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ABSTRACT

We present a zero-order and twin image elimination algorithm for digital Fresnel holograms that were acquired in an
off-axis geometry. These interference terms arise when thedigital hologram is reconstructed and corrupt the result. Our
algorithm is based on the Fresnelet transform, a wavelet-like transform that uses basis functions tailor-made for digital
holography. We show that in the Fresnelet domain, the coefficients associated to the interference terms are separated both
spatially and with respect to the frequency bands. We propose a method to suppress them by selectively thresholding the
Fresnelet coefficients. Unlike other methods that operate in the Fourier domain and affect the whole spacial domain, our
method operates locally in both space and frequency, allowing for a more targeted processing.
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When an object is illuminated with a coherent light source, the transmitted or reflected wave carries information on the
sample’s properties. In the close vicinity of the object, the light intensity is related to its reflectance or attenuation while the
phase is related to its thickness. Light sensors, such as CCDs, measure the intensity of the incoming light but are unable
to capture its phase. This crucial information is thereforelost. From a mathematical point of view, the measurement of
the wave is equivalent to evaluating the squared modulus of the complex scalar field in the acquisition plane, an operation
which clearly discards the phase.

Holography overcomes this limitation and makes it possibleto record thewholeinformation of the wavefront (ampli-
tude and phase) for later restitution. The hologram measures the intensity of the object wave’s interference with a reference
wave. In the so-called off-axis geometry, the reference wave and object wave travel in slightly different directions giving
rise to interference fringes. To reproduce the object wave,the chemically processed hologram is illuminated with a recon-
struction beam which is diffracted. Three diffraction orders may be distinguished: the+1 order which is an exact replica
of the object wave, the undiffracted zero-order, and the−1 order.

In digital holography,1–3 the photographic plate is replaced by a CCD camera. The hologram is stored in the computer
as a digital image and the reconstruction process is carriedout by simulating the physical diffraction phenomenon. Since
wave propagation can be modeled with good accuracy in the Fresnel régime by the Fresnel transform, it can be easily
implemented. Digital holography’s advantages are that it is fast (digital holograms may be acquired at video rate) and
that it does not involve any chemical processing of the holographic plate or tedious alignment of the reconstruction beam.
But most important, quantitative measurements may be performed since the object wave’s amplitude and phase are recon-
structed digitally. However, since digital recording media have a lower resolution than those used in classical holography,
the fringes spacing must be larger in order to be resolved. This means that the reference beam’s angle cannot be as high.
As a consequence, the three diffracted waves do, at least partially, overlap during reconstruction.

So far, only algorithms have been proposed that either filterthe relevant information in the Frequency domain,4–6

or, that take advantage of the spatial separation of the different orders after propagation. However, neither approachis
completely satisfactory, since either the reconstructed wave’s bandwidth or its field of view are drastically limited.Here,
we derive a non-linear signal approximation algorithm thattakes advantage of the interference terms’ separation in both
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frequency and space. To this end, we make use of a recently proposed family of shift invariant, multiresolution basis
functions: Fresnelets.7

The paper is organized as follows: In Section 2, we review theFresnel transform and holography. In Section 3, we
briefly describe Fresnelets. In Section 4 we propose our new approximation algorithm which we finally illustrate and test
on simulation examples in Section 5.

2. FRESNEL TRANSFORM AND HOLOGRAPHY

2.1. Fresnel Transform

The Fresnel transform̃fτ of a function f ∈ L2(R) with parameterτ ∈ R+ is defined as the convolution product

f̃τ(x) = kτ ∗ f (x) with kτ(x) =

{
1
τ exp

(
iπ

(
x
τ
)2) τ > 0

eiπ/4δ(x) τ = 0.
(1)

In 2–D, the Fresnel transform̃fτ with parameterτ ∈ R+ of a function f ∈ L2(R
2) is defined as

f̃τ(x,y) = f ∗Kτ(x,y) with Kτ(x,y) = kτ(x)kτ(y) (2)

Up to a complex multiplicative constant, this definition is equivalent to the free-space propagation formula in the Fresnel
approximation, which relates the complex values of a propagating wave, measured in two planes perpendicular to the
direction of propagation and separated by a distanced. Specifically, we have

Ud(x,y) =
eikd

iλd

∫∫

U(ξ,η)exp

(
iπ
λd

(
(ξ−x)2 +(η−y)2)

)

dξdη (3)

= −ieikdŨτ(x,y), τ =
√

λd (4)

whereλ is the wavelength of the light ank = 2π/λ its wavenumber.

