
UNDECIMATED HAAR THRESHOLDING FOR POISSON INTENSITY ESTIMATION

Florian Luisier1, Thierry Blu2 and Michael Unser1

1Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne, Switzerland
2Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong

ABSTRACT

We propose a novel algorithm for denoising Poisson-corrupted im-
ages, that performs a signal-adaptive thresholding of the undeci-
mated Haar wavelet coefficients. A Poisson’s unbiased MSE esti-
mate is devised and adapted to arbitrary transform-domain point-
wise processing. This prior-free quadratic measure of quality is then
used to globally optimize a linearly parameterized subband-adaptive
thresholding, which accounts for the signal-dependent noise vari-
ance. We demonstrate the qualitative and computational compet-
itiveness of the resulting denoising algorithm through comprehen-
sive comparisons with some state-of-the-art multiscale techniques
specifically designed for Poisson intensity estimation. We also show
promising denoising results obtained on low-count fluorescence mi-
croscopy images.

Index Terms— Image denoising, Poisson noise, Haar wavelet,
MSE estimation, fluorescence microscopy

1. INTRODUCTION

Digital image acquisition involves several optical and electronic de-
vices, whose imperfections (e.g. thermal instabilities) generate noise
in the acquired image. Besides these mostly signal-independent
degradations, the intrinsic randomness of photon emission and de-
tection also contributes to decrease the image quality. When the
measured light intensities are sufficiently high, the common addi-
tive white Gaussian noise (AWGN) assumption remains relevant.
In this work, we focus on the low illumination conditions, where
the photon-counting noise becomes dominant. In this scenario, the
measurements are more accurately modeled as independent Poisson
variables. These low-count imaging conditions are typically encoun-
tered in biomedical imaging (e.g. in fluorescence microscopy) and
in astronomy. Denoising of Poisson-corrupted images then becomes
an essential step prior to visualization and extraction of meaningful
information.

There are two main approaches for Poisson intensity estimation:

∗ The first consists of a three-step procedure: application of a
variance-stabilizing transform (VST) (e.g. Anscombe [1] or
Haar-Fisz [2]), processing of the stabilized data with an ex-
isting AWGN denoiser, and inversion of the VST. The advan-
tage of this approach is to take advantage of the huge amount
of work dedicated to AWGN reduction (e.g. [3,4]). Yet, most
VSTs fail to stabilize the noise variance for very low-intensity
images, making the AWGN assumption inaccurate.
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∗ The second is the direct handling of Poisson statistics often
in a Bayesian [5–7] or in a penalized likelihood [8] frame-
work. Statistical priors or penalty terms are commonly for-
mulated in a multiscale decomposition, where the Poisson in-
tensities are sparsely represented. In particular, several de-
noising algorithms are constructed around the non-redundant
(unnormalized) Haar wavelet transform, taking advantage of
its multiscale preservation of Poisson statistics [5, 9, 10]. The
algorithms specifically tailored to Poisson data do not lead to
a drop of denoising performances at low-count regime, but
they require the development of new estimators.

Note that some recent algorithms combine VST with multiscale
Bayesian models [11] and multiscale hypothesis testing [12].

In a recent paper [10], we proposed a fast algorithm for esti-
mating Poisson intensities that was restricted to the use of the non-
redundant (unnormalized) Haar wavelet transform. In this work, we
lift this restriction by devising a novel undecimated Haar wavelet
thresholding. Our main contribution is the development of an image-
domain prior-free Poisson’s unbiased risk estimate (PURE). In par-
ticular, we propose a tractable approximation of PURE for an arbi-
trary transform-domain pointwise processing. We then use PURE
to optimize an undecimated Haar wavelet-domain linear expansion
of thresholds (LET), adapted to the signal-dependent noise variance.
Although the thresholding is subband-adaptive, its parameters opti-
mization is performed in the image-domain to ensure a global MSE
optimality [4, 13]. The proposed PURE-LET strategy can thus be
seen as the Poisson extension of the SURE-LET paradigm [4].

2. THEORY

We assume that the discrete imaging of an original natural scene
yields a Poisson-corrupted observation y = [y1 y2 . . . yN ]T, i.e. N
independent Poisson random variables yn of underlying intensities
xn. Each vector of the canonical basis of RN will be denoted by
en = [δn−k]1≤k≤N .

