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A CURE for Noisy Magnetic Resonance Images:
Chi-Square Unbiased Risk Estimation
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Abstract— In this paper, we derive an unbiased expression for
the expected mean-squared error associated with continuously
differentiable estimators of the noncentrality parameter of a
chi-square random variable. We then consider the task of
denoising squared-magnitude magnetic resonance (MR) image
data, which are well modeled as independent noncentral chi-
square random variables on two degrees of freedom. We consider
two broad classes of linearly parameterized shrinkage estimators
that can be optimized using our risk estimate, one in the general
context of undecimated filterbank transforms, and the other in
the specific case of the unnormalized Haar wavelet transform.
The resultant algorithms are computationally tractable and
improve upon most state-of-the-art methods for both simulated
and actual MR image data.

Index Terms— Chi-square distribution, filterbank transform,
image denoising, magnetic resonance (MR) imaging, Rician noise,
unbiased risk estimation.

I. INTRODUCTION

MAGNETIC resonance (MR) imaging is a fundamental
in vivo medical imaging technique that provides high-

contrast images of soft tissue without the use of ionizing
radiation. The signal-to-noise ratio (SNR) of an acquired MR
image is determined by numerous physical and structural
factors, such as the static field strength, resolution, receiver
bandwidth, and the number of signal averages collected at
each encoding step [1], [2]. Current developments in MR
imaging are focused primarily on lowering its inherently high
scanning time, increasing the spatiotemporal resolution of the
images themselves, and reducing the cost of the overall system.
However, the pursuit of any of these objectives has a negative
impact on the SNR of the acquired image. A postacquisi-
tion denoising step is therefore essential for visualization by
clinicians and for meaningful computer-aided diagnoses [1].
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In MR image acquisition, the data consist of discrete Fourier
samples, usually referred to as k-space samples. These data are
corrupted by random noise, due primarily to thermal fluctu-
ations generated by a patient’s body in the imager’s receiver
coils [1], [2]. This random degradation is well modeled by
additive white Gaussian noise (AWGN) which independently
corrupts the real and imaginary parts of the complex-valued
k-space samples [3]. Assuming a Cartesian sampling pattern,
the output image is straightforwardly obtained by computing
the inverse discrete Fourier transform of the k-space samples,
the resolution of the reconstructed image is then determined
by the maximum k-space sampling frequency. Note that some
recent works ([4] and references therein) aim to accelerate MR
image acquisition time by undersampling the k-space. Non-
Cartesian (e.g., spiral or random) sampling trajectories as well
as nonlinear (usually sparsity-driven) reconstruction schemes
are then considered. This axis of research is, however, outside
the scope of this paper.

Following application of an inverse discrete Fourier
transform, the resulting image may be considered as a
complex-valued signal corrupted by independent and identi-
cally distributed samples of complex AWGN. In magnitude
MR imaging, the image phase is disregarded and only the
magnitude is considered for visualization and further analysis.
Although the samples of the magnitude image remain statisti-
cally independent, they are no longer Gaussian, but rather are
Rician distributed [5]. Contrary to the Gaussian case, this form
of “noise” is signal-dependent in that both the mean and the
variance of the magnitude samples depend on the underlying
noise-free magnitude image. Consequently, generic denoising
algorithms designed for AWGN reduction usually do not give
satisfying results on Rician image data.

Denoising of magnitude MR images has thus gained much
attention over the past several years. Two main strategies can
be distinguished as follows: 1) the Rician data are treated
directly, often in the image domain and 2) the denoising is
applied to the squared magnitude MR image, which follows a
(scaled) noncentral chi-square distribution on two degrees of
freedom, whose noncentrality parameter is proportional to the
underlying noise-free squared magnitude. An appealing aspect
of this strategy is that it renders the bias due to the noise con-
stant rather than signal dependent, thus enabling its straightfor-
ward removal. When reverting to the original image domain, a
nonlinear mapping (e.g., a square root transformation) must be
applied, which reintroduces a bias into the final image mag-
nitude estimates. However, as indicated by our experiments
below, this residual effect is far less pronounced than that
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present in the Rician data, and thus denoising in the squared-
image domain remains a widely used approach [6]–[12].

Following the first strategy previously mentioned, several
Rician-based maximum likelihood estimators [13]–[15]
have been proposed. In [15], this estimation is performed
nonlocally among pixels having a similar neighborhood. A
Bayesian maximum a posteriori estimator has been devised
in [16], with the prior modeled in a nonparametric Markov
random field framework. Very recently, Foi proposed a
Rician-based variance stabilizing transform (VST) that makes
the use of standard AWGN denoisers more effective [17].
Following the second strategy, a linear minimum mean-
squared error (MMSE) filter applied to the squared magnitude
image has been derived in [9] and [10]. In addition to
these statistical model-based approaches, much work has
also been devoted to the adaptation and enhancement of the
nonlocal means filter originally developed by Buades et al.
for AWGN reduction [18]. The core of this relatively simple,
yet effective, denoising approach consists of a weighted
averaging of similarly close (in spatial and photometric
distance) pixels. Some of these adaptations operate directly
on the Rician magnitude image data [19], [20], while others
are applied to the squared magnitude image [8], [11], [12].

In addition to these image-domain approaches, several
magnitude MR image denoising algorithms have also been
developed for the wavelet domain. The sparsifying and decor-
relating effects of wavelets and other related transforms typ-
ically result in the concentration of relevant image features
into a few significant wavelet coefficients. Simple thresholding
rules based on coefficient magnitude then provide an effective
means of reducing the noise level while preserving sharp edges
in the image. In the earliest uses of the wavelet transform
for MR image denoising [21], [22], the Rician distribution
of the data was not explicitly taken into account. Nowak
subsequently proposed wavelet coefficient thresholding based
on the observation that the empirical wavelet coefficients of the
squared-magnitude data are unbiased estimators of the coeffi-
cients of the underlying squared-magnitude image, and that the
residual scaling coefficients exhibit a signal-independent bias
that is easily removable [6]. While the pointwise coefficient
thresholding proposed in [6] is most natural in the context
of an orthogonal discrete wavelet transform, Pižurica et al.
subsequently developed a Bayesian wavelet thresholding algo-
rithm applied in an undecimated wavelet representation [7].
Wavelet-based denoising algorithms that require the entirety
of the complex MR image data [23]–[25] are typically applied
separately to the real and imaginary components of the image.

In this paper, we develop a general result for chi-square
unbiased risk estimation (CURE), which we then apply to the
task of denoising squared-magnitude MR images. We provide
two instances of effective transform-domain algorithms, each
based on the concept of linear expansion of thresholds (LET)
introduced in [26] and [27]. The first class of proposed
algorithms consists of a pointwise continuously differentiable
thresholding applied to the coefficients of an undecimated
filterbank transform. The second class takes advantage of the
conservation of the chi-square statistics across the lowpass
channel of the unnormalized Haar wavelet transform. Owing

to the remarkable property of this orthogonal transform, it is
possible to derive independent risk estimates in each wavelet
subband, allowing a very fast denoising procedure. These
estimates are then used to optimize the parameters of subband-
dependent joint inter-/intra-scale LET.

