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Abstract— The question of how to separate individual
brain and non-brain signals, mixed by volume conduction in
electroencephalographic (EEG) and other electrophysiological
recordings, is a significant problem in contemporary neu-
roscience. This study proposes and evaluates a novel EEG
Blind Source Separation (BSS) algorithm based on a weak
exclusion principle (WEP). The chief point in which it differs
from most previous EEG BSS algorithms is that the proposed
algorithm is not based upon the hypothesis that the sources
are statistically independent. Our first step was to investigate
algorithm performance on simulated signals which have ground
truth. The purpose of this simulation is to illustrate the pro-
posed algorithm’s efficacy. The results show that the proposed
algorithm has good separation performance. Then, we used
the proposed algorithm to separate real EEG signals from
a memory study using a revised version of Sternberg Task.
The results show that the proposed algorithm can effectively
separate the non-brain and brain sources.

I. INTRODUCTION

Blind Source Separation (BSS) is the separation of a set
of sources from mixed observations, with very little prior
knowledge of the sources or their mixing coefficients[1]. BSS
extracts vital information from the data while simultaneously
highlighting the underlying forces which drive observed phe-
nomena[2]. The cocktail party problem is a famous example
of this[3]. Useful applications are possible in a variety of
fields, including speech, images, telecommunications, and
biomedical signal processing[4].

Electroencephalography (EEG) non-invasively measures
voltage fluctuations resulting from ionic current within the
neurons of the brain with very high temporal resolution.
Because all the electrodes are placed along the scalp, the
observed EEG data actually is a mixture of all the active
sources. BSS methods have been shown to be very useful
tools to extract these sources from EEG[5]. The trans-
mission delay between electrode and source is negligible.
Furthermore, each measured signal can be plausibly assumed
to be a linear mixture of source signals, given that the
electrical signals must travel through human tissue to reach
the electrodes[6]. The unmixing matrix’s inverse can also be
used to provide a spatial illustration of each BSS-extracted
signal’s associated scalp location[7].

Here we should point out that scalp-recorded EEG signals
also include non-brain sources; these include electroculo-
graphic (EOG) and electromyographic (EMG) activities.
These are linearly mixed with brain sources at the scalp
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electrodes. EEG BSS is also capable of separating these
kinds of signals[8].

Among BSS’s distinct branches is Independent Compo-
nent Analysis (ICA)[9]. At its core, ICA represents an at-
tempt to identify linear representations of non-gaussian data
in an effort to render its components statistically independent.
For this reason, various ICA methods are usually based
on various measures of non-gaussianity. There are some
other useful methods for source separation; these include:
Principal Component Analysis (PCA), Factor Analysis (FA)
and Sparse Component Analysis (SCA)[10][11][12]. In a
perusal of the published literature, it is evident that the
hypothesis of statistical independence forms the basis of
most BSS algorithms. Much fewer are based on deterministic
hypotheses.

In this article, we propose a novel EEG BSS algorithm
based on a deterministic principle, which we call it weak ex-
clusion principle (WEP). Due to the difficulties in assessing
ground truth of EEG, we have used simulated signals which
have “ground truth” to test the algorithm’s performance.
Afterwards, we also perform the proposed algorithm on
actual EEG data to separate the non-brain and brain sources.

The paper is organized as follows: First, an introduction
to the problem of EEG blind source separation; second, a
formulation of the problem and the proposed mathematical
model. Finally, Sections 3 and 4 detail the “Simulated data”
and the“EEG experimental data,” followed by the conclusion.

II. THE PROPOSED MATHEMATICAL MODEL

The problem of EEG blind source separation problem is
formulated as follows: Stacking Mixtures in an N×K matrix
X (N : time samples, K: the number of electrodes).This is
the EEG signal we observe. Then, we try to unmix them as a
linear combination of K sources. Mathematically, we would
like to find the N ×K matrix S describing the time-samples
of the sources and the mixing K ×K matrix A such that

X = SA; or, more visually,

K

N X =

K

N S ×
K

K A (1)

In reality, X is a noisy linear mixture of source signals. Thus,
there is another term for noise: X = SA+N. However
the noise term will not be included in the derivation for
simplicity.



Fig. 1. Illustration of Blind Source Separation based on Weak Exclusion Principle (WEP) Using Simulated Data.

A. Exclusion Principle (EP)

An N ×N matrix S is exclusive, iff for all row index i ∈
[1, ...N ],Sij 6= 0 =⇒ Sij′ = 0, for ∀j′ ∈ [1, ...K] \ j. The
exclusive principle can equivalently be expressed as follows:
For any N ×N diagonal matrix W, there exists a diagonal
K ×K matrix DW such that

STWS = DW (2)

B. Source Retrieval Under The Exclusive Principle

We assume that X = SA with unknown S and A, and
that S satisfies the EP above. The goal is to separate the
source matrix S and, the mixing matrix A , from the mixed
matrix X.

From (1), we can find two diagonal matrices W1,W2,
such that

STW1S = D1 and STW2S = D2 (3)

Hence,

XTW1X = ATD1A and XTW2X = ATD2A (4)

Which leads to(
XTW2X

)−1
XTW1X︸ ︷︷ ︸

Y

= A−1 D−12 D1︸ ︷︷ ︸
D: diagonal

A (5)

This equation shows that the column of A−1 are eigen-
vectors of the known matrix Y, with eigenvalues given by
diagonal elements of D.

The choice of the matrix W1,W2 is very important for
the separation. Here, we name them the “Separation Matrix”.

Following is the procedure of EEG blind source separation
algorithm based on EP:

1) Compute the matrix Y.
2) Compute the eigenvalue decomposition of Y =

VDV−1

3) Identify the matrix of eigenvectors as the matrix in-
verse of the mixing matrix A.