2.1. PURE: a Poisson’s Unbiased Risk Estimate

Our goal is to find an estimate x̂ = F(y) that is the closest possible
to the original intensity signal x in the minimum mean-squared error
(MSE) sense. That is, we want to minimize

MSE =
1

N
‖x̂− x‖2 =

1

N

N∑
n=1

(fn(y)− xn)
2

(1)

The next theorem gives us a practical estimate of the MSE that
does not require any knowledge about the unknown intensities x.
In contrast with Bayesian approaches, x is even considered to be
deterministic here.
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Theorem 1 (PURE). Let F(y) = [fn(y)]1≤n≤N be a real-valued
vector function such that ∀n = 1 . . . N , E {|fn(y)|} < ∞ and
define F−(y) = [fn(y − en)]1≤n≤N . Then the random variable

ε =
1

N

(
‖F(y)‖2 − 2yTF−(y) + ‖y‖2 − 1Ty

)
(2)

is an unbiased estimate of the expected MSE, i.e.

E {ε} = 1

N
E
{‖F(y)− x‖2}

The proof of Theorem 1 is based on Hudson’s identity [14], and
will appear elsewhere.

The variance of PURE (2) decreases as the number N of mea-
surements yn increases. Because of the large number of pixels in
images, PURE can be considered as a very reliable MSE estimate.

2.2. Tractable Approximation of PURE

The computationally tedious part of PURE (2) lies in the evaluation
of the term F−(y) for an arbitrary nonlinear processing. Indeed, to
compute a single component fn(y − en) of F−(y), one needs to
apply the whole denoising process to a slightly perturbed version of
the noisy input. This operation has to be repeated N times to get the
full vector F−(y). Such a “brute force” approach cannot be envis-
aged in practice, since a typical image contains N = 2562 pixels.
Instead, we propose to use a first order Taylor series approximation
of F−(y), i.e. for all n = 1 . . . N :

F−(y) � F(y)− ∂F(y)

where ∂F(y) =
[
∂fn(y)
∂yn

]
, assuming that fn ∈ C1(RN ), ∀n.

Consequently, provided that the above approximation is reason-
able (i.e. |yn| >> 1), PURE is well approximated by:

ε̃ =
1

N

(
‖F(y)− y‖2 + 2yT∂F(y)− 1Ty

)
(3)

2.3. PURE for Transform-Domain Pointwise Processing

We propose now to derive a tractable PURE for the particular case
of a transform-domain pointwise processing,

F(y) = RΘ(Dy︸︷︷︸
w

, D̃y︸︷︷︸
w̃

) (4)

where:

∗ D is a L × N matrix which implements a forward transfor-
mation (e.g. a redundant wavelet decomposition).

∗ R is a N × L matrix which implements the inverse transfor-
mation associated with D, such that RD = Id.

∗ D̃ is a L × N smoothing matrix which yields a coarse esti-

mation w̃ = D̃y of the transform-domain signal-dependent
noise variance. A particular choice of such matrix will be
given in Section 3.1.

∗ Θ(w, w̃) = [θl(wl, w̃l)]l∈[1;L] is an arbitrary pointwise pro-
cessing that will be specified in Section 3.1.

Corollary 1. For a transform-domain pointwise processing as de-
fined in (4), PURE (3) can be expressed as:

ε̃ =
1

N

(
‖F(y)− y‖2 − 1Ty

)
+ (5)

2

N

(
∂1Θ(w, w̃)T(D •RT)y + ∂2Θ(w, w̃)T(D̃ •RT)y

)
where:

∗ ∂1Θ(w, w̃) =
[
∂θl(wl,w̃l)

∂wl

]
l∈[1;L]

is the L× 1 vector made

of the first derivative, with respect to its first variable, of each
function θl.

∗ ∂2Θ(w, w̃) =
[
∂θl(wl,w̃l)

∂w̃l

]
l∈[1;L]

is the L× 1 vector made

of the first derivative, with respect to its second variable, of
each function θl.

∗ “•” denotes the Hadamard (element-by-element) product be-
tween two matrices.

3. PURE-LET THRESHOLDING IN UNDECIMATED
HAAR REPRESENTATION

In this section, we propose to use the practical measure of qual-
ity given in Corollary 1 to optimize a subband-adaptive pointwise
thresholding applied to the coefficients of the undecimated Haar
wavelet transform.
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Fig. 1. The undecimated (unnormalized) Haar filterbank for J = 2
levels of decomposition.

