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ABSTRACT

We present a new method for reconstructing digitally recor-
ded off-axis Fresnel holograms. Currently-used reconstruc-
tion methods are based on the simulation and propagation
of a reference wave that is diffracted by the hologram. This
procedure introduces a twin-image and a zero-order term
which are inherent to the diffraction phenomenon. These
terms perturb the reconstruction and limit the field of view.
Our new approach splits the reconstruction process into two
parts. First, we recover the amplitude and the phase in the
camera plane from the measured hologram intensity. Our
algorithm is based on the hypothesis of a slowly varying
object wave which interferes with a more rapidly varying
reference wave. In a second step, we propagate this com-
plex wave to refocus it using the Fresnel transform. We
therefore avoid the presence of the twin-image and zero-
order interference terms. This new approach is flexible and
can be adapted easily to complicated experimental setups.
We demonstrate its feasibility in the case of digital holo-
graphic microscopy and present results for the imaging of
living neurons.

1. INTRODUCTION

Digital holography [1, 2] is an imaging method in which
a hologram [3] is recorded with a CCD-camera and recon-
structed numerically. Digital holography has been applied
successfully to microscopy and is particularly suited for the
imaging of living biological samples as it is truly non-in-
vasive. The reconstructed phase provides direct informa-
tion on the morphology of the cells; i.e. the height of the
specimen. Most remarkable is the ability of the technique
to detect sub-wavelength changes in the morphology of the
studied samples [4].

The hologram results from the interference between the
complex wave reflected or transmitted by the object to be
imaged and a complex reference plane wave. The object’s
three-dimensional information is thus encoded in one sin-
gle, two-dimensional, real-valued image. This allows for a
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high acquisition rate and makes the technique highly suit-
able for tracking biological processes.

The most widely used reconstruction technique consists
in simulating the propagation of a reference wave that is
diffracted by the hologram, imitating the physical phenome-
non. The main pitfall of this approach — and most common
source of criticism made to digital off-axis holography —
is that the reconstructed image is corrupted by interference
terms, the zero-order and twin-image, which substantially
restrict the visual field. While several techniques have been
proposed to remove these terms [5, 6], they still remain a de-
termining factor that limits the quality of the reconstructed
image.

Here, we propose a new holographic reconstruction me-
thod that essentially solves this problem. In a first step, we
apply a new algorithm that retrieves the complex wave in the
CCD plane from the real-valued measures. Once we have
recovered this information, we (back)propagate the wave
(which does neither contain the zero-order nor the twin-
image term) to restore a focused image using the Fresnel
transform.

2. DIGITAL HOLOGRAPHIC MICROSCOPY

2.1. Experimental setup

The experimental setup for digital holographic microscopy
is similar to the one described in [4]; it is schematically de-
picted in Figure 1. The specimen is illuminated by a plane
wave and the transmitted light is collected by a microscope
objective that produces a wave front called object wave. The
CCD camera records the interference of this object wave
with a reference plane wave in an off-axis geometry. This
latter terminology refers to the fact that the reference wave
impinges on the camera with a slight angle. The CCD is
at a distance d from the image plane. This implies that
the complex wave that we are attempting to recover in the
camera plane is out of focus and will require a propagation
step to yield the desired image of the specimen. This will
be accomplished by using a numerical version of the Fres-
nel transform [7], which approximates the diffraction inte-
gral [8].
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Fig. 1. Schematic of the holographic microscope. An ob-
ject is illuminated by a plane wave. The microscope ob-
jective has a focal length f . The CCD is at a distance d
from the object’s image. The off-axis reference wave inter-
feres with the object wave and produces the hologram in the
CCD plane.

Furthermore, the presence of the microscope objective
implies that the object wave in the CCD plane Ψ(�x) is mul-
tiplied by a quadratic-phase exponential [8, 4]:

Ψ(�x) exp
(
i
1
D
‖�x‖2

)
(1)

where D is a function of d, di and the focal length f .

2.2. Interference

The intensity (or hologram) measured by the CCD camera,
I(�x) ∈ R+ is the result of the interference between the ob-
ject wave and a reference (usually plane) wave Rp:

I(�x) =
∣∣Ψ(�x) exp

(
i
1
D
‖�x‖2

)
+ Rp(�x)

∣∣2. (2)

We rewrite this expression to get:

I(�x) = |Ψ(�x) + R(�x)|2 (3)

where we consider the more general expression for the ref-
erence wave R(�x) = A(�x) exp(iθ(�x)) (A(�x) ∈ R+, θ(�x) ∈
R). Note that the measure I(�x) is real while the wave to re-
cover Ψ(�x) is complex. In other words, at each measured
location �x, we have only one equation for two unknowns
(the real and imaginary part of Ψ(�x)), assuming that the
reference wave R(�x) is known.

