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Single Antenna Power Measurements
Based Direction Finding
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Abstract—In this paper, the problem of estimating direction-of-
arrival (DOA) of multiple uncorrelated sources from single an-
tenna power measurements is addressed. Utilizing the fact that
the antenna pattern is bandlimited and can be modeled as a finite
sum of complex exponentials, we first show that the problem can
be transformed into a frequency estimation problem. Then, we ex-
plain how the annihilating filter method can be used to solve for the
DOA in the noiseless case. In the presence of noise, we propose to
use Cadzow denoising that is formulated as an iterative algorithm
derived from exploiting the matrix rank and linear structure prop-
erties. Furthermore, we have also derived the Cramér–Rao Bound
(CRB) and reviewed several alternative approaches that can be
used as a comparison to the proposed approach. From the simu-
lation and experimental results, we demonstrate that the proposed
approach significantly outperforms other approaches. It is also ev-
ident from the Monte Carlo analysis that the proposed approach
converges to the CRB.

Index Terms—Annihilating filter, denoising, direction-of-arrival,
single antenna direction finding.

I. INTRODUCTION

D IRECTION finding (DF) for multiple narrowband far-
field signal sources has been discussed intensively in the

literature. Early works exploit the directional radiation pattern
characteristics to estimate the direction-of-arrivals (DOAs) of
the signal sources by searching for the direction where the max-
imum signal level is obtained. Such techniques have a limited
capability of resolving closely-spaced sources. Later on, the
well-known multiple signal classification (MUSIC) algorithm is
proposed as high-resolution DF. Instead of using single direc-
tional antenna, it estimates the DOAs from a vector of received
signals at an antenna array [1], [2].

Although it is able to provide high-resolution DF, the
MUSIC algorithm requires a computationally demanding
spectral search procedure. To overcome this, search-free vari-
ants of the MUSIC algorithm are proposed. For examples,
Root-MUSIC [3], ESPRIT [4] and their extensions [5], [6].
Besides the spectral search requirement, it is also highly sensi-
tive to array model errors [7]–[9]. This drawback motivates the
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use of robust techniques in order to recover the high resolution
performance [10]–[13]. Other issues that are recently addressed
also include the extension to arbitrary array geometry [14] and
array calibration [15]–[17].

Despite the efforts on overcoming the drawbacks of the
MUSIC algorithm, practical implementation is still challenging
due to the multichannel receiver requirements [18]. This mo-
tivates the authors in [19]–[21] to consider DF methods using
single-channel receiver. The key idea is to utilize the switched
parasitic elements connected to an antenna array in order to
construct multiple steerable beam. The DOAs can then be
estimated from the steering direction that resulted in max-
imum signal level. Another recent single-channel DF approach
exploits the fact that the convolution between the antenna
radiation pattern and the DOA indicator function results in
the received signal at different rotating direction [22], [23].
As such, the DOA indicator function can be obtained through
deconvolution process from the spatial sounding measurement
vector.

In this paper, we propose a single-antenna power measure-
ments based DF technique that estimates the DOA from a vector
of power measurements. It exploits the diversity in the antenna
radiation pattern that is captured through the received power
calculated when the antenna is pointing at different directions.
From a vector of power measurements, the approach first uti-
lizes a linear transformation of the power vector into a vector
of spectral observations. The DOAs are then estimated as the
solution to the spectral analysis. Due to the similarity of the ap-
proach to the finite-rate-of-innovation (FRI) sampling [24], the
approach can be seen as performing spatial sampling of stream
of Diracs whose locations are the DOAs.

The proposed approach belongs to the high-resolution DF ap-
proaches due to its ability to resolve two signal sources that are
separated less than a beamwidth apart [25]. Besides the high
resolution capability, the approach does not require any spectral
search and is theoretically able to resolve as many sources as
half the number of power measurements. Since it is not based on
antenna array, the issues on array geometry and modeling error
are not under consideration. Hence, it is very attractive from the
practical implementation perspective.

II. SIGNAL MODEL AND PROBLEM STATEMENT

Notations

The following notations will be used in this paper:
• matrices (uppercase letters) and vectors (lowercase letters)

are denoted by bold font;
• the th element of a matrix is , and are

the th row vector and th column vector of a matrix ;
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• denotes the diagonal elements of matrix and
denotes the real component of matrix ; likewise,
for the imaginary component;

• the superscripts , , , denote the conjugate, transpose,
conjugate transpose, and pseudo-inverse operation respec-
tively;

• means the convolution of and .