This paper is organized as follows. We first derive, in
Section II, an unbiased expression of the risk associated
with estimators of the noncentrality parameter of a chi-square
random variable having arbitrary (known) degrees of freedom.
Then, in Section III, we apply this result to optimize pointwise
estimators for undecimated filterbank transform coefficients,
using LET. In Section IV, we give an expression for CURE
directly in the unnormalized Haar wavelet domain, and pro-
pose a more sophisticated joint inter-/intrascale LET. We con-
clude in Section V with denoising experiments conducted on
simulated and actual magnitude MR images, and evaluations
of our methods relative to the current state of the art. Note
that a subset of this paper (mainly part of Section III) has
been presented at the 2011 IEEE International Conference on
Image Processing [28].

II. CURE

Assume the observation of a vector y ∈ R
N+ of N indepen-

dent samples yn , each randomly drawn from a noncentral chi-
square distribution with (unknown) noncentrality parameter
xn ≥ 0 and (known) common degrees of freedom K > 0.
We use the vector notation y ∼ χ2

K (x), recalling that (for
integer K ) the joint distribution p (y|x) can be seen as
resulting from the addition of K independent vectors on R

N+
whose coordinates are the squares of noncentered Gaussian
random variables of unit variance. This observation model is
statistically characterized by the data likelihood

p (y|x) =
N∏

n=1

p (yn|xn)

=
N∏

n=1

1

2
e− xn+yn

2

(
yn

xn

) K−2
4

I K
2 −1(

√
xn yn) (1)

where Iα(u) = ∑
k∈N

{1/[k!�(k + α + 1)]}(u/2)2k+α is the
α-order modified Bessel function of the first kind.

The chi-square distribution of (1) is most easily understood
through its characteristic function, or Fourier transform

p̂(ω|x) =
N∏

n=1

exp
(
− jωnxn

1 + 2 jωn

)

(1 + 2 jωn)
K/2 . (2)

For instance, by equating first- and second-order Taylor devel-
opments of this Fourier transform with the corresponding
moments, it is straightforward to show that

E { y } = x + K · 1

and

E
{
‖y‖2

}
= ‖x‖2 + 2(K + 2)1Tx + N K (K + 2) (3)

where E {·} is the expectation operator.
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When designing an estimator x̂ = f(y) of x, a natural
criterion is the value of its associated risk or expected MSE,
defined here by

E {MSE} = E

{
1

N
‖f(y) − x‖2

}

= 1

N

N∑

n=1

(
E
{

fn(y)2
}

− 2E {xn fn(y)} + x2
n

)
.

(4)

The expectation in (4) is with respect to the data y. The vector
x of noncentrality parameters may either be considered as
deterministic and unknown, or as random and independent
of y.

In practice, for any given realization of the data y, the
true MSE cannot be computed because x is unknown. Yet,
paralleling the general case of distributions in the exponen-
tial family [29], it is possible to establish a lemma that
allows us to circumvent this issue, and estimate the risk
without the knowledge of x. The main technical requirement is
that each component fn(y) of the estimator f: R

N → R
N be

continuously differentiable with respect to yn , and so we intro-
duce the following notation: ∂f(y) = [(∂/∂yn) fn(y)]1≤n≤N ,
∂2f(y) = [(∂2/∂y2

n ) fn(y)]1≤n≤N .
Lemma 1: Assume that the estimator f(y) = [ fn(y)]1≤n≤N

is such that each fn(y) is continuously differentiable with
respect to yn , with weakly differentiable partial derivatives
∂ fn(y)/∂yn that do not increase “too quickly” for large values
of y, i.e., there exists a constant s < 1/2 such that for
every 1 ≤ n ≤ N , limyn→+∞ e−syn |(∂/∂yn) fn(y)| = 0.
Then

E
{
xTf(y)

} = E
{
(y − K · 1)Tf(y)

}

−4E

{(
y − K

2
· 1
)T

∂f(y)

}
+ 4E

{
yT∂2f(y)

}
.

(5)
Proof: We first evaluate the scalar expectation E {xn fn(y)}

appearing in (4), before summing up the contributions over n
to get the expectation of the inner product xTf(y).

Let us consider the characteristic function given by (2). By
differentiating the logarithm of this Fourier transform with
respect to the variable ωn , we find that

1

p̂(ω|x)

∂ p̂(ω|x)

∂ωn
= − j K

1 + 2 jωn
− j xn

(1 + 2 jωn)2 .

After a rearrangement of the different terms involved, we get

xn p̂(ω|x) = j (1 + 2 jωn)
2 ∂ p̂(ω|x)

∂ωn
− K (1 + 2 jωn) p̂(ω|x).

Using (1 + 2 jωn)
2 = 1 + 4 jωn + 4( jωn)

2 and recalling
that multiplication by jωn corresponds to differentiating with
respect to yn , while differentiation with respect to ωn is
equivalent to a multiplication with − j yn, we can deduce
that the probability density p(y|x) satisfies (in the sense of

distributions) the following linear differential equation:

xn p(y|x) =
(

1 + 4
∂

∂yn
+ 4

∂2

∂y2
n

){
yn p(y|x)

}

−K

(
1 + 2

∂

∂yn

){
p(y|x)

}
.

The expectation E {xn fn(y)} is simply the Euclidean inner
product (with respect to Lebesgue measure) between fn(y) and
xn p(y|x). Continuous differentiability of f(y) coupled with
weak differentiability of ∂f(y) implies that we may twice apply
integration by parts to obtain

E {xn fn(y)} = 〈 fn(y), xn p(y|x)〉
=
〈

fn(y),
(

1 + 4 ∂
∂yn

+ 4 ∂2

∂y2
n

){
yn p(y|x)

}〉

−K
〈

fn(y),
(

1 + 2 ∂
∂yn

){
p(y|x)

}〉

=
〈
yn

(
1 − 4 ∂

∂yn
+ 4 ∂2

∂y2
n

){
fn(y)

}
, p(y|x)

〉

−K
〈(

1 − 2 ∂
∂yn

){
fn(y)

}
, p(y|x)

〉

= E
{
(yn − K ) fn(y) − 4

(
yn − K

2

) ∂ fn(y)
∂yn

+4yn
∂2 fn (y)

∂y2
n

}

plus additional integrated terms that do not depend on xn ,
which vanish because of our (conservative) assumption on how
fn(y) increases when yn → +∞. (Asymptotic expansions of
Bessel functions can be used to show that whenever s < 1/2,
we have that esyn p (y|x) → 0 and esyn ∂p (y|x) /∂yn → 0.)
Finally, summing up over the index n yields (5).