3.1. LET Thresholding

Analyzing a vector y of independent Poisson variables through the
(unnormalized) undecimated Haar filterbank depicted in Fig. 1,
yields nothing but sums (scaling coefficients) and differences
(wavelet coefficients) of independent Poisson random variables.
The variance of each wavelet coefficient is thus the sum of the two
underlying Poisson intensities, i.e. the corresponding noise-free
scaling coefficient. Each noisy scaling coefficient can thus be used
as a coarse estimate of the signal-dependent noise variance of the

same-scale wavelet coefficient. In this case, D̃ simply implements
each scale (j = 1 . . . J) of the lowpass channel of the filterbank

depicted in Fig. 1 and w̃ = D̃y is the vector made of the resulting
scaling coefficients.

Similarly to what has been recently proposed for fast denois-
ing [4, 10, 13], we propose to build our subband-adaptive threshold-
ing function θj(w, w̃) as a linear expansion of thresholds (LET):

θj(w, w̃) = aj,1 w︸︷︷︸
θj,1(w,w̃)

+ aj,2 w exp

(
−
(

w

t(w̃)

)8
)

︸ ︷︷ ︸
θj,2(w,w̃)

(6)

The above thresholding function is very similar to the one we in-
troduced in [4] for AWGN reduction in redundant representation, ex-
cept that it involves a signal-dependent threshold t(w̃) that is tuned
by the estimated noise variance w̃. We experimentally found that
t(w̃) = 3

√|w̃| yields, on average, the minimum MSE results.
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3.2. LET Optimization by PURE Minimization

In the proposed undecimated Haar wavelet-domain LET framework,
the whole denoising process can be finally expressed as:

F(y) =
J∑

j=1

2∑
k=1

aj,k RjΘj,k(Djy, D̃jy)︸ ︷︷ ︸
Fj,k(y)

+RJ+1DJ+1y︸ ︷︷ ︸
lowpass

The parameters aj,k that minimize the approximate PURE given in
Equ. (3) and (5) are then the solution of the linear system of 2J
equations Ma = c̃, where for k, l ∈ [1; J ]× [1; 2],⎧⎪⎨⎪⎩
M =

[
Fk(y)

TFl(y)
]
2(k1−1)+k2,2(l1−1)+l2

c̃ =
[
Fk(y)

T(Id−RJ+1DJ+1)y − ∂Fk(y)
Ty

]
2(k1−1)+k2

The first order Taylor series approximation of some nonlinear
functions F−j,2(y) might be inaccurate for very low-intensity sig-
nals. As the intensities of the Poisson processes linearly increase
with the scale j, we propose to only keep those nonlinearly pro-
cessed subband Fj,2(y) for which 2jEmean is above a given thresh-
old T . The averaged signal energy Emean is unbiasedly estimated as:
Emean = 1

N
(‖y‖2 − 1Ty). We empirically found that any values

of T ∈ [5, 15] ensure that the PURE-based parameters optimization
gives near minimum MSE performances (see Table 1).

4. EXPERIMENTS

We now evaluate the performance of the proposed PURE-LET
undecimated Haar wavelet thresholding for denoising Poisson-
corrupted images. We have chosen J = 5 levels of decomposition
for the undecimated Haar wavelet transform and T = 10 for the
threshold of reliability discussed in Section 3.2.

4.1. On Simulated Data

We have compared our algorithm with three state-of-the-art meth-
ods in simulated experiments: the Anscombe VST [1] followed
by the BLS-GSM denoiser applied in a full steerable pyramid [3],
the Platelet approach exposed in [8] and the Poisson-Haar hidden
Markov tree (PH-HMT) introduced in [7]. The near shift-invariance
of these last two algorithms is achieved by averaging the denois-
ing results obtained on several shifted versions of the input image
(cycle-spinning strategy).

The performance of the various methods has been quanti-
fied in term of peak signal-to-noise ratio (PSNR), computed as:

PSNR = 10 log10

(
I2max
MSE

)
. Various input noise levels have been

obtained by rescaling the original images between peak intensities
Imax = 20 and Imax = 1.

