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ABSTRACT

We use a comprehensive set of non-redundant orthogonal wavelet transforms and apply a denoising method called
SUREshrink in each individual wavelet subband to denoise images corrupted by additive Gaussian white noise.
We show that, for various images and a wide range of input noise levels, the orthogonal fractional (α, τ)-B-splines
give the best peak signal-to-noise ratio (PSNR), as compared to standard wavelet bases (Daubechies wavelets,
symlets and coiflets). Moreover, the selection of the best set (α, τ) can be performed on the MSE estimate
(SURE) itself, not on the actual MSE (Oracle).
Finally, the use of complex-valued fractional B-splines leads to even more significant improvements; they also
outperform the complex Daubechies wavelets.
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1. INTRODUCTION

In image denoising, the aim is to suppress noise as much as possible while preserving image features. The mul-
tiresolution analysis performed by the wavelet transform is a powerful tool used to achieve this goal. Indeed,
in the orthonormal wavelet domain, most image information is contained in the largest wavelet coefficients,
while the noise is uniformly spread out across all coefficients. Moreover, Gaussian white noise remains white
and Gaussian after orthogonal transformation. A good denoising approach thus consists in setting the smallest
coefficients to zero and shrinking the remaining ones above a certain threshold. Donoho and Johnstone1 have
proposed a method to find the threshold that minimizes the estimate of the mean squared error. According to
this criterion, their SUREshrink —also called soft threshold— is optimal.

Many denoising methods have been compared in the literature. However, there are few studies that have
systematically investigated the influence of the wavelet base itself for the success of denoising. In this paper, we
fill this gap by proposing a comparison between several non-redundant orthogonal wavelet bases according to
their performance (Peak Signal-to-Noise Ratio) in denoising applications. We evaluate the common Daubechies
wavelets and symlets,2 the coiflets2 and the orthogonal fractional (α, τ)-B-splines3 and its complex-valued ex-
tension.4

In the first part of this paper, we will briefly present the main characteristics of the non-redundant orthogonal
wavelet transform, with a particular attention to the construction of the orthogonal fractional (α, τ)-B-splines
filterbank. In the second part, we will describe Donoho and Johnstone’s SUREshrink denoising method. Finally,
we will expose our comparison results, which highlight the potential optimality of the orthogonal fractional (α, τ)-
B-splines and especially its complex-valued extension. Indeed, we will show that the best orthogonal fractional
(α, τ)-B-splines always perform better than the best standard wavelets (Daubechies, symlets and coiflets).
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2. THE NON-REDUNDANT ORTHOGONAL WAVELET TRANSFORM

This section presents a particular type of basis for use in a non-redundant orthogonal wavelet filterbank: the
orthogonal fractional (α, τ)-B-splines and its complex-valued extension.

2.1. Principle

Here we only consider non-redundant dyadic orthogonal wavelet transforms. The algorithm consists of an iterated
orthogonal filterbank with an analysis and a synthesis part (figure 1). The orthogonality property is achieved by
imposing H̃(z) = H( 1

z ) and G̃(z) = G( 1
z ) where:

• H̃(z) is the analysis scaling filter;

• H(z) is the synthesis scaling filter;

• G̃(z) is the analysis wavelet filter;

• G(z) is the synthesis wavelet filter.

For a perfect reconstruction, the filters must satisfy two conditions:

1. H̃(z−1)H(z) + G̃(z−1)G(z) = 1

2. H̃(z−1)H(−z) + G̃(z−1)G(−z) = 0

Figure 1. Analysis part (left) and synthesis part (right) of the wavelet transform filterbank.

The key property of an orthogonal wavelet transform is that it transforms Gaussian white noise into Gaussian
white noise with the same statistics (mean and variance). Hence, if we call the original image f and the added
Gaussian white noise n ∼ N(0, σ2), the noisy image can be written as g = f + n; similarly, we will have in the
wavelet domain: y = Wg = x + b, with b ∼ N(0, σ2).

2.2. A wide choice of filters

There are many filters which satisfy the perfect reconstruction conditions. For our test (see section 4), we have
only retained the most popular ones (Daubechies wavelets, symlets and coiflets)2 and have chosen to compare
them with the orthogonal fractional (α, τ)-B-spline3 and its complex-valued extension.4 This section briefly
presents these less common wavelet bases.