A. Signal Model

We consider a single antenna receiving system with the capa-
bility to calculate the power from the received signal. Given that
the spatial response of the antenna is non-uniform, the received
signal can be modeled as a sum of all the transmitted signal at-
tenuated with direction-dependent factor. In mathematical form,
the received signal can be expressed as

where is the antenna attenuation for the signal im-
pinging from direction when the orientation of the antenna
is at , is the th impinging signal, is the receiver’s
noise and is the number of impinging signals. When the ori-
entation of the antenna is no longer fixed, the received signal
experiences different attenuations. Let denote the received
signal when the orientation is at

The received signal power averaged over a duration , in which
the sources of impinging signals are assumed to be sta-
tionary, can then be approximated as

(1)

where

This approximation is valid under the assumption that the im-
pinging signals are uncorrelated, hence the cross term is negli-
gible:

Hence, the problem considered here can be stated as follows:
given a vector of the received power mea-
sured when the sources of are in stationary condition, the
objective is to estimate the direction-of-arrival (DOA) of the im-
pinging signals, .

B. Antenna Pattern and Power Estimation Model

Let denote the spatial power response of the antenna
(also known as antenna pattern). We have observed that it can be

well approximated (see Section VII) as a finite sum of complex
exponentials1 according to

(2)

where is some finite integer. Notice that because is a
real-valued function, the model in (2) is valid if .
Also, the antenna pattern is a -periodic non-negative function

and , .
In calculating the power of the received signal, the following

power estimation formula is used

(3)

where is the number of snapshots and is the th
discrete sample of the received signal . Note that although
the power is estimated from the discrete sample of the received
signal, only the vector of average power measurements is
assumed to be known. Thus, the received signal is not available.
This constraint is required in order to realize a low-complexity
low-cost direction finder. However, the power estimation
formula is necessary for numerical analysis and in deriving
Cramér–Rao Bound of the estimation problem (as detailed in
Section IV).

III. PROPOSED APPROACH

A. Transformation Into Spectral Analysis Problem

Substitute (2) into the received power expression in (1)

and we can formulate a matrix equation in the linear form

using the following matrix and vectors definitions:
are real-valued vectors of size ,

is a complex-valued vectors of size
and is a matrix with its element

given by

The vector can be retrieved from the vector of received
power when using the least-square estimation
formula as follows:

(4)

where the superscript denotes pseudo-inverse operation.

1Such a decomposition of the antenna pattern has been extensively studied in
the literature, and its bandwidth has been shown to be limited by the calibration
noise; see, e.g., [26]–[30].
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In the case where the antenna is oriented in a regular and
uniform manner, that is

we will see that the retrieval of the angles is analogous to a
frequency estimation problem, typical of FRI settings [24], [31].
When , is actually a simple inverse DFT. Instead
of sampling in time, the system considered here is performing
spatial sampling using the power measurements taken from dif-
ferent spatial orientation. Also, the sampling kernel used here is
the antenna pattern. Hence, the problem can also be translated
into spatial sampling with finite rate of innovation where the
sampling interval is non-uniform.

B. Annihilating Filter

Recall that is a sum of exponentials

(5)

To obtain , it is possible to find a filter of length with
coefficients such that . This filter is termed as
annihilating filter.

The -transform of this filter is given by

where the polynomial roots contains the DOA information
because

To find the coefficients from , we solve

The solution can be obtained by computing the singular value
decomposition (SVD) of a Toeplitz matrix built using . Then,
the polynomial roots of is solved from the coefficients
and the DOAs can be calculated by

(6)

The DOA estimate will be ranging from to , that is,
180 180 . The negative values refer to the direc-

tions greater than 180 . Therefore, the estimate can be adjusted
by first adding and then taking the modulo- . The resulting
value will be ranging from 0 to 360 .

It is important to note that the above approach is capable of
resolving any pair of closely-spaced sources for the noiseless
case. In other words, there is no limitation in the DF resolution.
Nevertheless, the number of resolvable DOAs is limited by the
parameter . This is related to the bandwidth requirement for
the sampling kernel in the FRI sampling problem. The band-
width of the antenna pattern with the model in (2) is .
Thus, it is able to estimate DOAs accurately.