3. PHASE RETRIEVAL

The key idea of our algorithm is that we consider I(�x) and
θ(�x) to be the only quantities that vary rapidly in space.
Also, as θ(�x) can easily be modeled, we consider it to be

known. Conversely, we assume that the unknown quanti-
ties Ψ(�x) and A(�x) vary slowly (or a least less rapidly than
the reference wave) so that we can regard them as constant
within the neighborhood of a given point of interest �x. With
this hypothesis, we can determine the phase and amplitude
of Ψ(�x) together with A(�x) by solving the following set of
M non-linear equations for each location �x:

I(�x + �xm) =
∣∣Ψ(�x) + A(�x) exp

(
iθ(�x + �xm)

)∣∣2 (4)

where the �x + �xm (m = 1, . . . ,M ) are the locations of the
M pixels within the considered neighborhood of �x. Simpli-
fying the notation, we have:

Im = |Ψ + A exp(iθm)|2
= |Ψ|2 + A2 + 2�(R∗

mΨ). (5)

Next, we introduce the auxiliary variables φ = Ψ
A , U =

A2 + 1
A2 |φ|2, Vm = exp(iθm) and we solve (5) in the least-

squares sense, which is equivalent to determine:

arg min
U,φ

∑
m

|Im − U − 2�(Vmφ)|2. (6)

Consequently, U and φ, must be the solutions to the follow-
ing set of normal equations:



∑
m Im − U − 2�(Vmφ) = 0∑
m Vm(Im − U − 2�(Vmφ)) = 0∑
m V ∗

m(Im − U − 2�(Vmφ)) = 0
(7)

obtained by differentiating the expression in (6) with respect
to U and φ. Rearranging the terms, we get:


1
M

∑
m Im = U + 2�(φ 1

M

∑
m Vm)

1
M

∑
m VmIm = U 1

M

∑
m Vm + ( 1

M

∑
m V 2

m)φ + φ∗
1
M

∑
m V ∗

mIm = U 1
M

∑
m V ∗

m + φ + ( 1
M

∑
m V ∗2

m )φ∗.
(8)

Finally, by setting v = 1
M

∑
m Vm and w = 1

M

∑
m V 2

m,
we end up with a linear set of equations to solve:




1 v v∗

v w 1
v∗ 1 w∗
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φ
φ∗


 =




1
M

∑
m Im

1
M

∑
m VmIm

1
M

∑
m V ∗

mIm


 .

(9)
The only remaining point is to model the reference wave’s
phase θ(�x) accurately. To do so, we used a parametric model
with four parameter, Dx, Dy , kx, ky:

θ(�x) =
1

Dx
x2 +

1
Dy

y2 + kxx + kyy. (10)

The parameters Dx and Dy depend on the quadratic phase
introduced by the lens while kx and ky depend on the ref-
erence wave’s incidence angle. In general, these quantities
cannot be obtained experimentally with the required level
of accuracy. However, in the case of a transmission setup
for holographic microscopy, the phase distribution over a
flat background area can be assumed to be constant and the
reconstruction parameters adjusted accordingly.
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4. RESULTS AND DISCUSSION

We have applied this reconstruction technique to the imag-
ing of living neurons in the context of a functional morphol-
ogy experiment. The neurons were grown in a perfusion
chamber (cf. Figure 2). We use our system to track the

Fig. 2. Schematic of the holographic microscope for the
imaging of living neurons

change of the cell morphology in response to a variation of
the perfusion liquid’s concentration. This time phenomenon
can be observed at video rate since our system only requires
one data acquisition per reconstructed image. One frame of
the intensity measured on the CCD camera is shown in Fig-
ure 3. The circular fringes are the result of the interference
of the quadratic-phase exponential induced by the objective
lens and the reference plane wave. It corresponds to the ex-
pression of I(�x) in equation (3) with the reference wave’s
phase θ(�x) given by (10).

The reconstruction using the standard technique descri-
bed in [4] is shown in Figure 4. In this approach, the qua-
dratic-phase exponential induced by the objective is com-
pensated numerically by multiplying the diffracted wave by
a function of the form (10). The zero-order is the square
portion that masks the center of the image. The image itself
is on the upper right while the twin-image is located in the
lower left. Only the image is in focus.

In Figure 5, we show the phase in the CCD plane (i.e.
arg Ψ, following the notation of the previous sections) that
was recovered with our new algorithm. The complex values
at each pixel were estimated using a sliding window of size
5 × 5, i.e. M = 25. The bodies of the neurons are already
recognizable (white blobs) but the image is blurred since
the CCD camera is not in the image plane. The recovered

Fig. 3. Measured hologram. 512 × 512 pixels, the sampling
step is 10µm.

Fig. 4. Reconstructed phase with the method described by
Cuche et al. [4] (512×512 pixels).

wave front in the CCD plane is then propagated to the image
plane at the proper distance d; the final reconstructed image
is shown in Figure 6. The reconstruction distance was set to
d = 10.1 cm. Remarkably, if we compare this reconstruc-
tion with the one in Figure 4, we see that it is clearer and
not perturbed by the zero-order. A second neuron that was
previously hidden is now visible in the field of view. Note
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Fig. 5. Phase in the CCD plane (512×512 pixels).

that the image is reconstructed at a finer resolution than in
the previous approach.

Fig. 6. Reconstructed phase (detail, 366×366 pixels).

5. CONCLUSION

We have demonstrated the feasibility of an alternative holo-
gram reconstruction technique which treats the phase re-
trieval problem and the propagation problem separately. The
results obtained so far are very promising. The new ap-
proach has several advantages. First, it yields reconstruc-
tions that are not affected by the zero-order and twin-image
interference terms. Second, it is more flexible because it
clearly decouples the various problems. Consequently, it

should remain applicable over a broader range of experi-
mental conditions while keeping the advantages of the off-
axis geometry which requires a single acquisition per im-
age. With the reconstruction method that we are propos-
ing, there is no waste of data and this should contribute to
making digital holographic microscopy an even more useful
modality. Unlike conventional microscopy, it can provide
quantitative phase informations with remarkable precision.
It can also operate at video rates which makes it very suit-
able for the study of dynamic biological phenomena.
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