As observed in Table 1, the VST-based method is usually out-
performed by the other algorithms at low intensities. The proposed
solution gives sometimes similar and often higher PSNRs than the
state-of-the-art approaches specifically designed for Poisson inten-
sity estimation. Note that better results could be obtained with a
more sophisticated (e.g. multivariate) thresholding, but this exten-
sion is out of the scope of the present paper. As expected, our PURE-
based parameters optimization consistently remains within 0.2 dB
from the highest PSNR performances achievable by the pointwise
thresholding proposed in (6). This demonstrates the reliability of
PURE as an unbiased estimate of the actual MSE.

A visual comparison between the Platelet algorithm and the pro-
posed approach is presented in Fig. 2 for the Fingerprint image. As
observed, our denoised image exhibits no oversmoothing.

From a practical point of view, it must be stressed that the pro-
posed algorithm requires only ∼ 1s to denoise a 256 × 256 image.
To compare with, VST+BLS-GSM lasts around 8s on the same work-
station, whereas the execution of 20 cycle-spins of Platelet requires
nearly 1300s and the reported computation time of PH-HMT is 92s.

Table 1. Comparison of multiscale Poisson denoising algorithms.
Peak Intensities 20 10 5 3 2 1

Image Cameraman 256 × 256
Input PSNR 16.29 13.28 10.27 8.07 6.29 3.28

Anscombe [1] +
BLS-GSM [3] 26.56 24.63 22.50 20.75 19.07 14.44

Platelet [8] 26.80 25.14 23.56 22.56 21.72 20.57
PH-HMT [7] 26.61 24.97 23.37 22.31 21.41 20.03

PURE-LET 26.72 25.10 23.50 22.39 21.67 20.48
MSE-LET 26.76 25.17 23.63 22.57 21.81 20.61

Image Boat 512 × 512
Input PSNR 15.95 12.94 9.92 7.70 5.94 2.93

Anscombe [1] +
BLS-GSM [3] 27.39 25.95 24.32 22.71 20.92 15.57

Platelet [8] 26.92 25.50 24.33 23.39 22.88 21.75

PH-HMT [7] 26.96 25.57 24.31 23.45 22.77 21.76

PURE-LET 27.23 25.81 24.39 23.53 22.88 21.92
MSE-LET 27.25 25.87 24.54 23.66 23.01 21.98

Image Fingerprint 512 × 512
Input PSNR 15.57 12.56 9.54 7.32 5.57 2.56

Anscombe [1] +
BLS-GSM [3] 24.94 23.36 21.89 20.55 18.88 13.96

Platelet [8] 23.72 21.84 20.01 18.65 17.83 16.52

PH-HMT [7] 23.46 21.91 20.42 19.36 18.55 17.39

PURE-LET 24.84 23.09 21.38 20.19 19.31 18.05
MSE-LET 24.85 23.12 21.45 20.27 19.37 18.08

Note: Output PSNRs have been averaged over 10 noise realizations, except
for the Platelet algorithm.

4.2. On Real Fluorescence Microscopy Data

We finally show the potential of the proposed approach for denois-
ing low-intensities fluorescence microscopy data. The noisy image
shown in Fig. 3 A has been acquired on a confocal microscope at the
Imaging Center of the IGBMC, Illkirch, France1. It shows the cel-
lular division of a C. elegans embryo labeled with three fluorescent
dyes. Each fluorescence channel has been denoised independently
using the proposed algorithm and the denoised image is shown in
Fig. 3 B. As observed, the Poisson noise has been effectively re-
moved, revealing some fine structures.

5. CONCLUSION

We have devised a novel undecimated Haar thresholding for robust
and fast estimation of Poisson intensities. The use of a purely data-
driven unbiased estimate of the MSE (PURE) allows the accurate
monitoring of the denoising quality, while the linear parametrization
of the denoising process (LET) leads to a straightforward parameters
optimization. The proposed solution turns out to be qualitatively and
computationally very competitive with some state-of-the-art multi-
scale methods and its application to real low-intensity fluorescence
microscopy images yields promising denoising results.

1We are grateful to the IGBMC’s team for providing the equipment and
the assistance for acquiring the data and to Prof. Pierre Gönczy from the
ISREC at EPFL for providing the biological sample.
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(A) (B)

(C) (D)

Fig. 2. (A) Original Fingerprint image. (B) Noisy version
of it: PSNR = 6.52 dB. (C) Denoised with Platelet [8]:
PSNR = 18.34 dB. (D) Denoised with the proposed algorithm:
PSNR = 19.79 dB.
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