2.2.1. The fractional (α, τ)-B-splines

The fractional B-spline of real degree α and shift τ is easily expressed in the frequency domain as3:
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In this paper, we only consider orthogonal filterbanks and thus, we orthogonalize the symmetric fractional
(α, τ)-B-spline as follows:

β̂α
τ,⊥(ω) =
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τ (ω)√

Aα
τ (ejω)

(3)

where
Aα
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∑
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τ (ω + 2nπ)|2 (4)

is the autocorrelation filter of an (α, τ)-B-spline.

Thank to the B-spline scaling relation, one can deduce the orthogonal symmetric fractional (α, τ)-B-spline
corresponding synthesis scaling filter:

Hα
τ,⊥(z) = Hα

τ (z)

√
Aα

τ (z)
Aα

τ (z2)
(5)

where z = ejω.

As usual, the frequency response of the generating wavelet synthesis filter is given by:

Gα
τ,⊥(z) = −z−1Hα

τ,⊥(−z−1) (6)

Despite of the infinite support of the wavelets, the implementation of the orthogonal fractional B-spline wavelet
transform can be done exactly using the FFT algorithm,5 under periodic boundary conditions.

2.2.2. The complex-valued fractional (α, τ)-B-splines

To extend the classical fractional (α, τ)-B-splines to complex-valued functions, we now consider that τ may take
complex values. Its imaginary part has the effect of shifting the frequency spectrum of the scaling function, as
shown in figure 2. Moreover, this complex extension generates some level of redundancy (real and imaginary
part) in the wavelet domain.

Figure 2. Frequency spectrum shift due to the imaginary part of τ for α = 2.0.

In the case of complex-valued B-splines, the orthogonality property is achieved by imposing H̃∗(z) = H( 1
z )

and G̃∗(z) = G( 1
z ), where H∗ is the filter whose coefficients are complex conjugates of whose of H. Finally, we

obtain the filterbank depicted in figure 3 for the complex-valued orthonormal wavelet transform.



Figure 3. Analysis/synthesis filterbank with complex-valued fractional B-spline filters.

2.2.3. Practical computations

Practically, the infinite sum (4) cannot be computed exactly for most values of α and τ . In order to compute
efficiently an accurate estimate of Aα

τ , we use the following acceleration technique, which is obtained in a similar
way as for real parameters α, τ (see5):
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The mathematical analysis of this formula shows indeed that the remainder of the difference between the left-
hand side and the right-hand side of (7) is O

(
1

N2α+4

)
, which ensures an accuracy that is better than 160 dB

with N = 100 computed terms and for all values of α > − 1
2 .

3. WAVELET THRESHOLDING: SURESHRINK

In the following, we consider Donoho’s SUREshrink1 as denoising function. This widely used method consists in
a non-linear thresholding in the wavelet domain. Indeed, the orthonormal wavelet transform confines most image
information in the largest wavelet coefficients, while there is mainly noise in the smaller ones. The idea behind
SUREshrink is to set to zero all coefficients below a certain threshold value T , while shrinking the remaining
ones by this same value; this technique is thus also called soft thresholding.

η(y) = sign(y)(|y| − T )+ (8)

The soft thresholding function has been shown to be near optimal in the minimax sense.
The threshold value T is then selected so as to minimize the l2 risk. The mean squared error (MSE) in the image
domain is preserved in the wavelet domain, thank to the orthogonality property of the non-redundant wavelet
transform. Hence, we can write it as follows:
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where N is the number of samples; J is the number of channels; Nj is the number of samples in the channel j

and xj
i is the ith sample of the jth channel.

As the non-noisy wavelet coefficients xj
i are unknown, one needs to estimate the MSE using Stein’s unbiased risk

estimator (SURE).6 Its minimization according to our particular estimator x̂ = η(y) leads to:

SUREj(t,y) = σ2 − 1
Nj

(
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Nj∑
i=1
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(10)

The resulting threshold is thus:
Tj = argmin

(
SUREj(t,y)

)
(11)

To better adapt to image discontinuities, we will select a new threshold for each wavelet sub-band of successive
scales, except the low-pass residual. This method is thus adaptive with respect to the sub-bands.
The SURE principle can also be used to optimize the (α, τ)-parameters of the fractional B-splines. As we can see
on table 5, this blind optimization is very accurate (average loss in PSNR ≤ 0.02 dB over eight noise realizations).