We can then deduce a theorem that provides an unbiased
estimate of the expected MSE given in (4). We term this
random variable CURE.

Theorem 1: Let y ∼ χ2
K (x) and assume that f(y) satisfies

the regularity conditions of Lemma 1. Then, the random
variable

CURE = 1

N

(
‖f(y)−(y−K ·1)‖2−4T

(
y− K

2
·1
))

+ 8

N

((
y− K

2
·1
)T

∂f(y)−yT∂2f(y)

)
(6)

is an unbiased estimate of the risk, i.e., E {CURE} =
E {MSE}.

Proof: As with other unbiased risk estimates, we express
the MSE as a sum of three terms

‖f(y) − x‖2 = ‖f(y)‖2
︸ ︷︷ ︸

term 1

− 2xTf(y)︸ ︷︷ ︸
term 2

+ ‖x‖2
︸︷︷︸
term 3

which we replace by a statistical equivalent that does not
depend on x anymore.

Term 1 needs no change, term 2 can be replaced according
to (5) from Lemma 1, and term 3 can be reformulated using
the noncentral chi-square moments of (3) to yield

‖x‖2 = E
{
‖y‖2

}
− 2(K + 2)1TE {y} + N K (K + 2).

Putting everything together then leads directly to (6), and thus
the theorem is proved.
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Fig. 1. Undecimated (J + 1)-band analysis/synthesis filterbank.

In Sections III and IV, we propose specific examples of
CURE-optimized transform-domain processing for estimating
the unknown noncentrality parameter vector x from data y.

III. CURE-OPTIMIZED DENOISING IN

UNDECIMATED FILTERBANK TRANSFORMS

In this section, we focus on processing within a (J +1)-band
undecimated filterbank transform, as depicted in Fig. 1. This
broad class of redundant representations notably includes the
undecimated wavelet transform (UWT) and overlapping block
discrete cosine transform.

A. Image-Domain CURE for Transform-Domain Processing

Nonlinear processing via undecimated filterbank transforms
is a general denoising strategy long proven to be effective for
reducing various types of noise degradations [27], [30]–[34].
It essentially boils down to performing a linear (and possibly
redundant) analysis transformation of the data, which
provides empirical coefficients which are then thresholded
(possibly using a multivariate nonlinear function), the result
of which is finally passed to a linear synthesis transformation.
When treating signal-dependent noise, the entire denoising
procedure is conveniently expressed in the generic form
f(y) = Rθ(Dy, Dy) [34].

1) The circulant matrices D = [DT
0 DT

1 . . . DT

J ]T and
R = [R0 R1 . . . RJ ] implement an arbitrary pair of
analysis/synthesis undecimated filterbanks (Fig. 1) such
that the perfect reconstruction condition RD = Id
is satisfied. Each component of the N × N circulant
submatrix D j = [d j

k,l ]1≤k,l≤N and R j = [r j
k,l ]1≤k,l≤N is

given by
⎧
⎪⎪⎨

⎪⎪⎩

d j
k,l =

∑

n∈Z

g̃ j [l − k + nN]

r j
k,l =

∑

n∈Z

g j [k − l + nN] , for j = 0, . . . , J. (7)

We assume that the considered analysis filters have
unit norms, i.e.,

∑
n(d

j
l,n)2 = 1, for l = 1, . . . , N ,

j = 0, . . . , J . By convention, we also assume that,
for j = 1, . . . , J , each D j implements a high-pass
channel, i.e., ∀l,

∑
n d j

l,n = 0. The complementary
low-pass channel is then implemented by D0 with ∀l,∑

n d0
l,n = 2J/2.

Hence, denoting by w j = D j y = [w j
l ]1≤l≤N (resp.

ω j = D j x = [ω j
l ]1≤l≤N ) each vector of noisy (resp.

noise-free) transform coefficients, we have

∀l = 1 . . . N,

{
E
{
w

j
l

}
= ω

j
l , for j = 1 . . . J

E
{
w0

l

} = ω0
l + 2

J
2 K .

(8)

While the noisy high-pass coefficients are unbiased
estimates of their noise-free counterparts, the low-pass
coefficients exhibit a constant bias (2J/2K ) that must be
removed.

2) The circulant matrix D = [DT

0 D
T

1 . . . D
T

J ]T implements
a linear estimation of the variance w j = D j y =
[w j

l ]1≤l≤N of each transform coefficient w
j
l . The actual

variance is given by

var
{
w

j
l

}
=

N∑

n=1

(d j
l,n)

2var {yn}

(3)= 4
N∑

n=1

(d j
l,n)2

(
xn + K

2

)
. (9)

Since E {yn} = xn + K , the natural choice D j =
[(d j

l,n)
2]1≤l,n≤N achieves

var
{
w

j
l

}
= 4

(
E
{
w

j
l

}
− K

2

)
(10)

3) the vector function θ : R
L × R

L → R
L , where L =

(J+1)N , can generally be arbitrary, from a simple point-
wise thresholding rule to more sophisticated multivariate
processing. In this section, we will however consider
only subband-adaptive pointwise processing

θ(w, w) =
[
θ

j
l

(
w

j
l , w

j
l

)]

0≤ j≤J,1≤l≤N
. (11)

We further assume that the transform-domain pointwise
processing of (11) is (at least) continuously differentiable,
with piecewise-differentiable partial derivatives. Introducing
the notation

∂1θ(w, w) =
[
∂θl(w, w)

∂wl

]

1≤l≤L

∂2θ(w, w) =
[
∂θl(w, w)

∂wl

]

1≤l≤L

∂2
11θ(w, w) =

[
∂2θl(w, w)

∂w2
l

]

1≤l≤L

∂2
22θ(w, w) =

[
∂2θl(w, w)

∂w2
l

]

1≤l≤L

∂2
12θ(w, w) =

[
∂2θl(w, w)

∂wl∂wl

]

1≤l≤L

and denoting by “” the Hadamard (elementwise) matrix
product, we have the following.

Corollary 1: For pointwise processing of the form given
by (11) and satisfying the requirements of Lemma 1, the risk
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estimate of (6) takes the form

CURE = 1

N

(
‖f(y) − (y − K · 1)‖2 − 4T

(
y − K

2
· 1
))

+ 8

N

(
y − K

2
· 1
)T (

(R  DT)∂1θ(w, w)

+(R  D
T
)∂2θ(w, w)

)

− 8

N
yT
(
(R  DT  DT)∂2

11θ(w, w)

+(R  D
T  D

T
)∂2

22θ(w, w)
)

+16

N
yT(R  DT  D

T
)∂2

12θ(w, w). (12)

The proof of this result is straightforwardly obtained by
developing the term (y − K/2 · 1)T∂f(y)− yT∂2f(y) from (6)
for θ(w, w) as defined in (11). A similar result for transform-
domain denoising of mixed Poisson–Gaussian data is proved
in [34].