However, this is not the case in practice because the received
signal is noisy. The estimation will lose its accuracy due to the

noise. As explained next, this can be overcome with denoising
algorithm which requires the parameter to be greater than the
number of sources . The larger the parameter , the better the
estimation accuracy.

C. Cadzow Denoising

Because the received power is calculated from the noisy mea-
surements of the received signal, will be subjected to an esti-
mation error. Hence, as the noise power from the received signal
increases, the annihilating filter coefficients will not yield a
good estimate of the DOAs.

To overcome this, it is necessary to include a denoising algo-
rithm to denoise [31]. Cadzow in [32] proposes a composite
property mapping algorithm that exploits the signal attributes
and properties of matrix representation to perform denoising.
We first show that the Toeplitz matrix built from also pos-
sesses the similar attributes and properties as those exploited in
Cadzow denoising algorithm. Then, we discuss the implemen-
tation of the denoising algorithm.

Let denote the Toeplitz matrix of size
, constructed from the element of as follows:

. . .
. . .

...
...

. . .
. . .

...
...

(7)

The first property of the matrix is the matrix rank. Because
is modeled as sum of exponent terms given in (5), the rank
of the Toeplitz matrix constructed from according to (7) will
be equal to . Using this rank property, it is possible to denoise
the Toeplitz matrix by using rank reduction mapping. This
matrix mapping function can be written as follows:

(8)

where are largest eigenvalues and the unitary
vectors are the vectors associated to the eigen-
values. These vectors can be obtained through SVD. Alterna-
tively, this matrix mapping can be seen as reconstructing the
Toeplitz matrix from only eigen-components. It is worth men-
tioning that this mapping requires the number of sources to
be known. Otherwise, it can be estimated using the information
theoretic criterion methods, e.g., MDL or AIC [33].

The second property is the linear structure property. This
property can be shown by utilizing a matrix reordering function.
Let denote the matrix reordering function that reshapes a
matrix into a column vector. The reordering can be explained as
follows:

After the reordering, the resulting vector can be modeled as
overdetermined linear system of equations
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where is a selection matrix with elements 0s and 1s. Thus,
by utilizing the linear structure property, the denoising of
can be realized by taking a least squares estimate of and
followed by inverse reordering to reshape back into a matrix
representation. These operations form another matrix mapping
function

(9)

By combining both matrix mapping function in (8) and (9), an
iterative composite mapping algorithm for denoising of can
be constructed using the following composite mapping function

(10)

After a few iterations, the denoising algorithm will provide a
good approximation of a rank- Toeplitz matrix. This can be
seen from the value of the eigenvalues : as
iteration continues, these eigenvalues approaches zero. As will
be demonstrated via numerical experiments in Section VI, the
accuracy of the estimator improves as the iteration converges.

As stated in [32], the convergence of the Cadzow denoising
requires that the composite property mapping of in (10) be
a closed mapping. It has also been proven in [32] that the com-
posite mapping is a closed mapping. Hence, it can be concluded
that the Cadzow denoising algorithm converges.

D. Summary of Proposed Approach

In summary, the proposed approach for estimating given the
vector of power measurements can be listed as follows.

1) Estimate using (4).
2) Form a Toeplitz matrix from using (7). The column

size of the Toeplitz matrix can be arbitrarily set to a value
larger than but not greater than .

3) Denoising: Run (10) for 20 iterations.
4) Compute the annihilating filter coefficients from the

eigenvectors of the denoised . This requires SVD
or eigen-decomposition of .

5) Find the polynomial roots of the annihilating filter from
the coefficients .

6) The estimate of can be calculated from using (6).

IV. CRAMÉR–RAO BOUND

In this section, we will derive the Cramér–Rao bound (CRB)
of the estimator. Previous work reported by Porat and Fried-
lander [34] and subsequently adapted by Blu et al. [31] includes
the derivation of the CRB when the noise is additive. In the
problem presented in this paper, the noise appearing in the re-
ceived power is calculated from the finite sum of squares of the
received signal. Firstly, we will investigate the noise transfor-
mation from the power calculation to the estimation of .
By showing that the estimation error can be approximated as
Gaussian distribution, we will then deduce the CRB expression
for .

