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ABSTRACT

Currently, the standard event-related potentials (ERP) tech-
nique consists in averaging many on-going electroencephalo-
gram (EEG) trials using the same stimuli. Key questions are
how to extract the ERP from on-going EEG with fewer av-
erage times and how to further decompose ERP into basic
components related to cognitive process. In this paper we
introduce a novel Blind Source Separation (BSS) approach
based on a weak exclusion principle (WEP) to solve these
problems. The superior aspect of this algorithm is that it is
based on a deterministic principle, which is more appropriate
to analyze non-stationary EEG signals than most other BSS
methods based on statistical hypotheses. The results show
that our BSS algorithm can quickly and effectively extract
ERPs using fewer average times than the traditional averag-
ing methods. We show that, via BSS, we can isolate two main
ERP components, which are respectively related to an exoge-
nous process and a cognitive process, and can discriminate
between the occipital lobe and the frontal lobe responses from
the brain, agreeing with the classical component modeling in
ERPs. Single-trial ERP separation results have demonstrated
the consistency of these two main ERP components. Thus,
BSS based on WEP can provide a window to better under-
stand ERP, not only in averaging behavior, but in the com-
plexities of moment-to-moment dynamics as well.

Index Terms— Blind Source Separation (BSS), Event-
Related Potentials (ERP), Electroencephalogram (EEG),
Weak Exclusion Principle (WEP)

1. INTRODUCTION

When a subject’s brain is presented with repetition of the
same stimulus, the brain’s electrical results are called Event-
Related Potentials (ERPs). These can be sensed via the em-
placement of electrodes on the scalp, and extracted, mea-
sured, and documented with an electroencephalogram (EEG).
ERP represents a powerful tool for better understanding the
human brain and its response. ERP has many potential clini-
cal applications such as brain-computer interfaces (BCIs) and
the identification of parallel neural processes [1].

The standard ERP technique currently includes artifact
rejection/correction, followed by averaging the results. The

square root of the number of ERP trials conducted is propor-
tional to the Signal-to-Noise Ratio (SNR) enhancement by
averaging [2]. Typically the ERP amplitude is measured in
microvolts whereas the EEG amplitude is at least an order of
magnitude larger. As a result, tens or even hundreds of trials
are necessary to obtain a reliable ERP average waveform. The
fact that so many trials are required is an obvious limitation
of this method.

Nor is this the only challenging dimension of ERP re-
search. Another is that the waveforms recorded on the scalp
represent the sum of several underlying components. De-
composing the mixture into its individual components is a
serious challenge; multiple components are erroneously su-
perimposed onto the same waveform, leading researchers to
label this obstacle the “Superposition Problem.” These two
problems are the most common impediments to the success-
ful application of the ERP technique [3].

Blind Source Separation (BSS) is used to refer to the sep-
aration of a set of sources from mixed observations, with un-
known mixing coefficients [4]. The observed EEG data are a
mixture of all active sources, due to the electrodes’ position-
ing along the scalp. The delay in transmission between source
and electrode is negligible [5]. Thus, BSS methods are appro-
priate tools in the extraction of EEG features. The advantage
of BSS in EEG analysis is that overlapping processes can be
separated, making it simpler to interpret these processes [6].

The typical BSS approaches modelize the underlying
source signals as stochastic processes. For example, Inde-
pendent Component Analysis (ICA) represents an attempt
to identify linear representations of non-Gaussian data in
an effort to render its components statistically independent
[7]. Thus, stationarity is required in order to guarantee the
existence of a representative, or non-Gaussian, distribution
of the sources. However, EEG and MEG signals are very
typically non-stationary [8]. Our proposed algorithm offers a
different approach. The BSS algorithm which is used in this
paper is based on a deterministic principle: the weak exclu-
sion principle (WEP). It makes no assumption of statistical
independence, making it a good candidate for a model-free
decomposer. This algorithm has been successfully applied to
the extraction of artifacts from EEG recordings [9].

In Section 2, we present a short description of the problem
of EEG blind source separation, together with a short intro-



Fig. 1. Illustration of Sources which satisfy EP and WEP
requirements (left and right, respectively). EP: at each time
index, there is only one source activated; WEP: at each time
index, one source is “significantly” larger than the others.

duction of the BSS algorithm based on WEP. Section 3 uses
this approach to extract ERP from on-going EEG and further
decompose ERP into basic components. Section 4 is the con-
clusion.

2. EEG BLIND SOURCE SEPARATION APPROACH
BASED ON A WEAK EXCLUSION PRINCIPLE

2.1. Mathematical Model of EEG Blind Source Separa-
tion

The problem of EEG blind source separation is formulated
as follows: Stacking Mixtures (EEG signal) in an N × K
matrix X (N : time samples, K: the number of electrodes),
we would like to unmix them as a linear combination of K
sources. Mathematically, we would like to find the N × K
matrix S describing the time-samples of the sources and the
mixing K ×K matrix A such that

X = SA; or, more visually,

K

N X =

K

N S ×
K

K A (1)

BSS divides the EEG data into two parts: S (the time
course of the sources) and A (fixed spatial patterns in the
sensor space). Complicated modeling of the signal sources’
physical properties is not required; nor is modeling of the
head conductivity distribution.