4. WAVELET BASES COMPARISON: RESULTS

The aim of our comparison is to point out the differences in term of PSNR due to a particular choice of wavelet
bases. The PSNR has been computed using the following formula:

PSNR = 10 log10

( 2552

MSE

)
(12)

In order to factor out the effect of potential boundary artifacts, we have smoothed the image borders with an
Hamming window of size 10 by 10 pixels. The results we show in the following charts have been obtained using
the SUREshrink denoising method as described in section 3 and the PSNRs have been averaged over eight noise
realizations. For the complex-valued (α, τ)-B-splines4 as well as for the complex extension of the Daubechies,7

the thresholding has been applied to the modulus of the wavelet coefficients.
Table 1 shows the results obtained with the popular Daubechies2 (db) orthogonal wavelet bases. We can clearly
see that the Haar basis (db1 ) is not appropriate for image denoising.
Table 2 shows the results we have reached with the symlets2 (sym) orthogonal wavelet bases. These are a quasi
symmetric extension of the Daubechies, which make them more suitable than the classical Daubechies. Globally,
the best results are obtained with between four and eight vanishing moments.
Table 3 shows the results of the coiflets2 (coif ) orthogonal wavelet bases. These are another extension of the
Daubechies wavelets, with vanishing moment conditions both for the wavelets and the scaling functions. They
are also more symmetrical than the classical Daubechies (db). All these characteristics make them a little more
efficient than the symlets. The best results are mainly obtained with four vanishing moments.
Table 4 shows the results we have obtained with the complex extension of the Daubechies7 (cxdb) orthogonal
wavelet bases. They are a symmetric version of the classical Daubechies (db) and thus perform better than the
real-valued Daubechies.
Table 5 displays the best results we have obtained with the fractional B-splines.3 We can see that the optimization
based on the MSE estimate (SURE) gives similar results as the one performed with the actual MSE (oracle),
which is an important practical point. The improvements brought by the complex-valued parameters of the
fractional B-splines are clearly put in evidence. We must also notice that the best performance of the complex
B-splines are always obtained with an imaginary part of the shift τ close to 0.25. Thus, the optimization can
only be done for the degree α and the real part of the shift τ with negligible loss in PSNR.
Finally, figure 4 summarizes our results: the complex-valued (α, τ)-B-splines4 are an efficient wavelet basis for
image denoising applications. The gain they induce is on average 0.25 dB which is significant in denoising
applications. Among the real-valued orthogonal wavelet bases, the fractional (α, τ)-B-splines3 give the best
results, however they are only slightly better than the best coiflets.2 They are particularly suitable when a
sinc-like basis is required; this is the case when the image spectrum doesn’t decay like |ω|−p.



5. CONCLUSION

In this paper, we have proposed a comparison of various wavelet bases following the criterion of their efficiency
(PSNR) in image denoising applications. Our results show that the orthogonal fractional (α, τ)-B-splines are an
attractive choice of wavelet bases and that their parameters can be optimized by applying the SURE principle.
Indeed, a good choice of its real parameters places this wavelet basis at the top of the most popular available
wavelet bases such as Daubechies’ and its variations. Moreover, the addition of a complex part to these parameters
significantly improves the results, which is hardly the case for the complex extension of the Daubechies.
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Daubechies wavelets

