




two diffusers and by manipulating the microscope components,
such as the condenser positions and angles, pinhole sizes, and zone
plate positions, multiplexed X-ray illumination patterns can be
effectively modulated and recorded on-the-fly. A few pictures of
the modified TXM setup are given in SI Appendix, Fig. S1A. An
energy-dispersive Vortex detector is placed perpendicular to the
incident beam to collect the fluorescence signal from the sample.
The illumination condition is adjusted within predefined ranges
to minimize the time cost associated with motor movements. The
fluorescence detector continuously records the XRF spectrum
as the structured illumination conditions change. A confocal
collimator is used to eliminate any background signals. It is
worth pointing out that we have adopted an effective strategy to
perform the data acquisition. Two transmission images, with and
without the sample in place, are recorded for each illumination
configuration, and the corresponding fluorescence signal is
measured simultaneously. The limited sample stage precision
and stability can cause potential errors in the correspondence
between the illumination pattern (the sample-out image) and
fluorescence signal. Thus, we have introduced a numerical
image registration process to reflect the actual position of the
illumination patterns. This on-the-fly pattern correlation scheme
does not require the explicit splitting of the X-ray beam (24, 25),
which is difficult to achieve in nanoscale synchrotron X-ray
imaging. The structured illumination patterns, TXM image, and
fluorescence signal are subsequently fed into the generative data
reconstruction algorithm (Materials and Methods) to produce the
spatially resolved composition maps of the sample.

Analysis of Structured Illumination Patterns. The quality of
an illumination pattern set is critical to ensuring that the
sample’s morphological and chemical details across different
length scales are sufficiently captured. Fig. 2A showcases a few
examples of the experimentally recorded illumination patterns.
Successful chemical map reconstruction heavily relies on and
positively correlates with the level of independence in the pixels’
intensity variations upon pattern change. For example, if the
intensities over two different pixels are perfectly correlated, the
level of independence between them is zero, and the recorded
dataset does not contain any information that can separate
these two pixels’ respective contributions. Any difference in their
respective chemical compositions will remain unresolved in this
scenario. In contrast, a higher level of pixel independence will
facilitate disentangling their contributions and, thus, improving
the reconstruction quality and robustness.

To further illustrate this concept, we select three representative
pixels and plot their normalized intensity variations upon pattern
change in Fig. 2B. The similarity of the corresponding curves can
evaluate the pattern correlation at these pixels. As demonstrated in
Fig. 2C, the intensity at Position 2 (local illumination amplitude)
exhibits a strong positive correlation with that at Position 1, while
being more independent from that at Position 3. It suggests that
the illumination at Positions 2 and 1 share similar characteristics,
which is undesirable for the reconstruction process. As a com-
parison, in the point scanning approach, each pixel is either on
or off, featuring 100% independence in the raster scan. In this
case, the XRF signal sensed by the Vortex detector originates
exclusively from one single illuminated pixel, as the other pixels
receive no X-ray irradiation and are effectively “turned off” (SI
Appendix, Fig. S2). Although the strong pixel independence in
the “illumination patterns” of a point-scanning approach makes
the image “reconstruction” straightforward, it becomes a major
limitation regarding the experimental throughput and efficiency.

To evaluate the quality of an illumination pattern set, we define
the dependence map (Fig. 2D) by calculating the Pearson correla-
tion coefficients among different pixels in the field of view (FOV).
We sort all the other pixels in the FOV for a certain target pixel
based on their respective distances to the target (see Fig.2A for
an illustration). This approach converts the calculated real-space
map of the Pearson correlation coefficient into a vector. After
iterating this process for all the pixels in the FOV, we construct
a two-dimensional independence map in which the horizontal
axis is the index of the target pixel, and each column represents
the target’s Pearson correlation coefficient vector (as described
above). As we have discussed, a high level of pixel independence
(blue color in the independence map) is desirable. When we add
more patterns to a pattern set, an effective suppression of the large
values (red color) in the independence map would indicate that
the added new patterns carry new information and such additions
are beneficial (Fig. 2D). The upper part of the independence
map (pixels close to the target) generally exhibits a larger value,
indicative of a lower level of independence. This is because most
of the illumination patterns slowly vary, with a limited amount
of high-spatial frequency features. This could become a limiting
factor for the ultimate spatial resolution.