2.2. Blind Source Separation Approach Based On A
Weak Exclusion Principle

In this paper, we applied the BSS algorithm based on the weak
exclusion principle (WEP), which is detailed in our previous
paper [9]. We also tested the algorithm performance using

Fig. 2. Illustration of average ERP amplitude is much smaller
than on-going EEG. Black line: ERP from one electrode (an
average of 99 trials); Blue line: Each single trial EEG signal
of the 99 trials. (a) From electrode Fz. (b) From electrode Oz.

simulated data in the previous paper. The principle, briefly
put, which underlies the Exclusion Principle (EP) is that:

An N × N matrix S is exclusive, iff for all row index
i ∈ [1, ...N ],Sij 6= 0 =⇒ Sij′ = 0, for ∀j′ ∈ [1, ...K] \ j.

Less strictly, the Weak Exclusion Principle (WEP) as-
sumption is that, at each time instance, the EEG signal is
dominated by one source which is larger than the others (by
at least a factor of 2). Thus, the other sources do not need
to be non-activated at all. Visually, two examples of sources
which satisfy EP and WEP requirements, respectively, are
shown in Fig.1.

3. BLIND SOURCE SEPARATION OF EEG FOR THE
ANALYSIS OF EVENT RELATED POTENTIALS

The dataset is taken from a visual stimulation task online
dataset. EEG data was acquired at 2048 Hz from 64 BioSemi
active electrodes placed according to the international 10-20
system [10]. The data we used for separation was from one
subject, which has had 99 trials.The EEG signal was down-
sampled to 200Hz and band-pass filtered from 4 Hz to 40 Hz.
We performed an eigenvalue decomposition first on the EEG
data and kept the components that can represent 90% variance
to decide the source number. Here we want to point out that
this eigenvalue decomposition procedure was not used for the
purpose of de-noising, but rather, to algebraically reduce di-
mensions.

The algorithm is very fast. It was implemented in Matlab
(The Mathworks, Inc., Natick, Massachusetts, USA) and run
on an Apple laptop with a 2.7 GHz Intel Core i5 processor.
The computation time for one-time separation is around 0.57
seconds.

Fig. 2 illustrates that ERP amplitude of the order of sev-
eral microvolts while the ongoing EEG is significantly larger.
From the ERPs, we can see that different electrodes have dif-
ferent ERP waveforms. The standard ERP plots cannot inte-
grate the global information.

Fig.3 shows ERP from electrode Fz and Oz, with average
time as 99 trials, 20 trials and 10 trials respectively. As the



Fig. 3. ERP from electrode Fz and Oz, with average time as 99 trials, 20 trials and 10 trials separately. As the average times
decrease, the SNR of the ERP curves drops and ERPs become harder to observe.

Fig. 4. Blind Source Separation based on Weak Exclusion Principle (WEP) to extract the ERPs, with average time as 99 trials,
20 trials and 10 trials separately. As the average times decrease, the main separated sources remain stable.

average time decreases, the SNR of the ERP signal drops.
Fig.4 shows the performance of BSS on EEG to extract

the ERPs under different average times. Here it is necessary
to note that the sources are ranked in a descending order. That
is to say, the first source represents the largest variance in this
dataset. Because of the nature of the BSS source reconstruc-
tion problem, the scale of the topographies is not the same as
the real signal scale. However, it reflects landscapes of the
separated sources.

From the separation results we can see that after dimen-
sion reduction, there are in total four main sources. The
first source shows a strong activity in the occipital lobe and
the time course of this source shows that its peak is around
100ms-130ms after the onset of the visual stimulation. This
may relate to an exogenous process, which is well known

as N100. The second source shows a strong activity in the
frontal lobe and the time course of this source shows that
its peak is around 200ms after the onset of the visual stim-
ulation. This may relate to a cognitive process. These two
sources represent the largest variance of the EEG signals. As
the average times decrease, the two main separated sources
remain stable.

Fig.5 shows several single-trial EEG separation results
compared with the average of 99 trials ERP. The results
demonstrated the consistency of the separation. We can still
observe the two main ERP components via single-trial sepa-
ration. It shows that BSS provides a window to understand
not only averaging behavior, but the complexities of moment-
to-moment dynamics as well.



Fig. 5. Single-trial EEG separation results compared with the
average of 99-trials separation results. The results demon-
strate the consistency of the separation.

4. CONCLUDING REMARKS

The results presented in this paper use the BSS algorithm
based on WEP, and do not require any statistical assumption
of the type of source of the evoked fields. These results show
some interesting features that seem to agree with the tradi-
tional ERP components, namely that the proposed algorithm
can quickly and effectively extract ERPs using fewer average
times.

One disadvantage of the standard ERP procedures is its
failure to integrate all the electrodes information, the “global”
information. By performing BSS based on WEP, we can iso-
late two main ERP components, related to an exogenous pro-
cess and a cognitive process, respectively, and can discrimi-
nate between the occipital lobe and the frontal lobe responses
from the brain. Single-trial separation results have showed
the consistency of these two main ERP components.

Furthermore, BSS on the level of single-trials provides a
window to understand not only averaging behavior, but the
complexities of moment-to-moment dynamics as well, which
may be useful in regards to online signal analysis, including
brain-computer interfaces.
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