Peppers 256× 256

σ Input PSNR [db] db1 db2 db3 db4 db5 db6 db7 db8 db9 db10

5 34.15 36.06 36.47 36.52 36.61 36.58 36.54 36.52 36.50 36.45 36.40

10 28.13 31.57 32.24 32.33 32.45 32.42 32.40 32.38 32.34 32.30 32.27

15 24.61 29.21 29.98 30.09 30.23 30.23 30.20 30.19 30.16 30.11 30.09

20 22.11 27.68 28.50 28.61 28.76 28.77 28.75 28.75 28.74 28.68 28.65

25 20.17 26.55 27.42 27.53 27.70 27.71 27.70 27.72 27.70 27.63 27.61

30 18.59 25.67 26.58 26.69 26.85 26.89 26.85 26.89 26.89 26.82 26.78

50 14.15 23.39 24.38 24.48 24.65 24.63 24.63 24.70 24.72 24.64 24.61

House 256× 256

σ Input PSNR [db] db1 db2 db3 db4 db5 db6 db7 db8 db9 db10

5 34.15 36.61 37.10 37.24 37.26 37.25 37.24 37.22 37.23 37.21 37.15

10 28.13 32.31 33.07 33.27 33.27 33.25 33.24 33.26 33.28 33.23 33.17

15 24.61 30.04 30.94 31.22 31.24 31.20 31.22 31.25 31.27 31.19 31.15

20 22.11 28.52 29.55 29.86 29.89 29.85 29.86 29.91 29.97 29.84 29.79

25 20.17 27.42 28.52 28.87 28.87 28.82 28.84 28.92 28.99 28.83 28.76

30 18.59 26.57 27.70 28.07 28.04 27.98 28.01 28.11 28.20 28.01 27.94

50 14.15 24.34 25.50 25.84 25.75 25.62 25.66 25.86 26.08 25.75 25.63

MIT 256× 256

σ Input PSNR [db] db1 db2 db3 db4 db5 db6 db7 db8 db9 db10

5 34.15 35.98 36.04 36.07 36.03 36.00 35.98 35.94 35.92 35.90 35.87

10 28.13 31.05 31.15 31.26 31.23 31.20 31.17 31.13 31.10 31.08 31.06

15 24.61 28.34 28.48 28.65 28.64 28.60 28.59 28.54 28.51 28.49 28.46

20 22.11 26.50 26.69 26.91 26.92 26.86 26.85 26.82 26.77 26.75 26.75

25 20.17 25.14 25.36 25.63 25.65 25.59 25.59 25.55 25.50 25.48 25.49

30 18.59 24.05 24.33 24.63 24.66 24.60 24.59 24.57 24.51 24.49 24.50

50 14.15 21.23 21.72 22.05 22.10 22.08 22.04 22.05 22.01 21.99 22.03

Bird 256× 256

σ Input PSNR [db] db1 db2 db3 db4 db5 db6 db7 db8 db9 db10

5 34.15 37.39 38.29 38.65 38.76 38.80 38.78 38.78 38.81 38.82 38.73

10 28.13 33.14 34.47 34.94 35.11 35.09 35.07 35.09 35.16 35.13 35.06

15 24.61 30.95 32.39 32.90 33.06 33.05 33.01 33.05 33.15 33.07 33.01

20 22.11 29.53 30.99 31.52 31.65 31.64 31.59 31.61 31.76 31.64 31.59

25 20.17 28.48 29.93 30.45 30.58 30.55 30.49 30.51 30.67 30.53 30.48

30 18.59 27.65 29.08 29.60 29.71 29.64 29.57 29.61 29.79 29.64 29.58

50 14.15 25.43 26.71 27.23 27.31 27.11 27.09 27.21 27.45 27.16 27.05

Table 1. Comparison of several Daubechies wavelet bases, coming from Matlab’s wavelet toolbox, for various images and
noise levels. Non-redundant orthogonal wavelet transform. Number of iterations: 4.



