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ABSTRACT

We present a numerical two-step reconstruction procedure for digital off-axis Fresnel holograms. First, we retrieve the
amplitude and phase of the object wave in the CCD plane. For each point we solve a weighted linear set of equations in
the least-squares sense. The algorithm hasO(N) complexity and gives great flexibility. Second, we numerically propagate
the obtained wave to achieve proper focus. We apply the method to microscopy and demonstrate its suitability for the real
time imaging of biological samples.
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1. INTRODUCTION

Digital holography was first proposed, some twenty years after Gabor’s invention of holography,1 by Goodmanet al.2 and
Kronrodet al.3 Since then, it has constantly evolved, allowing the acquisitions to be done using a CCD camera4 and the
phase to be reconstructed in addition to the sole amplitude.5 A promising perspective is its application to microscopy,
which allows for truly non-invasive examinations of biological samples. Indeed, the technique has the ability to detect
sub-wavelength changes in the morphology of living organisms.6

Most digital holography processing methods that have been proposed so far mimic the physical reconstruction process
by which the hologram plate is illuminated with the same source used to record it, such that the diffracted wave yields
an image (resp. virtual image). The implementation basically consists in simulating this process on digitally acquired
holograms. This is usually achieved by computing the Fresnel transform of the hologram which may have been multiplied
by the appropriate digital counterpart of a reference wave beforehand. The main drawback of this approach is that the
reconstructed image is corrupted by interference terms, the zero-order and twin-image. This is usually dealt with by
applying a suitable filter to remove them.

Here, we propose a two step algorithm for reconstructing digital holograms. First, we retrieve the amplitude and phase
of the object wave in the CCD plane by solving a weighted linear set of equations in the least-squares sense. Second, we
numerically propagate the obtained wave to achieve proper focus. The advantage is that the zero-order and twin-image are
(intrinsically) removed during the phase retrieval step.

The paper is organized as follows: in Section 2, we develop the phase retrieval algorithm. In Section 3, we describe the
experimental methods. Finally, in Section 4, we present theexperimental results carried out on biological samples.

2. PHASE RETRIEVAL ALGORITHM

The hologram, measured by the CCD camera,I(x) ∈ R+ results from the interference, at every locationx = (x,y), of the
object waveΨ(x) ∈ C with a reference waveR(x) = A(x)exp(iθ(x)) whereA(x) ∈ R+,θ(x) ∈ R

I(x) = |Ψ(x)+R(x)|2. (1)

The task is to recoverΨ(x), which is complex, from measurements ofI(x) that are real. The difficulty is that at each
measurement locationx, we only have one equation but two unknowns (the real and imaginary part ofΨ(x)), assuming
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Figure 1. Schematic hologram with the weighting function overlaid at positionx. The latter has a Gaussian shaped aspect: a lower
weight is given to points that are far away from the point of interest. The dots denote the pixels’ centers.

that the reference waveR(x) is known. Furthermore, although the reference’s phaseθ(x) can be modeled with good
accuracy (we assume it is known), this is not the case for its amplitudeA(x). Therefore, we do not try to model the latter,
which becomes an additional unknown.

The central point in our algorithm is that we consider that the unknown quantitiesΨ(x) andA(x) vary slowly with the
spatial variablex. Conversely, we assume thatI(x) andθ(x) vary more rapidly. With these hypotheses, we can determine
the phase and amplitude ofΨ(x) together withA(x) by solving, at each locationx, the set ofM non-linear equations

I(x+xm) =
∣

∣Ψ(x)+A(x)exp
(

iθ(x+xm)
)∣

∣

2
(2)

where thex + xm (m = 1, . . . ,M) are the locations of theM pixels within the considered neighborhood ofx (see Fig.1,
whereM = 9). By using a more concise notation we rewrite this relationas

Im = |Ψ+Aexp(iθm)|2 = |Ψ|2 +A2 +2ℜ(R∗
mΨ). (3)

We aim at finding a solution in the least-squares sense, viz.

arg min
A∈R

∗
+,Ψ∈C

∑

m

wm
∣

∣Im −
(

|Ψ|2 +A2 +2ℜ(R∗
mΨ)

)∣

∣

2
. (4)

The weightswm ensure that points that are far away from the pixel of interest account for less than those that are in its close
vicinity. We have set the weights according to a Gaussian shaped weighting function centered over the pixel of interest
(Fig.1). In order to carry out the computations, we convert equation (4) to a linear problem, by performing the change of
variablesΦ = AΨ, U = A2 + |Φ|2/A2, (Φ ∈ C andU ∈ R),Vm = exp(iθm)

argmin
U,Φ

∑

m

wm |Im −U −2ℜ(VmΦ)|2 . (5)

Consequently,U andΦ, must be the solutions of the set of normal equations
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obtained by differentiating the expression in (5) with respect toU , Φ andΦ∗. If we normalize thewm such that
∑

m wm = 1
and rearrange the terms, we get
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If we let α =
∑

m wmVm andβ =
∑
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m, we finally end up with the linear system of equations
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that is to be solved for each pixel. The only remaining point is to model the reference wave’s phaseθ(x), which can be
done with good accuracy if the reference wave is plane or has aquadratic phase. Finally, we restore the original variables
Ψ andA by the non-linear operations

A =

(

U +
√

U2−4|Φ|2

2

)1/2

(9)

Ψ =
Φ
A

. (10)

Since the algorithm is local, it has a complexityO(N), whereN is the number of pixels in the image.