For the remainder of this section, we drop the subband
superscript j and the in-band location index l. We thus denote
by w, w, and ω any of the w

j
l , w

j
l , and ω

j
l , for j = 1, . . . , J .

B. Choice of Thresholding Rule

We need to specify a particular shrinkage or thresholding
rule to estimate each unknown high-pass coefficient ω from its
noisy counterpart w. In the minimum-MSE sense, the optimal
pointwise shrinkage factor is given by

α∗ = arg min
α

E
{
(αw − ω)2

}
(8),(10)= 1 − 4

(
E {w} − K

2

)

E
{
w2
} .

(13)

There are various possible implementations of the above
formula to yield an effective shrinkage function. For the case
of K = 2 degrees of freedom, Nowak proposed in [6] the
function

θ(w,w) = max
(

1 − λ
4 max(w − 1, 1)

w2 , 0
)
w (14)

where the particular choice λ = 3 was motivated by a
Gaussian prior on the noisy coefficients w. Our experiments
have indicated that replacing max(w−1, 1) by w gives slightly
better MSE performance, and so, following the recent idea
of LET [27], we propose the following shrinkage rule for
arbitrary degrees of freedom:

θ(w,w; a) =
I∑

i=1

ai max
(

1 − λi
4w

w2 , 0
)
w

︸ ︷︷ ︸
θi (w,w)

, with I << N

(15)

which can be seen as an optimized generalization of (14).
To satisfy the requirements of Corollary 1, we implement
a continuously differentiable approximation of the max(·)
function.

Empirically, we have observed I = 2 terms per subband to
be the best choice in (15). The vector a ∈ R

I of subband-
adaptive parameters can be optimized in closed form via least

Fig. 2. Possible realization of the proposed thresholding rule of (15) (I = 2,
λ1 = 3, λ2 = 9, a = [0.75 0.25]T).

squares, while λ1 and λ2 can be optimized by minimizing the
risk estimate of (12) directly. However, fixing λ1 = 3 and
λ2 = 9 was observed to work well in all of our experiments,
and leads to a much faster implementation. (We observed
values close to (3, 9) to yield equivalent results ±0.2 dB.) A
potential realization of the proposed LET is displayed in Fig. 2.

C. Implementation

The overall subband-adaptive transform-domain estimator is
thus, for I = {0, . . . , J } × {1, 2}

f(y) =
∑

i∈I
aifi(y) = a0

1 (R0w0 − K )︸ ︷︷ ︸
Lowpass

bias removed

+
J∑

j=1

2∑

i=1

a j
i R jθ

j
i (w j , w j )

with the CURE-optimized parameters a = [ai]i∈I the solution
to Ma = c, where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c =
[
(y − K · 1)T fi(y)−4

((
y − K

2
· 1
)T

∂fi(y)

− yT∂2fi(y)
) ]

i∈I,

M = [
fi(y)Tfj(y)

]
i,j∈I .

(16)

IV. CURE-OPTIMIZED DENOISING VIA UNNORMALIZED

HAAR WAVELET TRANSFORM

In the previous section, we have considered the general
case of an undecimated filterbank transform and derived the
corresponding image-domain MSE estimate. Owing to the
intractability of the noncentral chi-square distribution after
an arbitrary (even orthogonal) transformation, an explicit
transform-domain risk estimate is generally unobtainable.
Remarkably, in the particular case of the unnormalized Haar
wavelet transform, the derivation of such an explicit subband-
dependent MSE estimate is possible. Its construction is pre-
sented in this section.

A. Unnormalized Haar Wavelet-Domain CURE

The 1-D unnormalized Haar discrete wavelet transform
consists of a critically sampled two-channel filterbank
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1 − z−1 ↓2 wj

1 + z−1 ↓2 sj

sj−1

θj(wj ↪ sj)

Same scheme
applied recursively

ω̂j

ς̂j

↑2 1−z
2

↑2 1+z
2

⊕ ς̂j−1

Fig. 3. Signal-dependent noise reduction in the unnormalized Haar discrete
wavelet transform.

(see Fig. 3.) On the analysis side, the low-pass (resp. high-
pass) channel is implemented by the unnormalized Haar
scaling (resp. wavelet) filter whose z-transform is H̃ (z−1) =
1 + z−1 (resp. G̃(z−1) = 1 − z−1). To achieve a perfect
reconstruction, the synthesis side is implemented by the low-
pass and high-pass filters H (z) = (1 + z)/2 and G(z) =
(1 − z)/2. At a given scale j , the unnormalized Haar scaling
and wavelet coefficients of the observed data y = s0 are
given by

s j
n = s j−1

2n + s j−1
2n−1, w

j
n = s j−1

2n − s j−1
2n−1. (17)

Similarly, the unnormalized Haar scaling and wavelet coeffi-
cients of the noncentrality parameter vector of interest x = ς0

are given by

ς
j

n = ς
j−1

2n + ς
j−1

2n−1, ω
j
n = ς

j−1
2n − ς

j−1
2n−1. (18)

Since the sum of independent noncentral chi-square ran-
dom variables is a noncentral chi-square random variable
whose noncentrality parameter and number of degrees of
freedom are the summed noncentrality parameters and number
of degrees of freedom [35], the empirical scaling coeffi-
cients follow a noncentral chi-square distribution, i.e., s j ∼
χ2

K j
(ς j ), where K j = 2 j K . Moreover, since the squared

low-pass filter coefficients are the low-pass filter coefficients
themselves, the scaling coefficients can be used as esti-
mates of the variance of the (same-scale) wavelet coefficients.
In the notation of Section III-A, this means that w j = s j for
j = 1, . . . , J .

Denoting by N j the number of samples at a given scale
j and assuming a subband-adaptive processing θ j : R

N j ×
R

N j → R
N j

, the MSE in each high-pass subband j is given
by MSE j = (1/N j )‖θ j (w j , s j ) − ω j‖2, and we have the
following theorem.

Theorem 2: Let θ(w, s) = θ j (w j , s j ) be an estimator of
the unnormalized Haar wavelet coefficients ω = ω j of x
at scale j , satisfying the conditions of Lemma 1. Then the
random variable

CURE j = 1

N j

(
‖θ (w, s)−w‖2−4T

(
s− K j

2
· 1
))

+ 8

N j

×
((

s− K j

2
· 1
)T

∂1θ(w, s) + wT∂2θ(w, s)
)

− 8

N j

×
(

wT
(
∂2

11θ(w, s)+ ∂2
22θ(w, s)

)
+ 2sT∂2

12θ(w, s)
)

(19)

is an unbiased estimate of the risk for subband j , i.e.,
E
{
CURE j

} = E
{
MSE j

}
.