A. Noise Transformation Analysis

To assess the proposed estimation, it is important to know
the noise distribution. We start by assuming that the discrete

samples of the receiver’s noise are complex-valued white
Gaussian random variables with zero mean. That is,

(11)

where , , and denotes complex
normal distribution random variable.

Given that the received power can be estimated from the dis-
crete samples of the received signal using the expression in (3),
the noise at the received power is distributed according to (see
Appendix A for a detailed derivation)

(12)

Recall that from the estimates of the received power, the
proposed approach transforms the problem into a spectral anal-
ysis problem using the matrix multiplication in (4). Because the
matrix multiplication can be seen as a linear transformation of a
vector of random variable, we can therefore devise the distribu-
tion of the vector as expressed in (4) with constructed from

elements of . Since follows a multivariate normal distri-
bution, we know that its linear combination will also follow a
multivariate normal distribution. Therefore, we have

(13)

and we can obtain the distribution of

(14)

With the expression in (14), we can then proceed to derive the
Cramér–Rao bound as discussed next.

B. CRB Derivation

From the distribution of , we can rewrite the signal model
as

(15)

using the following matrix and vectors definition:
, and

Notice that the th element of has a biased term .
This term will not affect the estimator because it is not a function
of . The noise vector is a multivariate Gaussian distribution
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For brevity of notation, let . The likelihood
function of the vector is given by

The CRB can be derived following the derivation in [35]. In
fact, given the signal model in (15), our CRB can be seen as the
extension of the CRB derivation in [35] with the noise vector
being a multivariate normal distribution random vector:

(16)

where and the th element of
matrix is given by

Hence, one can refer to [35] for a detailed derivation of CRB.
In general, the same CRB expression will be obtained if the bias
term is not present at the signal model.

V. ALTERNATIVE APPROACHES

Besides transforming into a spectral analysis problem, it
is possible to approach the problem in an alternative way as
described in this section. Firstly, we define a vector whose
elements are composed of sufficiently fine grid of DOAs:

, where denotes the number of DOAs that
define the grid. Then, the -dimension vector of the received
power can be expressed in an alternative linear form given by

(17)

where is a sparse vector consisting of
elements of zeros and elements of and

With this reformulation, we can deduce a basic least
squares (LS) approach from minimizing the least squares error

The DOAs can be estimated from largest elements of the
sparse vector estimate, , obtained from solving the LS mini-
mization.

Since the non-zero elements of are the received power of in-
dividual transmission and they are strictly positive, it is possible
to impose a non-negative constraint into the LS minimization.
This optimization is still solvable and can be written as

(18)

The solution to this optimization is known as non-negative least
squares (NNLS) solution [36]. Similar to LS solution, the DOA
estimation is achieved by searching for largest elements of
the NNLS solution. However, unlike the LS solution, there is
no closed-form solution for the NNLS solution. The implemen-
tation of the NNLS solution requires an iterative algorithm.

Fig. 1. (a) An example of the realization of antenna pattern simulated according
to (2) with� � �. (b) The power level versus the direction plotted with the
actual DOA locations indicated by ‘—o’.

As compared to the proposed approach described in
Section III, the resolution of the DOA estimation based on
these approaches are limited by the resolution of the DOA grid
defined by . Besides least squares based approaches, the solu-
tion based on minimization of -norm can also be considered
from the same signal model in the form (17). Due to the high
measure of sparsity, the solution based on -norm minimization
may yield a better estimate [37]. Nonetheless, this approach
shares the same limitation as the least squares based approach.

VI. SIMULATION RESULTS

We consider a directional antenna with the antenna pattern
simulated using the expression with

and generated randomly ac-
cording to uniform distribution. Then, the is set such that the
antenna pattern is a nonnegative function. Fig. 1(a) shows an
example of the antenna pattern.