3. METHODS

The holograms are acquired using a digital holographic microscopy setup for transmission imaging of transparent samples,
as described elsewhere.6 The specimen is illuminated by a plane wave and the transmitted light is collected by a microscope
objective. The latter produces a wavefront—the object wave—whose interference with a reference wave is recorded on a
CCD camera in an off-axis geometry. The complex object waveΨCCD(x) in the CCD plane can be modeled by

ΨCCD(x) = Ψ(x)exp
(

i‖x‖2/D
)

, D ∈ R
∗ (11)

whereΨ(x) is a magnified version of the object wave in the vicinity of thesample; the quadratic phase term is a conse-
quence of the wave’s travel through the microscope objective. Thus the measured interference with a plane wave (whose
wave vector isk = (kx,ky,kz)) in the CCD plane is

I(x) =
∣

∣A(x)exp(i(kxx+ kyy))+Ψ(x)exp
(

i‖x‖2/D
)∣

∣

2
. (12)

The latter equation may be written equivalently as

I(x) =
∣

∣A(x)exp
(

i
(

1/D′‖x−xo‖
2 +C

))

+Ψ(x)
∣

∣

2
(13)

wherexo = (xo,yo) ∈ R
2, C ∈ R, D′ ∈ R

∗, and interpreted as the interference of the complex waveΨ with a non-planar
wave. It is thus sufficient to adjust the parametersD′, xo andyo appropriately to specify our modelθ(x). In the forthcoming
experiment, this calibration step was done manually.

When the CCD is not in the image plane, but at a distanced, the complex wave that we reconstruct from the hologram
is out of focus. The defocus must then be corrected by numerically propagating the reconstructed wavefront to the proper
distance and achieve a sharp image, for example using the numerical Fresnelet transform.7

4. RESULTS

We have applied the above proposed technique to the reconstruction of images acquired in the framework of a functional
morphology experiment on living cells. The system was used to track changes in their morphology in response to a variation
of the perfusion liquid’s concentration. This time phenomenon can be observed at video rate since off-axis holography only
requires one data acquisition frame per reconstructed image.

The hologram is shown in Fig.2(a). The reconstruction from the same data set using an alternative technique6 (but
without applying any zero-order or twin-image removal scheme) is displayed in Fig. 2(b). In this approach, the quadratic-
phase exponential induced by the objective is compensated numerically by multiplying the diffracted wave by a numerical
phase mask. The zero-order is the square portion that masks the center of the image. The image itself is on the upper right
while the twin-image is located in the lower left. Only the image is in focus.
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Figure 2. (a) Measured hologram, (b) Reconstructed phase using a method as described in Cuche et al.,6 (c) Reconstructed phase in the
CCD plane, (d) Reconstructed phase, with adjusted focus. All images are 512×512 pixels.

In Fig. 2(c), we show the phase in the CCD plane (i.e. argΨ) that was recovered from our phase retrieval algorithm.
The bodies of the cells are already recognizable (white blobs) but the image is blurred since the CCD camera is not in the
image plane. The recovered wave front is then propagated numerically to the image plane at the proper distance (adjusted
to d = 10.1 cm, forλ = 632.8 nm); the final reconstructed image is shown in Fig. 2(d).

Remarkably, the reconstructions using the new approach arenot perturbed by the zero-order terms which results in a
larger field of view.



5. CONCLUSION

We have presented a digital hologram reconstruction method. The applicability of the technique to real world images from
biology was also demonstrated. The phase and amplitude of the object wave are first reconstructed in the CCD plane.
The object wave is then numerically propagated to be in proper focus. This approach has many advantages. It offers
more flexibility since the various problems (phase retrieval, wave propagation) are decoupled. This makes the technique
applicable over a wider range of experimental conditions. Also, because the method is local—compared to methods that
operate in the Fourier domain—it will be less sensitive to local defects in the measurements and will not deteriorate the
quality over the whole reconstruction area. Furthermore, since the reconstructions do not contain the zero-order and twin-
image terms that usually limit the field of view, there is no waste of data. We therefore take full advantage of the off-axis
geometry which requires one single acquisition per phase reconstruction, enabling measurements at video rate. This makes
this technique very relevant for applications in biology.
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