Three fundamental properties of the Fresnel transform are of particular interest to us, since they give a direct insight
on how well the diffraction terms are separated in either space or frequency. First, a modulated signal undergoes a shift
after the transform. Letf ∈ L2(R) andg(x) = exp(2iπν0x) f (x+ν0τ2/2) be a modulated version of the function. Then its
Fresnel transform with parameterτ, is

g̃τ(x) = exp(−iπν2
0τ2)exp(2iπν0x) f̃τ

(

x− ν0τ2

2

)

. (5)

Second, the Fresnel transform is a unitary convolution operator and, as such, the spectrum of the transformed signal remains
unchanged. This property may be recognized immediately from the Fresnel operator’s frequency response

k̂τ(ν) = eiπ/4exp(−iπ(τν)2) (6)

where
∣
∣k̂τ(ν)

∣
∣ = 1 implies the spectrum invariance

∣
∣ f̂ (ν)

∣
∣2 =

∣
∣ ˆ̃fτ(ν)

∣
∣2 ∀τ ∈ R+. (7)

Last, localized features spread out during the propagationprocess and obey a Heisenberg-like uncertainty principle.7 The
latter gives a lower bound to the product of a function’s variance and that of its transform

σ2
f σ2

f̃τ
≥ τ4

16π2 . (8)

For real functions there is also a lower bound onσ f̃τ ≥ τ2/2π, that is independent off .
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Figure 1. Information repartition in the diffracted wave. Each depth has an associated shift invariant, multiresolution Fresnelet basis.
For the in-focus distance, the associated wavelet basis is a standard wavelet basis.

2.2. Holography

Information in the hologram plane The hologram measured by the CCD camera,I(x) ∈ R+ results from the interfer-
ence, at every locationx = (x,y), of the object waveΨ(x) ∈ C with a plane reference waveR(x) = A(x)exp

(
i(kxx+kyy)

)

(wherek = (kx,ky,kz) is the wave vector)
I(x) = |Ψ(x)+R(x)|2. (9)

This equation may be expanded to identify the three interference terms

I(x) = |R(x)|2 + |Ψ(x)|2
︸ ︷︷ ︸

zero-order

+R∗(x)Ψ(x)
︸ ︷︷ ︸

+1 order

+R(x)Ψ∗(x)
︸ ︷︷ ︸

−1 order

. (10)

In the hologram plane, they do completely overlap.

Plane wave diffraction by a hologram To reconstruct the object wavefront, we apply a Fresnel transform to the holo-
gram (which is equivalent to physically illuminating the hologram with a plane wave that travels perpendicularly to the
hologram). As the propagation distance grows, the unmodulated zero-order stays located in the central part of the image,
while the±1 orders move away from the center according to property (5) (see Fig. 1). The higher the modulation frequency
(or equivalently, the angle between the reference and the object wave), the larger the separation. Because the acquisition
device’s sampling step remains large, the modulation frequency is limited, as well as the angle between the object and
the reference wave. Therefore, the spatial separation between the different orders is limited and they do, at least partially,
overlap.

Moreover, the uncertainty relation on the Fresnel transform implies a broadening of the zero and−1 orders as the
distance increases (see Fig. 2). In contrast, the+1 order’s support first shrinks until the original image-hologram distance
is reached and starts broadening again for larger distances.
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Figure 2. Support broadening of the wave diffracted by an off-axis Fresnel hologram.

Frequency content The three terms have their energy clearly separated in the frequency domain and located around
their respective modulation frequency. This property was early recognized to be of use in digital holography, since several
algorithms that keep only the relevant frequency information (+1 order) and discard the rest via a bandpass filtering
procedure have been proposed. Their implementation can be carried out in either the spatial4, 6 or frequency domain.5 All
these filtering procedures are linear. However, since they limit the spectral content of the image to reconstruct, details are
lost. Moreover, since such filtering procedures are non-local, the whole field of view is affected.

Interestingly, property (7) implies that the spectrum of the diffracted wave at any distance from the hologram remains
unchanged (see Fig. 1). This means, that the filtering may be equivalently performed at any distance.

3. FRESNELETS

Fresnelet bases are wavelet bases that have undergone a Fresnel transform. We focus on Fresnelets associated with B-
spline wavelets, since their expression may be derived in both frequency and space.7 They have many desirable properties
required for the digital processing of holograms: for example, they tend to be optimal with respect to the spatial energy
spreading as they can be shown to converge to Gabor functions.7 The construction is based on the definition of the Fresnel
spline, or F-spline of degreen∈ N and parameterτ ∈ R+, denoted̃βn

τ(x), that is the Fresnel transform with parameterτ of
a B-splineβn(x) of degreen

β̃n
τ(x) = (βn∗kτ)(x).

The generating functions are then constructed as linear combinations of F-splines

ψ̃n
τ/2

(x
2

)

=
∑

k

g(k)β̃n
τ(x−k)

and are entirely specified from the sequenceg(k). They correspond to the general family of semi-orthogonal spline wavelets
of the form

ψn
(x

2

)

=
∑

k

g(k)βn(x−k). (11)

The transformed basis functions are shift-invariant on a level-by-level basis but their multiresolution properties are gov-
erned by the special form that the dilation operator takes inthe Fresnel domain. In our case, given that the wavelength is
fixed, the parameterτ =

√
λd only depends on the depthd of the propagation. For each depth there is an associated basis.

