimization
algorithm takes advantage of linear �ltering and of the calculation of �rst and second order derivatives.

The `p-norm of the approximation error e = s� ~s is a convex function of the coeÆcients cl, which ensures that its
local minima are also global. This is because of the constitutive de�nition of a norm and because e depends linearly
on c. All this makes a gradient-based optimization algorithm with adaptive step converges to the global minimum.
However, the convergence process may be very slow, especially when p gets very close to 1.

We propose a Hessian-based robust optimization algorithm to speed up the convergence of the traditional steep-
est descent method. The idea behind this algorithm is the successive optimization of each of the approximation
coeÆcients and the formulation of the norm of the error as a second order polynomial which can be easily minimized.

Mathematically, the derivation of the algorithm is summarized as follows. For a �xed and arbitrary index l0 in
the ~s expression we obtain
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X
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Then, the norm of the error is rewritten as
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The above expression is minimized by considering jekj
p�2 as independent of cl0 in order to get the update formula

for the c coeÆcients. Thus, if c(i) = (: : : ; c
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To make the parallel with a standard steepest descent procedure, we now compute the partial derivative of the
norm of the error kekp`p with respect to c:

@kekp`p
@cl

= �
X
k

g1(ek)h(k �Nl)

with g1(x) = pjxjp�2x. Similarily, we get the second order partial derivative:

@2kekp`p
@cl@cn

=
X
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g2(ek)h(k �Nl)h(k �Nn)

with g2(x) = p(p� 1)jxjp�2.

The update formula for the usual Hessian-based algorithm takes the form

�c(i) = �(r2e)�1re (8)

where re is the gradient (vector of partial derivatives) and r2e is the Hessian (matrix of second order partial
derivatives). If we approximate the Hessian by its diagonal, and make the step size � = p � 1, the usual Hessian
based algorithm (8) and our method (7) become equivalent.

The advantage of the Hessian over the gradient based methods is its eÆciency, especially when p = 1. In addition,
when we are close to the solution, we reach it in less iterations than with the gradient-based algorithms. However,
each iteration requires the evaluation of the diagonal of the Hessian in addition to the gradient thus increasing the
computational complexity.

We can make optimal the value of � in (8) by searching for the step size that minimizes the error. The idea is to
minimize ke(i) � �

P
k ulh(k �Nl)k`p with respect to the step size � where u = ��1�c. In practice, we estimate an

upper and lower bound for � and optimize this value using a line search algorithm that reduces by two the length of
the interval at each step.

The search for the optimal � is made acceptable in terms of computational overhead by choosing initial values
quite close to the optimal; i.e., those calculated in the preceding iteration. Thus, the convergence is robust and
eÆcient, although much slower than with a �xed �.
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Figure 2. Algorithm to minimize ks� ~sk`p

Figure 2 describes the modular structure of the algorithm devised to minimize ks � ~sk`p . The implementation

uses two reducing operations followed by an expanding operation. We can obtain the updating vector �c(i) in two
steps. First, gradient estimation (upper branch), then, Hessian diagonal estimation (lower branch). Those are �nally
combined and multiplied by the step size � to provide the updating vector of coeÆcients �c(i). The second part of
the diagram recomputes the error at the given iteration.
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Figure 3. Typical example of convergence of the Hessian-based algorithm. The logarithm of the di�erence in the
value of the `p approximation error between two successive iterations is displayed as a function of the number of
iterations.

Figure 3 represents a typical example of convergence of our Hessian-based algorithm. The logarithm of the
di�erence in the value of the `p approximation error between two successive iterations is displayed as a function of
the number of iterations. The oscillations for p = 1 are probably due to the fact that the functions g1 = sign(x)
(used when p = 1) is discontinuous at the origin. Note that the error itself decreases monotoniously.

Figure 4 illustrates the fact that the iterative projection property described in Section 3:1 for `2 does not hold for
`p approximations in general because of the nonlinear structure of the reduction operator. We generate the pyramid
at the left side using lena as original image to calculate all the coarse approximations. The pyramid at the right side
uses the previously calculated approximation to compute the next one. The approximation error is quanti�ed as

SNR = 20 log

�
ks� ~sk`p
ksk`p

�

We have chosen p = 1:2 and scale changes by powers of two: N = 2 for level 1, N = 4 for level 2 and N = 8 for level
3, respectively. At level 1 we get the same approximation PV1s, where s is lena. Nevertheless, at the other levels,
the `p-approximation error is slightly greater for the suboptimal pyramid as seen in Figure 4. Since the di�erences
between both schemes are not signi�cant, it is justi�ed to use the sub-optimal approach in practice because it is
faster.

4. APPLICATION OF `p APPROXIMATIONS

Gibbs phenomenon is well-known to arise in the case of `2 approximations. This section will �rst study the ocurrence
of this phenomenon in the general `p-framework. The second part will focus on the application of our algorithm to
edge detection based on the computation of derivatives. We will choose cubic splines as basis functions. Besides, we
will take advantage of the underlying spline model to compute the �rst and second derivatives exactly.