The propagation environment is simulated such that two un-
correlated sources emitting from 25.208 and 47.7191 . When
arrived at the receiving antenna, it is modeled as

with the parameters set as: , ,
and . It is important to note that although
the simulations presented in this paper consider narrowband
signal model, the proposed method does not require narrowband
assumption and is able to process wideband signals centered
at different frequencies. As many as samples of the
received signal are used to compute the received power and

values of the received power are collected from different
antenna orientation generated randomly within 0 and 359 .
Fig. 1(b) shows the actual DOAs as well as the continuous and
discrete power measurements that forms the vector for the
noiseless case. The DOAs are estimated from the discrete power
measurements of the noisy case. Looking at the continuous
power measurements plot, we can see that high resolution DF
technique is required to resolve the two closely-spaced sources.
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Fig. 2. DOA estimation result for � � ���, � � ��, and ��� �
�25.208 � 47.7191 �.

In our first simulation, we evaluate on five different DF
methods and show how they resolve the two closely-spaced
sources. They include the FRI method with and without the
Cadzow denoising algorithm, as well as the NNLS method with
and without the prior knowledge (on the number of sources

) and the deconvolution with modified CLEAN [23]. The
FRI method is implemented according to the procedure listed
in Section III-D with the Step 3) skipped for that without the
Cadzow denoising. The column size of the Toeplitz matrix is
set to so that it becomes a square matrix. For the imple-
mentation of the deconvolution method with modified CLEAN,
we use linear interpolation to obtain the continuous function of
the received power from the 76 power measurements and then
deconvolute it with the continuous antenna pattern before going
through the modified CLEAN algorithm as proposed in [23].
The NNLS method with prior knowledge of is implemented
by keeping only largest peaks.

Fig. 2 shows the stem-plot of the normalized amplitude
against the corresponding DOA estimation results when
signal-to-noise ratio (SNR) is set at 10 and 20 dB. The am-
plitudes shown are not the amplitudes retrieved: the apparent
differences are only meant to make easier the viewing of the
graphs. NNLS-2 refers to the NNLS method with prior knowl-
edge on the number of signals. The same simulation setting
is also used to generate Figs. 3, 12, 14, and 15. The SNR is
calculated as the total power of the impinging signal at the
antenna over the noise power2:

Note that both the NNLS and the deconvolution with modi-
fied CLEAN method belong to the peak search based method.
They require peak search procedure to identify the peak from

2The SNR expression here is calculated at the received signal ����.

Fig. 3. DOA estimation result for � � ���, � � ��, and ��� �
�25.208 � 157.7191 �.

the DOA indicator function, while this is not the case for the
FRI based method.

When SNR is low, the DOA indicator function from the
NNLS method shows many spurious peaks. While this draw-
back is not observed in the deconvolution method, it is unable to
resolve the two sources due to the close separation. Fig. 2 also
demonstrates how our implementation of Cadzow denoising
algorithm helps to recover the performance in the low SNR
case.

Next, we simulate another realization by keeping all param-
eters unchanged except for the DOA of the sources. Instead of
having two closely-spaced sources, we simulate the case when
the two sources are well separated ( 25.208 and
157.7191 ). In this case, we expect the deconvolution method
to be able to resolve the two sources. Fig. 3 shows the normal-
ized amplitude plot as a function of the DOA estimation results.
As expected, like the other methods, the deconvolution method
is able to resolve the two sources.

In the following simulation, we consider 1000 realizations
and calculate the root mean-square error (RMSE) from the cor-
responding 1000 estimation results. Among the peak-search-
based methods, only the NNLS-2 is compared against the FRI-
based methods in this simulation. This is because the RMSE
calculation for the deconvolution method becomes ambiguous
when it only provides single DOA estimate. Hence, it is omitted
in the following simulations. Fig. 4 shows the DOA estimation
RMSEs of the FRI method with and without Cadzow denoising
and the NNLS method with prior knowledge of as a func-
tion of SNR. The square root of the CRB as derived in (16) is
also shown. From this figure, it can be observed that the use of
our Cadzow denoising significantly improves the performance.
When the SNR is 5 dB or higher, the performance of the FRI
method with Cadzow denoising converges to that of the lower
bound. This can be explained due to the bandwidth of the an-
tenna pattern used that allows the denoising algorithm to reduce
the noise effect. In addition, we also evaluate the bias of the
estimators as shown in Fig. 5. It is important to note that the



5688 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 11, NOVEMBER 2010

Fig. 4. DOA estimation RMSEs versus SNR for � � ��� and
��� � �25.208 � 47.7191 �, obtained from � � �� power measurements. The
antenna pattern is modeled with � � ��.