Daubechies symlets

Peppers 256× 256

σ Input PSNR [db] sym2 sym3 sym4 sym5 sym6 sym7 sym8 sym9 sym10

5 34.15 36.45 36.60 36.65 36.63 36.64 36.65 36.64 36.59 36.58

10 28.13 32.20 32.45 32.56 32.52 32.56 32.56 32.57 32.49 32.50

15 24.61 29.93 30.24 30.36 30.35 30.38 30.39 30.40 30.33 30.35

20 22.11 28.44 28.77 28.89 28.92 28.94 28.94 28.96 28.89 28.92

25 20.17 27.36 27.70 27.82 27.86 27.88 27.88 27.92 27.83 27.86

30 18.59 26.51 26.86 26.98 27.03 27.04 27.04 27.08 27.02 27.05

50 14.15 24.31 24.68 24.67 24.82 24.78 24.79 24.90 24.76 24.83

House 256× 256

σ Input PSNR [db] sym2 sym3 sym4 sym5 sym6 sym7 sym8 sym9 sym10

5 34.15 37.10 37.24 37.30 37.31 37.31 37.32 37.30 37.28 37.29

10 28.13 33.07 33.27 33.31 33.37 33.41 33.40 33.39 33.35 33.40

15 24.61 30.94 31.22 31.25 31.36 31.42 31.38 31.39 31.35 31.41

20 22.11 29.55 29.86 29.89 30.02 30.09 30.02 30.07 30.03 30.09

25 20.17 28.52 28.87 28.87 29.01 29.09 29.00 29.06 29.01 29.09

30 18.59 27.70 28.07 28.04 28.21 28.27 28.17 28.27 28.20 28.28

50 14.15 25.50 25.84 25.70 25.97 25.95 25.86 26.08 25.88 26.06

MIT 256× 256

σ Input PSNR [db] sym2 sym3 sym4 sym5 sym6 sym7 sym8 sym9 sym10

5 34.15 36.04 36.07 36.09 36.06 36.06 36.03 36.03 36.02 36.01

10 28.13 31.15 31.26 31.32 31.28 31.31 31.24 31.29 31.26 31.27

15 24.61 28.48 28.65 28.74 28.67 28.74 28.67 28.73 28.66 28.71

20 22.11 26.69 26.91 26.99 26.93 27.03 26.96 27.02 26.94 27.00

25 20.17 25.36 25.63 25.71 25.66 25.75 25.71 25.75 25.67 25.74

30 18.59 24.33 24.63 24.71 24.66 24.75 24.73 24.77 24.68 24.75

50 14.15 21.72 22.05 22.10 22.08 22.20 22.22 22.20 22.16 22.25

Bird 256× 256

σ Input PSNR [db] sym2 sym3 sym4 sym5 sym6 sym7 sym8 sym9 sym10

5 34.15 38.29 38.65 38.79 38.81 38.87 38.95 38.91 38.84 38.89

10 28.13 34.47 34.94 35.08 35.15 35.25 35.32 35.32 35.21 35.28

15 24.61 32.39 32.90 33.04 33.11 33.21 33.27 33.31 33.17 33.25

20 22.11 30.99 31.52 31.66 31.72 31.77 31.83 31.92 31.74 31.82

25 20.17 29.93 30.45 30.58 30.62 30.66 30.70 30.87 30.66 30.71

30 18.59 29.08 29.60 29.68 29.75 29.74 29.78 30.01 29.73 29.81

50 14.15 26.71 27.23 27.20 27.36 27.18 27.23 27.65 27.18 27.39

Table 2. Comparison of several symlets orthogonal bases, coming from Matlab’s wavelet toolbox, for various images and
noise levels. Non-redundant orthogonal wavelet transform. Number of iterations: 4.



Daubechies coiflets

Peppers 256× 256

σ Input PSNR [db] coif1 coif2 coif3 coif4 coif5

5 34.15 36.51 36.66 36.64 36.63 36.61

10 28.13 32.28 32.57 32.57 32.58 32.54

15 24.61 30.00 30.38 30.39 30.41 30.38

20 22.11 28.49 28.90 28.93 28.99 28.95

25 20.17 27.39 27.84 27.87 27.93 27.90

30 18.59 26.54 27.00 27.04 27.10 27.06

50 14.15 24.35 24.71 24.79 24.93 24.86

House 256× 256

σ Input PSNR [db] coif1 coif2 coif3 coif4 coif5

5 34.15 37.10 37.32 37.32 37.33 37.29

10 28.13 33.07 33.35 33.41 33.42 33.38

15 24.61 30.96 31.30 31.40 31.42 31.39

20 22.11 29.57 29.94 30.08 30.11 30.07

25 20.17 28.55 28.92 29.08 29.13 29.08

30 18.59 27.76 28.10 28.26 28.34 28.27

50 14.15 25.55 25.77 25.93 26.19 26.03

MIT 256× 256

σ Input PSNR [db] coif1 coif2 coif3 coif4 coif5

5 34.15 36.07 36.10 36.06 36.05 36.02

10 28.13 31.21 31.35 31.32 31.30 31.28

15 24.61 28.54 28.76 28.75 28.74 28.72

20 22.11 26.77 27.03 27.03 27.03 27.00

25 20.17 25.45 25.75 25.76 25.78 25.75

30 18.59 24.42 24.75 24.75 24.79 24.77

50 14.15 21.78 22.14 22.20 22.24 22.26

Bird 256× 256

σ Input PSNR [db] coif1 coif2 coif3 coif4 coif5

5 34.15 38.32 38.83 38.88 38.97 38.89

10 28.13 34.56 35.15 35.24 35.39 35.27

15 24.61 32.47 33.11 33.19 33.39 33.23

20 22.11 31.07 31.70 31.76 31.99 31.81

25 20.17 30.03 30.61 30.66 30.93 30.69

30 18.59 29.20 29.72 29.75 30.06 29.80

50 14.15 26.87 27.19 27.20 27.71 27.36

Table 3. Comparison of several coiflets orthogonal bases, coming from Matlab’s wavelet toolbox, for various images and
noise levels. Non-redundant orthogonal wavelet transform. Number of iterations: 4.