As an overall assessment of an illumination pattern set, the
mean dependence value � is calculated. Through analyzing the
value of �, we can assess the degree to which the pattern set ex-
hibits statistical independence, providing a theoretical prediction
on its effectiveness as input to the image reconstruction process.
In a real-world experiment, as the number of effective measure-
ments progressively increases, this pattern set’s � value is expected
to decrease (Fig. 2E). However, the slope and saturation point
can be quite different depending on the pattern configurations.
As illustrated in Fig. 2E, the accumulation of patterns in two
experiments exhibits diverging effects regarding independence
improvement. This observation highlights the significance of
designing the pattern set for high-efficiency and high-fidelity
image reconstruction in our NxSCI approach. We further define
invertibility as an indicator to evaluate the impact of illumination
patterns on the reconstruction process (SI Appendix, Fig. S3). A
higher invertibility indicates that the selected patterns contribute
more effectively, improving overall performance when using the
same number of patterns. Fig. 2F presents the comparative
analysis of the invertibility of the two pattern sets, in which
pattern set 2 clearly demonstrates superiority.

The differences in the independence and invertibility between
these two pattern sets can be attributed to factors such as
their underlying statistical properties, spatial distribution, and
the intensities of the X-ray beams. By assessing these charac-
teristics of the illumination patterns, we can determine their
suitability for various imaging targets and conditions, allowing
us to choose the most suitable sets to optimize and enhance the
overall performance of our NxSCI approach. Moreover, carefully
selecting suitable pattern sets enables us to continually optimize
the acquisition strategy and improve efficiency when operating
with a limited number of patterns or in challenging imaging
conditions. Notably, pattern analysis and quantification can be
conducted without the sample. This allows for an optimization
of the experimental protocol prior to the actual experiment, thus
causing no additional radiation dose to the sample.

Generative Image ReconstructionModel. The illumination pat-
terns and the corresponding bulk fluorescence signal are fed
into the generative reconstruction model F(·) (Materials and
Methods) to obtain the chemical map. Increasing the number
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out that, in the NxSCI implementation, the XRF detector
integrates fluorescence signals from the illuminated sample
without intrinsically offering any spatial resolution. The struc-
tured illumination-enabled encoding/decoding process offers the
opportunity to resolve the distribution of elements of interest
spatially.

The extracted amplitude of each element and the measured il-
lumination patterns (N = 1,000) are fed into the reconstruction
model, and the resulting elemental maps are shown in Fig. 4C. As
observed, the spatial distributions and concentrations of different
elements within the sample are faithfully retrieved through the
developed NxSCI technique. The correlations between different
elements are given in SI Appendix, Fig. S10, which helps identify
the cathode species in which different elements of interest could
co-exist. We further quantify the FRCs of the reconstructed
elemental maps. As shown in Fig. 4D, the resolutions of these
chemical maps are slightly lower than that of the TXM image
by a factor of 1.5 to 2, at the level of 100 nm, highlighting
the potential of the NxSCI technique to achieve nanoscale
spatially resolved chemical imaging and open up broad avenues
for material characterization and development with tailored
functionalities.

Discussion
This work presents a nanoscale chemical X-ray imaging technique
that employs structured illumination to enable high-resolution,
high-efficiency, spatially resolved mapping of elemental distribu-
tions within a sample. By jointly optimizing the illumination
scheme and the image reconstruction model, the developed
NxSCI approach overcomes the limitations of traditional XRF
point scanning probes, which are time-consuming for several
reasons, including the limited X-ray focusing efficiency and
the required mechanical raster scan. Our method demonstrates
superior image quality, especially when working with significantly
under-sampled datasets. We validate the effectiveness and perfor-
mance of the NxSCI approach using a lithium-ion battery sample
with mixed cathode particles. The results highlight the potential
of NxSCI in addressing real-world challenges in characterizing
complex materials and showcasing its versatility. The following
sections further discuss this method’s significance, uniqueness,
applicability, and limitations.

Generating nanoscale, spatially resolved elemental maps of a
sample with a synchrotron micro/nano-probe beamline typically
involves the use of X-ray focusing optics, implementation of the
high-precision sample raster scan, and acquisition of the XRF
signals with a Vortex detector. The effective spatial resolution
of a scanning probe experiment can be affected by the X-
ray focal size, pixel dwell time, signal-to-noise ratio, elemental
concentrations, as well as the sample’s micromorphology and
surface topography, etc. Efforts have been devoted to improving
the imaging field-of-view, scanning efficiency, sensitivity, and
spatial resolution (5, 36, 37). However, significant technical
challenges persist. For example, when X-ray nano-focusing
optics are required for high-resolution mapping, their design,
fabrication, aberration correction, and positioning are rather
complex and expensive. A tight X-ray focus inevitably comes
at the cost of a lower flux due to the limited focusing efficiency,
negatively affecting the experimental throughput. As we approach
nano-resolution, the engineering challenge increases dramatically
in positioning and scanning the optics and samples with high
precision, stability, and reproducibility. Another general concern
in X-ray microscopy is associated with the X-ray dose and
dose rate, both of which have detrimental effects on various

samples. This leads to the need to implement cryogenic sample
environments, for example, in biology research, which is not ideal
in many scenarios.