From now on, we only consider orthonormal Fresnelet bases ofL2(R
2), denoted

{
ψ̃n

τ, j,k
}

j∈Z,k∈Z2 , ψ̃n
τ, j,k(x) =

1√
2 j

ψ̃n
τ/2 j

( x
2 j −k

)

. (12)
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Figure 3. Schematical representation of the hierarchical thresholding algorithm.

For a given setup, a single set of coefficients may be used to generate the diffracted wave at any depth, simply by replacing
the basis functions in the expansion

f̃τ(x) =
∑

j∈Z

∑

k∈Z2

c j,kψ̃n
τ, j,k(x) (13)

with those associated to a different depth. In our case, the diffracting wave in the hologram plane is given byI(x), the
coefficients are obtained by computing the inner products

c j,k = 〈I , ψ̃n
τ, j,k〉. (14)

4. ALGORITHM

We now propose an algorithm that selectively suppresses theFresnelet coefficients in order to keep only coefficient whose
energy is mainly related to the+1 order. It is a fully automatic two-step process. First, we suppress the zero-order and
second, the−1 order.

Zero-order suppression The first step consists in the computation of the hologram’s Fresnelets coefficients (14), where
the parameterτ =

√
λd must be adjusted properly. This not only yields a decomposition of the information in several

frequency bands, but also in terms of their spatial distribution within the frequency bands. The energy that is associated
to the (unmodulated) zero-order is mainly concentrated at low frequencies. The algorithm proceeds from coarse to fine: a
threshold valuet j is associated to every frequency bandj. The parent coefficient ofwk is denotedwpk (Fig. 3). The new
coefficientsw′

k are computed at the coarsest scalej = J as

w′
k =

{

wk if |wk| < tJ
0 if |wk| ≥ tJ

(15)

and for the finer scalesj < J

w′
k =

{

wk if |wk| < t j

0 if |wk| ≥ t j and|wpk| ≥ t j+1.
(16)

Unlike denoising algorithms that set low energy coefficients to zero, our method eliminates high energy coefficients. The
test on the parent coefficient ensures that high frequency coefficients are only removed in regions that are corrupted by the
zero-order. The signal is reconstructed with Fresnelets ofparameterτ = 0 which yield a reconstruction with the real image
(+1 order) at proper focus and the zero-order suppressed.
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Figure 4. (a) Amplitude of test target. (256×256 pixels,T = 10µm, d = 0.25m,λ = 632.8nm) (b) simulated hologram

Minus 1 order suppression Since in the Fresnelet domain, information located around aparticular frequency cannot
be distinguished from that lying around the opposite sign frequency, and since the+1 and−1 order are indeed located
at opposite frequencies, a second step is required to suppress the−1 order. We start by a pointwise multiplication of the
wave obtained in the first step, with a digital wave of the formR∗(x) = exp

(
−i(kxx+kyy)

)
, the complex conjugate of the

reference wave. This modulation shifts the frequencies such that the−1 order is located around the frequency origin. We
then apply a Fresnelet transform with parameterτ = 0 before going through the same thresholding scheme as in thefirst
step, but with new thresholding values. After inverse transforming the coefficients and (de)modulating the result using a
digital wave of the formR′(x) = exp

(
2i(kxx+kyy)

)
, we obtain a reconstruction that is free of interference terms.

5. RESULTS

A hologram was obtained by simulating the propagation of thewave reflected by a test target by a procedure described
elsewhere.7 We have chosen the following values for the various parameters: T = 10µm (camera’s sampling step),
d = 0.25m (object-camera distance),λ = 632.8nm (light wavelength). The angle between the reference wavevector and
the normal to the CCD plane was set to 0.45◦. The reference wave’s intensity profile is Gaussian. The test target and the
simulated hologram are shown in Fig. 4.

In Fig. 5(a), we show the wave diffracted by the hologram in the image plane without any interference term suppression
scheme applied. The field of view is limited because of the zero-order overlap. A filtering scheme that keeps only a circular
frequency band around the+1 order term was used to obtain Fig. 5(b). Finally, in Fig. 5(c), we show the reconstruction
with the proposed algorithm. High frequency features are well preserved in regions where the zero-order does not overlap,
such as the bars in the upper right. By contrast, the same barsare completely blurred in the bandpass filtering approach. The
two approaches behave similarly in regions were the zero-order overlaps. The wavelet-based approach thus only removes
high frequency information in regions already corrupted bythe zero-order but keeps it intact in other regions.

6. CONCLUSION

We have proposed a zero and−1 order term suppression algorithm for digital hologram reconstruction. It takes advantage
of the information distribution of the different diffraction terms in both frequency and space. This is made possible by
the use of the Fresnelet transform which has the ability to separate the information in the hologram accordingly. Unlike
algorithms that are based on a bandpass filtering of the hologram, high frequency features that would normally get lost
over the whole field of view are only suppressed where necessary.
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Figure 5. Reconstructed amplitude: (a) without filter, (b) with frequency filter, (c)with wavelet threshold. (d), (e), (f) detail images.
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