Fig. 5. DOA estimation bias versus SNR for � � ��� and ��� �

�25.208 � 47.7191 �, obtained from � � �� power measurements. The
antenna pattern is modeled with � � ��.

NNLS-2 is implemented with 1 step-size. Therefore, its accu-
racy will be limited and this effect can be seen in Figs. 4 and 5
when 15 dB.

Next, we fixed the SNR at 10 dB and vary the number of
power measurements. The estimation results shown in Fig. 6 im-
plies that taking more power measurements can help to further
improve the estimation performance in low SNR environment.

The next simulation helps to validate the hypothesis that
antenna pattern bandwidth affects the estimation performance
through the denoising algorithm. We keep all the parameters
unchanged except for the antenna bandwidth, which is varied
by changing the parameter . Fig. 7 shows the DOA estima-
tion RMSEs versus the antenna pattern bandwidth. It clearly
demonstrates that as the bandwidth increases, the RMSE per-
formance of the proposed approach converges to the CRB.

The last two simulations examine the performance of the
methods versus the angular separation between two sources

Fig. 6. DOA estimation RMSEs versus the number of power measurements for
� � ��� and ��� � �25.208 � 47.7191 �. The antenna pattern is modeled with
� � �� and the SNR is set at �10 dB.

Fig. 7. DOA estimation RMSEs versus the antenna pattern bandwidth for� �

���,� � �� and ��� � �25.208 � 47.7191 �. The SNR is set at �5 dB.

and the performances when the number of sources increases.
Fig. 8 displays the DOA estimation RMSEs versus the angular
separation simulated when the DOA of the first source is fixed
at 25.208 while the second DOA is varied. is set at 11 and
all other parameters are chosen from the previous example.
It can be seen clearly that the proposed approach is unable to
converge to the CRB performance when the angular separation
is less than 15 . Theoretically, the approach has no limitation on
the angular resolution. However, due to the presence of noise,
the accuracy is affected. To illustrate this, we also simulate for
the higher SNR case, i.e., 5 dB. As clearly shown, the
approach has better resolution for the higher SNR case.

Fig. 9 redisplays the RMSE plots versus SNR for
sources and compares them with the RMSE plots for .
Given the same antenna pattern, the approach yields better per-
formance for lesser sources in the low SNR case. This can be
observed from the plots at 10 dB SNR. The approach achieves
CRB performance for while it is not the case for .
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Fig. 8. DOA estimation RMSEs versus the angular separation for � � ���,
� � ��, � � �� and � � 25.208 while � is varied.

Fig. 9. DOA estimation RMSEs versus SNR for � � ���, � � ��,
� � �� and ��� � �25.208 � 47.7191 � for � � � sources and
��� � �25.208 � 47.7191 � 75.4563 � 105.2431 � for � � � sources.

VII. EXPERIMENTAL RESULTS

In this section, we present the results from experiments using
the hardware realization of the proposed approach. Firstly, we
explain the configuration of the DF receiver and the experi-
mental setup in the DF experiments. Next, we describe the an-
tenna pattern model obtained from the anechoic chamber exper-
iment. And lastly, we show the results of the DF experiments
conducted in three different propagation environments.

To realize the proposed DF receiver, we utilize the directional
GSM antenna as shown in Fig. 10. To compute the received
power, the received signal has to be first down-converted then
sampled. To achieve that, we use winRadio RF-to-IF down-con-
verter [38] and Red Rapids PCMCIA-based acquisition card
[39]. The acquisition card is able to supply 14-bit discrete sam-
ples of the in-phase and quadrature phase of the analog signal.
To measure the orientation of the antenna when the received
signal is sampled, a digital compass OS5000-US manufactured
by Ocean Server is utilized [40]. It can be connected to a USB

Fig. 10. Schematic diagram of the direction finding receiver.

Fig. 11. Normalized antenna pattern plots of the GSM directional antenna.
Solid line shows the plot obtained from the experimental results while the dotted
line shows the plot obtained by fitting the solid-line curve using the polynomial
model in (2) where � � �.

port and it streams 19200 baud rate data which consists of its
orientation with respect to true north. As a whole, the schematic
of the DF receiver can be shown in Fig. 10. Since the direc-
tional GSM antenna is operating in GSM band, we deploy GSM
transmitters emitting single-tone sinusoidal wave at 900 MHz.
A GSM transmitter comprises of an omnidirectional GSM an-
tenna connected to a signal generator.