The developed NxSCI technique overcomes these limitations
by utilizing a structured illumination scheme integrated with a
generative image reconstruction model to obtain the elemental
maps. This approach enables high-resolution XRF mapping
with the elimination of complex nano-focusing optics and high-
precision positioning systems, making it accessible, cost-effective,
and highly efficient even with a similar order of measurement
points as traditional methods. There are some limitations in
the current implementation of our method. Specifically, the
limited sample stage accuracy necessitates the acquisition of image
pairs with and without the sample under different illumination
patterns. The experimental throughput can be significantly
improved with the use of high-precision stages, which could allow
us to configurate the system and to optimize the data acquisition
protocol prior to exposing the sample of interest to the X-rays.
We utilize sandpapers as beam diffusers to generate the desired
random illumination patterns. The sandpapers are coupled with
the capillary condenser in a demagnification geometry, yielding
nanoscale, structured illumination patterns at essentially zero cost
(instead of creating nano-sized and high-aspect-ratio structures
through nanofabrication methods). However, we should point
out that, with the use of sandpapers, it is impossible to design
illumination patterns in a deterministic manner purposely. This
is due to the complex scattering process through the physical
structure of the sandpaper. On the other hand, with this
approach, it is possible to directly exploit the randomness of the
scattering process and solve an inverse problem to reconstruct the
image carried by the signal, which is one of the key contributions
of the developed method.

We evaluate the quality of the illumination scheme by calculat-
ing the patterns’ independence and invertibility in terms of image
reconstruction quality and robustness against different levels of
noise and undersampling. By analyzing these characteristics, we
formulate a predictive metric that can guide the optimization of
the illumination scheme to enhance the overall performance of
this technique. In practice, this can be achieved by selecting
sandpapers with various grit sizes, tuning the beamline and
endstation optics, and adjusting the exposure time dynamically.
The goal of this illumination scheme optimization is to ensure a
sufficient sampling of the sample with a minimized number of
measurements.

It is useful to compare several of the relevant X-ray imaging
modalities from the dose efficiency perspective. In a scanning
probe approach, the photon loss due to limited focusing efficiency
occurs upstream of the sample and, therefore, it would not add
any unnecessary dose to the sample. In the conventional full-
field TXM approach, however, the objective zone plate is placed
downstream of the sample and its limited focusing efficiency
would lead to a reduction in the overall dose efficiency. This is
because, in traditional TXM configuration, some of the photons
that transmit through the sample and carry useful information
about the sample cannot be collected by the zone plate and thus
cannot contribute to the signal on the imaging detector in the
downstream. In the herein proposed approach, the off-axis XRF
detector is placed upstream of the TXM’s objective zone plate.
The objective zone plate–induced photon loss does not affect the
XRF intensity and efficiency in our configuration. For efficiency
of the fluorescence signal detection, one important aspect to
consider is the coverage of solid angle, which can be enlarged by
placing the XRF detector very close to the sample. This is similar
in the scanning probe configuration and the existing optimization
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processes developed for the scanning probes are applicable and
can be leveraged.

The generative image reconstruction model in the developed
NxSCI technique is constructed by self-supervised learning the
continuous image representation parameterized by a coordinate-
based neural network (38, 39). It provides an effective and robust
method for image reconstruction from compressive measure-
ments by leveraging the prior knowledge from the transmission
image with a flat-field illumination. Including a customized loss
function within this model significantly enhances the overall
performance of the NxSCI approach. By simulating the image
formulation process, we evaluate the performance of the recon-
struction model by assessing the impact of sampling ratios, noise,
and different illumination patterns and comparing it with other
state-of-the-art algorithms for solving similar inverse problems.