4.1. Comparison of `p approximations

Up to now, the standard way to generate pyramids is to compute least-squares approximations. The optimization of
a quadratic norm is a relatively easy task because the associated inner product is well-de�ned (cf. Section 2). The
resulting approximation acts as a lowpass �lter, which is, for example, useful to reduce Gaussian noise. The major
inconvenience is the generation of Gibbs oscillations and edge blurring.9

We use our generalized model to compare the ringing due to the Gibbs phenomenon for di�erent values of p. In
Figure 5, we have approximated the box function (a) using cubic splines with N = 2 (solid line) and N = 16 (dotted
line). We conclude that the artifacts increase with p as is shown in Figure 5b, c and d for p = 1; 1:2; 2, respectively.
The approximations in the `1-sense are the most robust. The edges are preserved and the ringing is minimized.
When ' is the spline of degree 0 (piecewise constant) and N is odd, then the optimal solution can also be obtained
by simple median �ltering; indeed, it is well known that the median minimizes the absolute deviation.14
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Figure 4. Optimal versus suboptimal pyramid.

A consequence of the ringing artifacts is the generation of numerical instabilities when estimating the derivatives
by means of low resolution approximations. To illustrate this fact, the gradient of the approximation of a piecewise
linear function (Figure 6a) is calculated at scale N = 2 using cubic splines for di�erent values of p in the region near
discontinuities. We observe that the estimation gets more distorted as p grows an e�ect which is due to ringing.

Finally, we conclude that values of p close to 1 prove most interesting in an attempt to reduce ringing artifacts
and keep the edges of the original image in the coarse approximations of the pyramid.15

4.2. Contour detection

This part focuses on multiscale edge detection based on the computation of derivatives. We show that the use
of a more suitable approximation model than the standard least-squares formulation improves accuracy. In this
application, we use the underlying spline model to compute the �rst and second derivatives exactly.

The location of an edge is where an image displays an abrupt change in intensity. In 1D, an edge corresponds
to an extreme value of the �rst derivative and to a zero-crossing of the second derivative. In higher dimensions, the
maximum derivative occurs in the direction of the gradient. Thus, we need to search for the zero-crossings of the
second derivative in the direction of the gradient. This is the fundamental principle of the well-known gradient and
directional Laplacian edge detectors available in the literature16,17,2,18.19

Using the gradient magnitude alone works best when the gray-level transition is quite abrupt, like a step function.
As the transition gets wider, it is more advantegeous to use second order derivatives as well.

As described in,19 we consider that a pixel belongs to an edge if, in the pixel's immediate area, there is a zero-
crossing of the second directional derivative in the direction of the gradient and if the slope of the zero-crossing is
negative. This edge detector is suitable to follow weak but spatially coherent gradients. A zero-crossing directional
Laplacian detects not only edges but also textures and ripples. So, the combination of the zero-crossings with a
threshold applied to the gradient magnitude is used to detect the true edges.

The directional Laplacian corresponds to

r2
�f(r) =

@2

@�2
f(r + �u�) = fxx cos

2 � + 2fxy cos � sin � + fyy sin
2 � (9)
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Figure 5. Optimal `p approximation of the box function by dilated cubic splines: dilation factor N = 2 (solid line)
and N = 16 (dotted line). Notice the increase of ringing artifacts with p.



initial function s projection `1

projection `1:2 projection `2

Figure 6. Piecewise linear function. Gradient of its `p projection for di�erent values of p at scale N = 2, using
cubic splines.
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�
cos �
sin �

�
and the direction of the maximum deviation of the gradient is

�g = arctan
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The performance of the edge detector for di�erent `p-approximations is tested. The results are presented in
Figure 8. The inverted gradient and the edges detected in the approximation at scale N = 2 of the original image
(Figure 7) are showed for p = 1:0; 1:2; 2:0. We observe that, as p increases, the gradient estimation gets more noisy
and we have much more spurious edges. The phenomenon is most visible in the roof and in the zone of the chimney
in the direction perpendicular to the front of the house.

5. CONCLUSION

We have presented the basis of a theoretical framework for obtaining multiresolution image approximations with
non-Euclidean norms. We have proposed an eÆcient iterative algorithm based on digital �ltering to calculate these
approximations. We have applied this new algorithm to contour detection and observed some improvement for values
of p close to one. As a future work, we plan to study other non-Euclidean norms and robust similarity measures.
We will also consider the application of these new algorithms to some problems that take advantage of multiscale
processing such as noise reduction and motion estimation.
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Figure 8. Left: Inverted gradient of the approximation of the image in Figure 7 at scale N = 2 using cubic splines
and di�erent `p norms. Right: Edges detected using the same algorithm based on the calculation of the second-order
directional derivative at scale N = 2.