Proof: We consider the case j = 1, so that we may use
K = K j/2, y = s j−1, and x = ς j−1 to ease notation. We first

develop the squared error between ω and its estimate θ(w, s)

E
{
‖θ(w, s) − ω‖2

}
= E

{
‖θ(w, s)‖2

}
− 2 E

{
ωTθ(w, s)

}
︸ ︷︷ ︸

(I)

+ ‖ω‖2
︸ ︷︷ ︸

(II)

. (20)

We can then evaluate the two expressions (I, II) that involve
the unknown ω.

1) Computation of E {ωTθ(w, s)} =∑N j
n=1 E {ωnθn} (w, s).

We can successively write

E {ωnθn(w, s)} (18)= E {x2nθn(w, s)} − E {x2n−1θn(w, s)}
(5),(17)= E

{
wn

(
θn(w, s) + 4

(
∂2

11θn(w, s)

+∂2
22θn(w, s) − ∂2θn(w, s)))

}

−4E
{
(sn − K )∂1θn(w, s)

− 2sn∂2
12θn(w, s)

}
. (21)

2) Computation of ‖ω‖2 = ∑N j
n=1 ω2

n . We can successively
write

ω2
n = E {ωnwn} (21)= E

{
w2

n − 4(sn − K )
}
. (22)

Inserting (21) and (22) into (20) yields the desired equality,
for j > 1, the proof is similar.

Subband superscript j will be omitted below, as we consider
any of the J wavelet subbands.

B. CUREshrink

A natural choice of subband-adaptive estimator in orthogo-
nal wavelet representations is soft thresholding, introduced by
Weaver et al. [21] and theoretically justified by Donoho [36].
In contrast to the AWGN scenario, a signal-dependent thresh-
old is required here. As in the case of Poisson noise
removal [37], [38], we wish to adapt the original “uniform”
soft thresholding as

θn(w, s; a) = sign(wn) max(|wn | − a
√

sn, 0). (23)

In SUREshrink and PUREshrink [37]–[39] for Gaussian
(resp. Poisson) noise reduction, a is set to the value that
minimizes the corresponding unbiased risk estimate. Similarly,
we may select a to yield the minimum CURE value according
to (19) on the basis of observed data y, resulting in a
CUREshrink denoising procedure. To comply with the require-
ments of Theorem 2, we use a continuously differentiable
approximation to soft thresholding. Fig. 4 shows the empirical
accuracy of CURE as a practical criterion for choosing the best
value of a, we have also observed a pointwise LET approach,
as in (15), to yield comparable denoising results.

C. Joint Inter-/Intra-Scale CURE-LET

To decrease the usual ringing artifacts inherent to orthogonal
transform-domain thresholding, more sophisticated denois-
ing functions must be considered. In particular, the integra-
tion of inter-scale dependencies between wavelet coefficients
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Fig. 4. Minimum CURE versus MMSE threshold selection for the
CUREshrink adapted soft thresholding of (23). (a) N = 128 × 128 samples,
s ∼ χ2

8 (ς), input SNR = 15 dB. (b) N = 256 × 256, s ∼ χ2
16(ς), input

SNR = 10 dB.
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Fig. 5. (a) Child and (b) its group-delay compensated parent in a particular
subband at the first scale of a 2-D unnormalized Haar wavelet transform. In
this 16-color map, the background yellowish value is zero, with the most
significant coefficients appearing either in blue (negative) or in red (positive).

(the so-called “parent–child” relationship) has already been
shown to significantly increase the denoising quality in both
AWGN reduction [26], [40]–[42] and Poisson intensity esti-
mation [38].

To this end, Fig. 5 shows an example of a group-delay-
compensated parent p and its child w for a particular sub-
band at the first scale of a 2-D unnormalized Haar wavelet
transform. For the unnormalized Haar wavelet transform, the
group-delay compensated parent p = [pn]1≤n≤N is simply
given by pn = sn+1 − sn−1 [38]. From Fig. 5, we observe that
both the signs and the locations of the significant (i.e., large-
magnitude) coefficients persist across scale. To take advantage
of this persistence, we propose the following LET approach,
inspired by (15):

θn(w, s; a) =
2∑

k=1

ak max
(

1 − λk
4γn(s)
γ 2

n (w)
, 0
)
wn

+
2∑

k=1

ak+2 max
(

1 − λk
4γn(s)
γ 2

n (p)
, 0
)
wn

+
2∑

k=1

ak+4 max
(

1 − λk
4γn(s)
γ 2

n (w)
, 0
)

pn

+
2∑

k=1

ak+6 max
(

1 − λk
4γn(s)
γ 2

n (p)
, 0
)

pn. (24)

Here the function γn(u) = 1/
√

2π
∑

k |uk |e−(n−k)2/2 imple-
ments a normalized Gaussian smoothing of the magnitude

of its argument. This local filtering accounts for similarities
between neighboring wavelet, scaling, and parent coefficients.

The proposed denoising function of (24) thus integrates
both the inter- and intra-scale dependencies that naturally arise
in the Haar wavelet transform. It involves a set a of eight
parameters that can be optimized via least squares, as well as
parameters λ1 and λ2 that can be fixed in advance without
noticeable loss in denoising quality, we use λ1 = 1 and
λ2 = 9 in all experiments below. Considering the processing
of all wavelet coefficients in a given subband j , (24) reads as
θ(w, s; a) = ∑8

k=1 akθ k(w, s). The optimal (in the minimum
CURE sense) set of linear parameters is then the solution of
the linear system of equation Ma = c, where
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c =
[
wTθ k(w, s) − 4

(
s − K j

2
· 1
)T

∂1θ k(w, s)

+8sT∂2
12θ k(w, s) + 4wT

× (
∂2

11θ k(w, s) + ∂2
22θ k(w, s) − ∂2θ k(w, s)

) )]

1≤k≤8
M = [θ k(w, s)Tθ l(w, s)]1≤k,l≤8 .

Finally, the bias is removed from the low-pass residual
subband at scale J as ς̂

J = sJ − 2J K · 1.
Although all the results presented in Sections II–IV have

been developed for 1-D signals, they can be straightforwardly
applied to d-dimensional signals as well, when considering
separable transforms. Note that in the d-dimensional unnor-
malized Haar wavelet transform, the number of degrees of
freedom of the noncentral-χ2-distributed low-pass subband at
scale j is given by K j = 2d · j K .

V. APPLICATION TO MAGNITUDE MR IMAGE DENOISING

In magnitude MR imaging, the observed image consists of
the magnitudes |mn | of N independent complex measurements
mn , where {�{mn} ∼ N (� {μn}, σ 2)

� {mn} ∼ N (� {μn}, σ 2).
(25)

Our objective is to estimate the original (unknown) magni-
tudes |μn| =

√
� {μn}2 + � {μn}2 from their noisy observa-

tions |mn|. If we define two N-dimensional vectors
{

x = [|μn|2/σ 2]1≤n≤N ∈ R
N+

y = [|mn|2/σ 2]1≤n≤N ∈ R
N+

(26)

then the data likelihood for y is the product of N independent
noncentral χ2 distributions with K = 2 degrees of freedom
and noncentrality parameter xn , i.e., (1) with K = 2.