NxSCI’s significance lies in its potential to revolutionize
nanoscale elemental mapping using X-rays by offering a more
efficient and accurate method for reconstructing high-resolution
and spatially resolved XRF signals. Its applicability spans various
research domains, including materials science, geology, and
biological sciences. Although superior resolvability has been
demonstrated, in the current implementation, the effective spatial
resolution is at a level of over 100 nm and is limited by the critical
feature size available in the illumination patterns and presented
errors in the acquisition systems. The upgrade/construction
of next-generation synchrotron facilities with unprecedented
transversal coherence will be able to generate speckle illumination
patterns with higher spatial frequency, which could effectively
improve the spatial resolution of our NxSCI reconstruction.

We highlight the flexibility of the implemented framework
in this study, as it provides room for further improvements.
For instance, adding an on-the-fly pattern assessment module
could facilitate autonomous experimentation with NxSCI. This
would streamline the process and further increase efficiency,
potentially leading to broader applications and improvements
in future works. While the current implementation of NxSCI
is primarily focused on 2D imaging, expanding this technique
to 3D volumetric elemental mapping represents a promising
direction for future research. This can be achieved by rotating
the sample stage to capture images from different angles, then
applying a tomographic reconstruction step. It is worth pointing
out that while the current demonstration focuses on mapping
elemental composition, the capability of NxSCI can be further
extended to intricately differentiate different chemical states
and/or lattice configurations. To achieve this, further efforts
are needed in the incorporation of various detectors, refining of
illumination patterns, and improving of the image reconstruction
algorithms.

Additionally, in the context of laboratory X-ray sources, where
photon flux is a precious resource, employing sandpaper as a
diffuser may not be the most suitable option. Alternatives for
generating structured patterns might need to be considered.
For example, our previous collaborative development of a
Transverse Lighting Interface (TLI) system equipped with a
microarray anode-structured target (MAAST) source (40) could
be a promising solution for producing structured illumination
patterns in the laboratory.

Materials and Methods

In the proposed NxSCI technique, the data acquisition pipeline involves
generating structured illumination patterns, scanning the sample, detecting
the emitted XRF signals, and extracting the composition of chemical elements

for further reconstruction. By associating specific structured illumination patterns
with individual elemental fitted areas, the modified coordinate-based generative
neural network effectively learns and recreate the spatial distributions of different
chemical elements within the sample.

Pattern Alignment and Evaluation. To effectively correct errors in the
correspondence between the illumination pattern and fluorescence signal due
to limited sample stage precision and stability, we use the transmission image
of the sample (TXM) as a reference and apply the phase correlation algorithm to
find the translation of the illumination pattern with and without the sample in
place.

The mean dependence � of a sensing matrix A ∈ RN×M is defined as the
average values of the Pearson correlation coefficient between two distinguished
rows of A:

� = Mean
1≤i 6=j≤N

cov(Ai, Aj)

�Ai�Aj
,

whereM = Mx ×My is the total pixel number of one single image frame, and
N is the number of illumination patterns. cov(Ai, Aj) is the covariance, �Ai and
�Aj represents the SD of Ai and Aj, respectively. A smaller value of � indicates
larger pixel independence between different illumination patterns, thus having
positive effects on the reconstruction quality and robustness.

The invertibility of the illumination pattern set is defined as the structural
similarity index (SSIM) value (41) between the reconstructed image by Moore–
Penrose pseudoinverse-based method and the ground truth image (SIAppendix,
Fig. S3). The singular value decomposition is used for the calculation. The
resultant invertibility is a decimal value between−1 and 1, where 1 indicates
perfect invertibility and larger is better.

XRF Spectrum Collection and Analysis. During the XRF signal acquisition
process, the Vortex detector stage is adjusted in order to obtain the maximum
intensity of the XRF signal while simultaneously minimizing background noise.
Customized scripts are developed and integrated to control the movements
of motors, beamline settings, TXM image capturing, and XRF signal collection
sequentially. All spectra are analyzed by the software PyMCA (42), developed
by European Synchrotron Radiation Facility (ESRF). The fitted areas for each pre-
defined element, coupled with the corresponding illumination patterns, serve
as the primary inputs for the reconstruction process.

Image Formation Model and Proposed Reconstruction Approach. We
consider the data formulation model following the single-pixel imaging
framework (17, 18). The object of interest is denoted as x ∈ RM×1, which
is a vectorized form of the two-dimensional chemical element distribution
of the sample with pixel number M. The measurement matrix A ∈ RN×M

represents the structured illumination patterns, where each row corresponds
to a vectorized version of a specific pattern. The measurement y ∈ RN×1

representing the intensity of fluorescence signal of a specific chemical element
for all N illumination patterns can be described as:

y = Ax + b,

where the vector b ∈ RN×1 denotes the measurement errors and other
uncertainties in the data acquisition and analysis process, e.g., the unwanted
background contamination or the XRF fitting errors, etc. Through this way, the
problemofreconstructingthechemicalelementdistributionxis transformedinto
the problem of solving M independent unknowns by using N linear equations.
One solution to this problem can be obtained by the direct matrix inversion
x̂ = A−1y. However, this solution is sensitive to noise and suboptimal since the
problem is ill-posed, and the number of measurements is often much smaller
than the number of unknowns (N� M).