We first utilize single GSM transmitted placed in an anechoic
chamber at the transmitting end while the DF received is placed
at the receiving end. This experiment is conducted in order to ac-
quire the antenna pattern of the GSM antenna. By taking power
measurements for every 2 rotation, the normalized pattern can
be shown in Fig. 11.

From the experimental pattern, we then try to fit the pattern
to the sum of exponent terms model in (2) using least squares
based regression technique by varying the parameter . When

, the residual is small enough such that increasing
only results in insignificant further reduction in the residual.
Therefore, we select and obtain the parameters that
best model the antenna pattern. The comparison between the an-
tenna pattern from the experimental and that from the model-fit-
ting is shown as well in Fig. 11.

Next, we conducted a single-source propagation experiment
inside the anechoic chamber. Thirty-four power measurements
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Fig. 12. Experimental results from anechoic chamber experiment.

Fig. 13. Experimental setup in a semi-outdoor propagation environment.

computed from 2560 discrete samples of the received signal are
collected when the antenna’s orientation is randomly changed.
The transmitter is placed at 120 with respect to true north.
The NNLS solution suffers from the present of spurious peaks
which causes ambiguity in deciding which peak indicates the
true DOA. This drawback can be overcome using the parametric
methods. This is shown from the estimation result using the FRI
and FRI with Cadzow denoising. It is demonstrated here that
the use of Cadzow denoising helps to improve the estimation
accuracy.

Although the experiment in the anechoic chamber has
demonstrated the feasibility of the proposed approach, con-
ducting experiment in a more realistic propagation environment
may help to capture more non-idealities of the signal propaga-
tion as compared to the experiment in the anechoic chamber.
With this motivation, we conducted more experiments in two
different propagation environments: a semi-outdoor propaga-
tion at fire engine access field between South Spine Academic
Complex S2.1 and S2.2, Nanyang Technological University
(shown in Fig. 13) and an indoor propagation setup at the foyer
of Research Techno Plaza, Nanyang Technological University.

Fig. 14. Experimental results from semi-outdoor experiment.

Fig. 15. Experimental results from indoor experiment.

The first environment is considered as semi-outdoor due to the
confined wall at the two-side of the experiment area. For these
experiments, two transmitters are utilized.

As many as 30 and 16 power measurements are collected
together with its receiving antenna orientation for the semi-out-
door and indoor experiments, respectively. The results are
shown in Figs. 14 and 15. In both figures, it can be observed
that the FRI with Cadzow denoising yields better accuracy.

VIII. CONCLUSION

We have demonstrated using simulations as well as exper-
imental results the feasibility of the proposed single power
measurements based DF. With the derived CRB, we also show
that the performance of the proposed approach converges to the
CRB. The proposed approach utilizes a linear transformation
of the vector of power measurements into a vector of observa-
tions that is common in spectral analysis problem, which can
be solved using Pisarenko’s method. Due to the noise at the
received signal, the proposed approach incorporates Cadzow
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denoising algorithm that exploits the matrix rank and linear
structure properties. The problem of estimating the DOA from
the power measurements of single receiving antenna can also be
seen as stream of Diracs sampling problem in spatial domain.

APPENDIX

DERIVATION OF (12)

In the following derivation, we assume that the received
power is calculated according to (3). Given that the discrete
samples of received signal is contaminated with complex
Gaussian distributed random variables as described in (11), we
have

where and

The modulus of a complex Gaussian distributed random vari-
able will result in a Rayleigh distributed random variable with
parameter

Rayleigh

Taking sum of the squares of over samples will trans-
form the Rayleigh distribution to a Gamma distribution with pa-
rameter and :

Because of the large value of , the Gamma distribution can
be approximated as a Gaussian distribution .
Therefore, we have

(19)

The cross term is negligible since the signal is uncor-
related with the noise. From the received power expression in
(1), we are able to split the expression according to its random
variable contribution

(20)

where . With the distribution defini-
tion given in (19), we can deduce the distribution of the received
power.

(21)

Note that (21) can also be derived given that the probability
distribution satisfied by is known as Ricean distribution
(generalization of Rayleigh distribution).
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