We then denoise the magnitude MR image m according to
the following steps.

1) If necessary, estimate the noise variance σ 2 using known
techniques.

2) Apply the nonlinear mapping defined in (26) to the
magnitude image m to obtain the normalized squared-
magnitude image y.

3) Apply a CURE-optimized denoising algorithm to obtain
an estimate x̂ = f(y) of x.

4) Produce the final estimate μ̂ of the unknown magnitude
MR image μ, by inverting the nonlinear mapping spec-
ified in (26).
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Fig. 6. Sensitivity to the choice of λ in (27). The ordinate shows the
normalized MSE relative to the reference case λ = 0.

Image 1 Image 2 Image 3

Fig. 7. Test set of high-quality 256 × 256 magnitude MR images used in
the experiments of Section V.

Note that the last step of the above procedure has a
direct impact on the final image domain MSE. Ideally, we
would like to use the nonlinear mapping T that minimizes
E
{‖T (x̂) − μ‖2

}
. Yet, such a nontrivial MMSE design would

lead us beyond the scope of this paper. Instead, we propose
to use the algebraic inverse of (26), i.e., μ̂ = σ [√x̂n]1≤n≤N .
In the literature, there are two main approaches to deal with
potentially negative estimated values x̂n: either taking their
absolute value as in [7], or setting them to zero as in [8].
The first strategy usually yields a lower variance, but a higher
bias than the second. Since we are looking for the best bias–
variance tradeoff (i.e., the lowest MSE), we propose a convex
combination of both approaches as

μ̂ = σ
[
λ
√| fn(y)| + (1 − λ)

√
max( fn(y), 0)

]

1≤n≤N
(27)

where λ ∈ [0, 1]. In Fig. 6, we evaluate the MSE-sensitivity of
the final estimate μ̂ with respect to the value of λ. As observed,
the MMSE choice of λ depends on the noise level, as well as
on the image content. Since λ = 0 usually provides a lower
bias, but a higher variance than λ = 1, the MMSE choice of
λ generally lies in between these two extreme values. In all
our experiments, we have thus used λ = 0.5.

We evaluate denoising performance objectively using three
full-reference image quality metrics.

1) The standard peak SNR (PSNR), defined as PSNR =
10 log10(N‖μ‖2∞)/(‖μ̂ − μ‖2).

2) A contrast-invariant PSNR, defined as

CIPSNR = 10 log10
N‖μ‖2∞

‖(a∗μ̂ + b∗) − μ‖2

where the affine parameters a∗, b∗ are given by

(a∗, b∗) = arg min
a,b

‖(aμ̂ + b) − μ‖2
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Fig. 8. PSNR comparisons among pointwise undecimated Haar CURE-LET
(Section III-B) and joint intra-/inter-scale unnormalized Haar
CURE-LET (Section IV-C), shown relative to unnormalized Haar CUREshrink
(Section IV-B).

⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

a∗ = NμTμ̂ − 1Tμ 1Tμ̂

Nμ̂
T
μ̂ − (1Tμ̂)2

b∗ = 1Tμ μ̂
T
μ̂ − μTμ̂ 1Tμ̂

Nμ̂
T
μ̂ − (1Tμ̂)2 .

3) The mean of the structural similarity index map
(SSIM), which is a popular visual quality metric intro-
duced in [43] (see https://ece.uwaterloo.ca/z70wang/
research/ssim/).

In all simulated experiments, we have assumed that the
variance σ 2 of the complex Gaussian noise is known.
In practice, a reliable estimate can be obtained in signal-free or
constant regions of the image by moment-matching [6], [10]
or maximum likelihood techniques [13], [15], [44]. When no
background is available, more sophisticated approaches can be
considered [45].

To simulate various input noise levels, several values for
σ have been selected in the range σ ∈ [5, 100]. The set
of high-quality magnitude MR test images used is shown
in Fig. 7, and may be obtained from http://bigwww.epfl.ch/
luisier/MRIdenoising/TestImages.zip.

A. Comparisons Between Variants of the Proposed Approach

Before comparing our approach with some state-of-the-art
MR image denoising methods, we first evaluate the perfor-
mance of the various variants of our approach. In Fig. 8,
we compare the results obtained using the pointwise CURE-
LET thresholding of (15) applied in the undecimated Haar
wavelet transform domain, and the joint intra-/inter-scale
LET denoising function of (24) applied to the unnormal-
ized Haar wavelet transform coefficients. These are shown
relative to a baseline provided by the unnormalized Haar
CUREshrink approach of (23). As expected, the joint intra-
/inter-scale denoising function of (24) outperforms the simple
soft-thresholding of (23) by 1–3 dB. Moreover, pointwise
thresholding applied in a shift-invariant setting outperforms
(by 0.5–1.5 dB) a more sophisticated thresholding in a
shift-variant one.

Note that the shift-invariance of the unnormalized Haar
wavelet transform can be increased by applying the so-called
cycle-spinning technique [30]. In Fig. 9, we show the PSNR
improvements brought by averaging the results of several
cycle-spins (CS). As observed, 16 CS allow a near match
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TABLE I

PSNR AND CIPSNR COMPARISONS

PSNR results CIPSNR results

σ 5 10 20 30 50 100 5 10 20 30 50 100

Image Image 1 (256 × 256)

Input 34.35 28.09 21.69 17.97 13.28 6.74 34.52 28.58 22.72 19.69 16.85 15.16

[6] 37.95 33.46 29.09 26.51 23.20 18.35 38.00 33.57 29.41 27.05 24.02 19.46

[7] 33.13 30.47 28.56 25.13 18.56 10.48 33.55 30.89 28.64 26.29 22.89 18.72

[10] 37.29 32.86 28.10 25.22 21.69 17.33 37.30 32.91 28.33 25.57 22.17 17.91

[8] 39.15 34.98 30.64 28.14 24.82 19.11 39.15 34.99 30.64 28.15 24.84 19.28

[17] + [27] 39.44 34.88 30.34 27.75 24.37 18.84 39.44 34.89 30.35 27.77 24.44 19.15

[17] + [46] 40.24 35.95 31.59 29.19 26.02 21.03 40.24 35.98 31.67 29.26 26.10 21.33

CURE-LET
Haar/CS = 16

39.00 34.84 30.71 28.15 24.87 20.32 39.00 34.85 30.82 28.40 25.30 20.75

CURE-LET
UWT Haar

38.32 34.48 30.61 28.28 25.24 20.81 38.33 34.49 30.64 28.36 25.44 21.13

Image Image 2 (256 × 256)