Various computational methods can be employed to solve this problem,
such as compressive sensing (43), optimization-based iterative algorithms (44),
or deep learning methods (45–48). These algorithms typically leverage the
sparsity or other prior knowledge from the training dataset about the object x
to achieve accurate reconstructions from a limited number of measurements.
For example, based on total variation (TV) regularization promoting sparsity
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in the gradient domain of the image, the TVAL3 algorithm (26) is a fast and
effective algorithm for solving such an image reconstruction problem. It is worth
mentioning that most of the current developments in single-pixel imaging
are based on random speckle illumination patterns due to their low mutual
coherence, universality, and simplicity. However, generating deterministic
nanoscale illumination patterns is difficult without nanoscale focusing optics
and fabrication. In addition, many algorithms divide the signal into smaller non-
overlapping or overlapping patches and then reconstruct each patch separately,
given the assumption that their sensing matrixes are invariant for different
patches, which does not hold in the NxSCI setting.

In this work, we propose a self-supervised generative approach to obtain the
continuous representation of the elemental maps to solve this inverse problem.
The goal is to identify a set of optimal weights � for the neural network such
that when the measurements matrix A is applied to the network output, it
aligns closely with the measurements y acquired from the experiments. We
achieve this by leveraging the implicit neural representation (38, 39, 49, 50)
to parameterize the spatial coordinates z = (ci, cj), effectively mapping the
image, i.e., x = f�(z). The neural network architecture uses multi-layer
perceptrons (MLP) with the sine as a periodic activation function (50); that
is, the i-th layer of the network can be represented as

�i(z) = sin
(
!i ∗ Wi�i−1(z) + �i

)
,

where wi is the frequency of the i-th layer, Wi and �i are the weight and bias of
the i-th layer, respectively. �i−1(·) is the previous layer’s output (or the input
coordinates for i = 1). Due to the ill-posedness of this problem, we leverage prior
knowledge from the TXM image in the NxSCI setting and incorporate it into our
cost function as a regularization term. Inspired by the annihilation-driven image
approximation (51), we encourage the gradients of the output image (i.e., the
edge information) from our network to match those of the TXM image as closely
as possible. Given that the input to the neural network is the spatial coordinates,
the trained network essentially forms a continuous representation of the
elemental maps. This continuous representation lends itself well to scalability,
allowing for reconstructing large-scale images by feeding the network with
appropriate coordinate inputs, corresponding illumination patterns, and XRF
signals.

Thus, the image reconstruction problem can be formulated mathematically
as follows:

x̂ = f�̂(z), �̂ = argmin
�
‖Af�(z)− y‖2

2 + �‖∇ f�(z)−∇ I‖1.

Here,∇ f�(z) represents the gradient of the estimated image,∇ I is the gradient
of the TXM image I ∈ RMx×My , and � is a regularization parameter. By
adjusting the regularization parameter, we can balance the fidelity of the
reconstruction to the compressive measurements and its consistency with the
structural TXM image. Note that appropriate thresholding for noise suppression
can be applied to ∇ I to achieve better reconstruction performance. For
the training process, we utilize the Adam optimizer for all experiments in
this work. A schematic illustration of the reconstruction model is given in
SI Appendix, Fig. S4.

Image Quality Assessment and Resolution Measure. We majorly assess
the quality of the image reconstruction by the peak signal-to-noise ratio (PSNR),
which is a common measure that calculates the ratio between the maximum
possible power of the signal and the power of the corrupting noise. Higher
PSNR values generally indicate better reconstruction. The image resolution
is measured by FRC (33), which is based on a normalized cross-correlation
histogram computed in the frequency domain between two images. We use the
ImageJ plugin for the calculation, and the fixed 1/7 resolution threshold (52) is
used to determine the numerical resolution value.

Data, Materials, and Software Availability. Source code is deposited in the
GitHub repository (https://github.com/YijinLiu-Lab/NxSCI) (53). All other data
are included in the manuscript and/or SI Appendix.
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