Complex Daubechies wavelets

Peppers 256× 256

σ Input PSNR [db] cxdb3 cxdb5 cxdb7 cxdb9

5 34.15 36.60 36.55 36.44 36.37

10 28.13 32.57 32.52 32.44 32.33

15 24.61 30.33 30.30 30.27 30.23

20 22.11 28.90 28.81 28.78 28.71

25 20.17 27.82 27.74 27.69 27.65

30 18.59 26.90 26.91 26.86 26.78

50 14.15 24.70 24.69 24.56 24.50

House 256× 256

σ Input PSNR [db] cxdb3 cxdb5 cxdb7 cxdb9

5 34.15 37.42 37.31 37.34 37.19

10 28.13 33.50 33.44 33.45 33.34

15 24.61 31.41 31.35 31.37 31.25

20 22.11 30.02 29.94 29.99 29.86

25 20.17 28.99 29.02 28.87 28.81

30 18.59 28.19 28.24 28.00 27.93

50 14.15 25.97 26.08 25.96 25.75

MIT 256× 256

σ Input PSNR [db] cxdb3 cxdb5 cxdb7 cxdb9

5 34.15 36.16 36.10 36.06 36.03

10 28.13 31.42 31.28 31.24 31.20

15 24.61 28.81 28.78 28.75 28.67

20 22.11 27.06 27.00 26.97 26.90

25 20.17 25.76 25.68 25.64 25.60

30 18.59 24.68 24.66 24.64 24.61

50 14.15 22.06 22.02 21.98 21.98

Bird 256× 256

σ Input PSNR [db] cxdb3 cxdb5 cxdb7 cxdb9

5 34.15 38.89 38.92 39.02 38.69

10 28.13 35.22 35.20 35.26 35.13

15 24.61 33.13 33.12 33.16 33.04

20 22.11 31.77 31.77 31.75 31.59

25 20.17 30.66 30.69 30.62 30.50

30 18.59 29.83 29.91 29.76 29.59

50 14.15 27.41 27.64 27.39 27.32

Table 4. Comparison of several complex versions of Daubechies orthogonal wavelet bases, coming from Matlab’s wavelet
toolbox, for various images and noise levels. Non-redundant orthogonal wavelet transform. Number of iterations: 4.



Fractional (α, τ)-B-splines

Peppers 256× 256

σ Input PSNR [db] Best real B-s. A priori best real B-s. Best complex B-s.

5 34.15 36.68 36.67 36.90

10 28.13 32.62 32.61 32.85

15 24.61 30.45 30.43 30.68

20 22.11 29.01 28.99 29.21

25 20.17 27.96 27.94 28.15

30 18.59 27.13 27.11 27.33

50 14.15 24.95 24.93 25.12

House 256× 256

σ Input PSNR [db] Best real B-s. A priori best real B-s. Best complex B-s.

5 34.15 37.35 37.34 37.65

10 28.13 33.44 33.42 33.79

15 24.61 31.44 31.43 31.71

20 22.11 30.14 30.12 30.36

25 20.17 29.16 29.14 29.37

30 18.59 28.37 28.35 28.59

50 14.15 26.21 26.19 26.43

MIT 256× 256

σ Input PSNR [db] Best real B-s. A priori best real B-s. Best complex B-s.

5 34.15 36.12 36.12 36.39

10 28.13 31.37 31.37 31.66

15 24.61 28.80 28.79 29.10

20 22.11 27.08 27.07 27.37

25 20.17 25.81 25.79 26.08

30 18.59 24.82 24.81 25.05

50 14.15 22.27 22.26 22.46

Bird 256× 256

σ Input PSNR [db] Best real B-s. A priori best real B-s. Best complex B-s.

5 34.15 38.98 38.98 39.26

10 28.13 35.42 35.41 35.61

15 24.61 33.41 33.41 33.59

20 22.11 32.01 32.00 32.21

25 20.17 30.95 30.95 31.17

30 18.59 30.08 30.08 30.34

50 14.15 27.72 27.71 28.02

Table 5. Comparison between the best classical orthogonal fractional B-splines, with a posteriori and a priori optimization
of its paremeters, and the best complex-valued orthogonal fractional B-splines for various images and noise levels. Non-
redundant orthogonal wavelet transform. Iterations: 4.



Figure 4. Relative PSNR between the complex-valued orthogonal (α, τ)-B-splines and the best values of other common
wavelet bases. The two thickest plain lines are the complex bases: complex-valued orthogonal (α, τ)-B-splines (black) and
complex versions of Daubechies (gray). The other lines are the real bases: real-valued orthogonal (α, τ)-B-splines (thin
plain black line); coiflets (small-dash gray line); symlets (dash gray line); classical Daubechies (large-dash gray line).