Input 34.00 27.77 21.48 17.84 13.32 7.07 34.33 28.31 22.24 18.88 15.44 13.06

[6] 35.88 31.72 27.64 25.21 22.10 17.84 36.01 31.88 28.00 25.76 22.90 18.83

[7] 29.35 27.62 25.89 24.73 19.45 11.65 30.25 28.49 26.35 24.98 22.02 18.13

[10] 35.84 31.24 26.58 24.07 21.00 17.47 35.86 31.38 26.88 24.58 21.65 18.17

[8] 36.11 32.33 28.80 26.60 23.48 19.21 36.14 32.34 28.81 26.61 23.54 19.29

[17] + [27] 36.85 32.82 28.85 26.51 23.64 19.42 36.85 32.83 28.86 26.54 23.71 19.61

[17] + [46] 37.15 33.17 29.37 27.23 24.45 20.26 37.16 33.18 29.38 27.23 24.46 20.32

CURE-LET
Haar/CS = 16

36.55 32.54 28.72 26.47 23.57 19.67 36.58 32.59 28.86 26.73 24.03 20.29

CURE-LET
UWT Haar

36.42 32.71 29.08 26.89 24.02 20.08 36.48 32.75 29.13 26.98 24.22 20.52

Image Image 3 (256 × 256)

Input 33.84 27.73 21.64 18.13 13.71 7.36 34.07 28.01 22.13 19.06 16.07 14.07

[6] 35.75 31.50 27.36 24.99 22.07 18.08 35.94 31.77 27.79 25.51 22.64 18.53

[7] 28.20 26.32 24.63 24.15 20.98 12.31 28.96 26.93 25.07 24.46 22.34 18.25

[10] 35.86 31.19 26.70 24.14 21.06 17.40 35.93 31.35 26.93 24.41 21.34 17.68

[8] 35.92 31.96 28.34 26.31 23.37 18.77 35.94 31.98 28.37 26.36 23.46 18.81

[17] + [27] 36.44 32.38 28.66 26.58 23.83 19.46 36.45 32.40 28.68 26.61 23.89 19.58

[17] + [46] 36.84 32.84 29.11 27.05 24.41 19.93 36.86 32.85 29.12 27.07 24.43 19.99

CURE-LET
Haar/CS = 16

36.36 32.17 28.23 25.98 23.19 19.41 36.42 32.27 28.44 26.27 23.55 19.67

CURE-LET
UWT Haar

36.21 32.25 28.59 26.50 23.81 20.04 36.25 32.29 28.66 26.62 24.01 20.31

PSNRs and CIPSNRs have been averaged over 10 noise realizations.

in performance to the shift-invariant transform. The cycle-
spinning technique has the further advantage of being easily
implementable in parallel.

B. Comparisons to State-of-the-Art MR Image Denoising
Methods

As benchmarks for evaluating our CURE-LET approach, we
have retained five state-of-the-art MR image denoising tech-
niques: two wavelet-based algorithms [6], [7] (code at http://
telin.ugent.be/sanja/), a spatially adaptive linear MMSE fil-
ter [10], an unbiased nonlocal means filter specifically
designed for MR data [8] (code at http://personales.upv.es/
jmanjon/denoising/nlm2d.htm), and the recent approach based
on Rician-adapted VST [17] followed by an AWGN
denoiser. We have considered two AWGN denoisers:
the SURE-LET algorithm described in [27] (code at

bigwww.epfl.ch/luisier/SURE-LET.zip), which has a simi-
lar complexity as the proposed CURE-LET approach, and
the state-of-the-art BM3-D [46] (code at http://www.cs.
tut.fi/foi/GCF-BM3-D/), which is a sophisticated two-pass
denoising algorithm. For each of these methods, we have used
the tuning parameters suggested in their respective publica-
tions and software, except for the linear MMSE filter, where
we have hand-optimized (in the MMSE sense) the size of the
filter support.

We have considered two CURE-LET variants: 16 CS of
the joint intra-/inter-scale thresholding of (24) applied in
the unnormalized Haar wavelet transform and the pointwise
thresholding of (15) applied in the undecimated Haar wavelet
transform. The corresponding MATLAB code can be down-
loaded at http://fluisier.webnode.com/softwares/.

In Table I, the PSNR and CIPSNR results of the various
methods are displayed. As observed, the Rician VST + BM3-
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TABLE II

MEAN SSIM COMPARISONS

σ 5 20 30 50 100 5 20 30 50 100 5 20 30 50 100

Image Image 1 (256 × 256) Image 2 (256 × 256) Image 3 (256 × 256)

Input 0.87 0.40 0.26 0.14 0.04 0.88 0.46 0.33 0.19 0.06 0.88 0.47 0.34 0.20 0.06

[6] 0.96 0.79 0.68 0.52 0.32 0.93 0.76 0.65 0.49 0.29 0.93 0.74 0.64 0.50 0.32

[7] 0.89 0.78 0.65 0.47 0.27 0.78 0.68 0.65 0.46 0.28 0.80 0.69 0.64 0.53 0.33

[10] 0.97 0.78 0.67 0.51 0.26 0.93 0.68 0.56 0.41 0.23 0.93 0.70 0.59 0.44 0.26

[8] 0.97 0.78 0.68 0.52 0.28 0.93 0.75 0.67 0.53 0.31 0.92 0.77 0.69 0.56 0.31

[17] + [27] 0.97 0.78 0.66 0.48 0.21 0.94 0.76 0.66 0.53 0.30 0.94 0.78 0.70 0.59 0.32

[17] + [46] 0.98 0.80 0.71 0.58 0.38 0.94 0.75 0.68 0.57 0.39 0.94 0.78 0.72 0.62 0.43

CURE-LET
Haar/CS = 16

0.97 0.85 0.76 0.63 0.43 0.94 0.80 0.72 0.59 0.39 0.94 0.78 0.70 0.58 0.40

CURE-LET
UWT Haar

0.97 0.84 0.76 0.64 0.45 0.94 0.81 0.74 0.62 0.41 0.94 0.79 0.72 0.61 0.43

Output SSIMs have been averaged over 10 noise realizations.

TABLE III

COMPUTATION TIMES IN [s]

Image
size

[6] [7] [10] [8] [17]+[27] [17]+[46] CURE-LET
Haar/CS = 1

CURE-LET
Haar/CS = 16

CURE-LET
UWT Haar

256 × 256 0.2 0.5 0.1 33.8 0.3 1.6 0.2 2.8 0.9

512 × 512 0.8 2.4 0.5 145.7 1.9 6.9 0.6 8.2 6.6

Computation times have been averaged over 10 runs, [8], [10] do not use precompiled MEX files.