C. Weak Exclusion Principle (WEP)

If the EEG source signals satisfy the EP strictly, at each
time instance, there is only one source activated. However, in
the proposed algorithm, we use a weaker condition, a weak
exclusion principle. That is to say, at each time instance, the
EEG signal is dominated by one source which is larger than
the others. The other sources don’t have to be non-activated
at all. This assumption is more consistent with the reality.

Mathematically, this is equivalent to solving a maximiza-
tion problem:

1) Consider the diagonal matrix Wk where Wk[m,m] =
1 if |S(m, k)| > |S(m, l)| for l 6= k.

2) If we know Wk, then an approach to infer S(:, k) from
X is to find the linear combination uk of columns of
X that maximizes ‖ WkXuk ‖, under the constraint
that the estimated source S′k = Xuk is normalized to
1: ‖ Xuk ‖= 1.
Mathematical Solution: XTWkXuk = λkX

TXuk,
where λk is the largest eigenvalue of the matrix
(XTX)−1(XTWkX).

3) The estimated source is then Xu1u2...uk︸ ︷︷ ︸
U

= S′.

4) So that A′ = U−1.

III. BLIND SOURCE SEPARATION USING SIMULATED
DATA

Because of EEG lack of “ground truth,” we have used
simulated signals which have “ground truth” to test the algo-
rithm’s performance. The simulated source signal we use is
provided by ICALAB[14], which simulates a combination of
typical biosignals. The mixing matrices are random matrices.
Fig. 1 shows one example of the original source signals, mix
signals and the separated result (via our algorithm).

According to ICALAB, some ICA algorithms have failed
to separate the sources which have smooth bell-shape. When
comparing the separated result to the “ground truth,” our
algorithm’s efficacy is readily apparent.



Fig. 2. (a) Illustration of the revised version of Sternberg Task. (b) Channel
Locations of the 32-channel ActiveTwo EEG system.

IV. BLIND SOURCE SEPARATION USING EEG
EXPERIMENTAL DATA

We also tested the algorithm on actual EEG data. The
data used came from a memory study which used a revised
version of Sternberg Task. In total, three procedures were
involved. First was the “Encoding” step, in which four
images appeared on the screen, and subjects were asked to
memorize them. Second was “Retention”, in which subjects
were asked to keep the memory of the images from the
screen. Third was “Retrieval,” in which one item appeared
on the screen and the subjects were asked to recall whether
or not this item was part of the previous set. Each experiment
has 64 trials. The illustration of the paradigm is shown in
Fig.2. EEG recordings were originally acquired using 32-
channel ActiveTwo EEG system (BioSemi B.V., Amsterdam,
The Netherlands) with a sampling rate of 1024 Hz. The
data we used for separation was from one female subject
(Age: 64). The EEG signal was down-sampled to 200Hz
and band-pass filtered from 4 Hz to 20 Hz. We performed
an eigenvalue decomposition first on the EEG data and kept
the components that can represent 90% variance to reduce
dimensions.This procedure decides the source number.

A. Non-brain Sources

To illustrate that our WEP BSS algorithm can effec-
tively separate non-brain sources, we used one single-trial
retention-procedure EEG with clear eye artifacts entering the
WEP BSS algorithm. Fig.3 shows the EEG recording and
the source separation results. Here it is necessary to note
that the sources are ranked in a descending order. That is
to say, the first source represents the largest variance in this
dataset. We have to clarify because by the nature of the BSS
algorithm, the scale of the topographies is not the same as
the real signal scale. However, it can reflect landscapes of

Fig. 3. Illustration of (a)Electrode plots of one single-trial raw EEG
recordings, around 0.4s there was a clear eye artifact. (b) The time course
of the separated source and (c) The topographies of the separated source.

the separated sources. From the EEG recordings, we can
see around 0.4s there was a clear eye artifact. From the
separated sources’ time course, we can see the first source
had a clear peak around the same time interval. Besides, the
spatial illustration of this source shows a clear peak around
the eye area. Fig.4 shows the reconstructed EEG signal by
removing the source related to eye artifacts and the source
separation results based on this reconstructed signal. We can
clearly see the eye artifacts have been removed.

B. Brain Sources

We averaged the data across trials and used our WEP
BSS to analyze each of these three procedures separately.
The time course and topographies of the separated sources
are shown in Fig. 5. From the separation results we can
see that the first two procedures have five main sources
and the last one has four main sources. In the encoding
period, the second source shows a strong activity in the
occipital lobe and the time course of this source shows
that its peak is around 200ms-300ms after the onset of
the presentation of the four images. This may relate to the
well-known visual evoked potential (VEP). Besides, we can
observe the second source has activities around the prefrontal
area and the bilateral occipital area. Previous studies have
prove that mental processes that require subvocal rehearsal



Fig. 5. The time course and topographies of the separated sources of three different procedures.(a) Encoding (b) Retention (c) Retrieval.

Fig. 4. Illustration of the (a)Electrode plots of the reconstructed EEG
signal by removing the source related to eye artifacts. (b) The time course
of the separated source and (c) The Topographies of the separated source.

preferentially activated the left prefrontal cortex, the bilateral
occipital cortex[15,16].

V. CONCLUSIONS

The proposed EEG BSS algorithm, based on a weak
exclusion principle (WEP), may represent an appropriate
technique to solve the EEG source separation problem. The
results show that the proposed algorithm can effectively
separate the non-brain and brain sources. In the future, this
algorithm should be tested on larger EEG datasets, providing
further confirmation of real world applicability.
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