D generally obtains the best results (+0.5 dB compared to
our CURE-LET.) This mostly comes from the high-quality
of BM3-D. Indeed, our CURE-LET approach usually outper-
forms the Rician VST (+0.3 dB) when the latter is followed
by the similar complexity SURE-LET denoiser. The CURE-
LET denoising gains are about +1.3 dB relative to the
method of [6], +3.6 dB compared to [7], +2.2 dB compared
to [10], and +0.5 dB compared to [8]. In Table II, the mean
SSIMs of the various methods are reported. As observed, the
proposed CURE-LET approach generally obtains the highest
SSIM scores. Overall, our method thus compares favorably to
most state-of-the-art approaches, especially under very noisy
conditions, in which case the signal-dependent nature of the
noise is more pronounced. Note that further denoising gains
are likely to be obtained by considering more sophisticated
thresholding rules, image-adaptive overcomplete dictionaries
(e.g., [47]), or a linear expansion of nonlocal means, as
proposed in [48]. A more evolved CURE-optimized algorithm
could then reach the state-of-the-art performance achieved by
Rician VST + BM3-D.

Fig. 10 presents a visual comparison of the various MR
image denoising algorithms. As observed, the CURE-LET
denoising result offer a good balance between noise sup-
pression and fine-structure preservation. In particular, the
traditional artifacts resulting from wavelet thresholding [see
Fig. 10(c) and (d)] are greatly reduced thanks to the image-
content-based optimization of the numerous LET parameters.
This subjective observation is confirmed by the higher SSIM
score obtained by the proposed denoising approach.

In Table III, we report the computation time of the various
algorithms considered. All have been executed on MATLAB
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Fig. 9. PSNR improvements brought by cycle-spinning the unnormalized
Haar wavelet transform.

R2011a running under Mac OS X equipped with a 2.66 GHz
Intel Core 2 Duo processor. As observed, the proposed CURE-
LET algorithms take 0.2–3 s to denoise a 256 × 256 image.
When applied within an undecimated filterbank transform,
most of the computational load is dedicated to the independent
reconstructions of the processed subbands and their corre-
sponding first- and second-order derivatives [see (16)].

C. Denoising of a Magnitude MR Knee Image

We have also applied our CURE-LET denoising approach
to an actual magnitude MR image of the knee. This 512×512
16-bit raw image has been acquired on a Siemens 1.5-T Mag-
netom Sonata MR system, following a sagittal T2-weighted
protocol. The standard deviation of the complex Gaussian
noise has been estimated from a signal-free region S of the

squared data, as σ̂ =
√

(1/2)
∑

n∈S |mn|2, and subsequently
treated as known.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10. Visual Comparisons. (a) Zoom in image 1. (b) Noisy version: SSIM = 0.319. (c) Denoised by [6]: SSIM = 0.734. (d) Denoised by [7]:
SSIM = 0.726. (e) Denoised by [10]: SSIM = 0.653. (f) Denoised by [8]: SSIM = 0.719. (g) Denoised by [17] + [27]: SSIM = 0.721. (h) Denoised
by Haar CURE-LET (CS = 16): SSIM = 0.800. (i) Residual between (b) and (h).

(b)(a)

(d)(c)

Fig. 11. Denoising of a magnitude MR image of the knee. (a) Raw 16-bit
data: σ̂ = 38. (b) Denoised via [7]. (c) Via [8]. (d) Via Haar CURE-LET
(CS = 16).

Fig. 11 shows a comparison of denoising results. As
observed, in the CURE-LET approach of Fig. 11(d) the

noise is efficiently attenuated and the contrast is significantly
improved, owing to a significant reduction of the signal-
dependent bias introduced by the noise.

VI. CONCLUSION

In this paper, we have derived an unbiased risk estimation
procedure, and applied it to the problem of magnitude MR
image denoising, where the squared value of each pixel
comprises an independent noncentral chi-square variate on two
degrees of freedom. Our approach can be used to optimize
the parameters of essentially any continuously differentiable
estimator for this class of problems, and here we have focused
our attention on transform-domain algorithms in particular.

In this vein, we first developed a pointwise LET estimator
applied to the coefficients of an arbitrary undecimated filter-
bank transform. We then considered the specific case of the
unnormalized Haar wavelet transform, which is a multiscale
orthogonal transform allowing the derivation of subband-
dependent CURE denoising strategies. We also introduced a
subband-adaptive joint inter-/intra-scale LET that outperforms
a simpler estimator similar to soft thresholding.

We then applied our proposed CURE-optimized algo-
rithms to test images artificially degraded by noise, and
observed them to compare favorably with most state-of-the-
art techniques, both quantitatively and qualitatively. Finally,
we showed an example of denoising results obtained on an
actual magnitude MR image, in order to show the practi-
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cal efficacy of our approach to MR image denoising via
CURE.

ACKNOWLEDGMENT

The authors would like to thank W.-Y. I. Tseng for providing
the MRI data, and A. Pižurica, J. Manjón, K. Dabov, and
A. Foi for making their respective software implementations
available online.

REFERENCES

[1] G. Wright, “Magnetic resonance imaging,” IEEE Signal Process. Mag.,
vol. 14, no. 1, pp. 56–66, Jan. 1997.

[2] C. L. Epstein, Introduction to the Mathematics of Medical Imaging, 2nd
ed. Philadelphia, PA: SIAM, 2008.

[3] R. M. Henkelman, “Measurement of signal intensities in the presence
of noise in MR images,” Med. Phys., vol. 12, no. 2, pp. 232–233, 1985.

[4] M. Lustig, D. Donoho, J. Santos, and J. Pauly, “Compressed sensing
MRI,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 72–82, Mar. 2008.

[5] H. Gudbjartsson and S. Patz, “The Rician distribution of noisy MRI
data,” Mag. Reson. Med., vol. 34, no. 6, pp. 910–914, 1995.

[6] R. D. Nowak, “Wavelet-based Rician noise removal for magnetic reso-
nance imaging,” IEEE Trans. Image Process., vol. 8, no. 10, pp. 1408–
1419, Oct. 1999.

[7] A. Pižurica, W. Philips, I. Lemahieu, and M. Acheroy, “A versatile
wavelet domain noise filtration technique for medical imaging,” IEEE
Trans. Med. Imag., vol. 22, no. 3, pp. 323–331, Mar. 2003.

[8] J. V. Manjón, J. Carbonell-Caballero, J. J. Lull, G. García-Martí,
L. Martí-Bonmatí, and M. Robles, “MRI denoising using non local
means,” Med. Image Anal., vol. 12, no. 2, pp. 514–523, 2008.

[9] S. Aja-Fernández, M. Niethammer, M. Kubicki, M. E. Shenton, and C.-
F. Westin, “Restoration of DWI data using a Rician LMMSE estimator,”
IEEE Trans. Med. Imag., vol. 27, no. 10, pp. 1389–1403, Oct. 2008.
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