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Generic FRI-Based DOA Estimation: A
Model-Fitting Method
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Abstract—Direction of arrival (DOA) estimation is a classical
topic in source localization. Notably, a reliable grid-free sparse
representation algorithm, called FRI (finite rate of innovation)
algorithm, was proposed to recover the finite number of Dirac
pulses from a stream of 1D temporal samples, which also offers
a efficient solution to the DOA estimation problem. Typically, FRI
method assumes uniform sampling with single snapshot. However,
the actual situation is richer and more diverse. Motivated by the
requests of practical applications (e.g. array deployment, algorithm
run-speed, etc.), a generic FRI method is proposed to tackle the
more general case in practice, i.e. non-uniform sampling with
multiple snapshots. Instead of annihilating the measured sensor
data, a model-fitting method is used to robustly retrieve the sparse
representation (i.e. DOAs and associated amplitudes) of the 1D
samples. We demonstrate that our algorithm can handle challeng-
ing DOA tasks with high-resolution, which we validate in various
conditions, such as multiple coherent sources, insufficient signal
snapshots, low signal-to-noise ratio (SNR), etc. Moreover, we show
that the computational complexity of our algorithm mainly scales
with the number of sources and varies very slowly with the number
of samples and snapshots, which meets the needs of a wider range
of practical applications.

Index Terms—Finite rate of innovation (FRI), direction of
arrival (DOA), high-resolution, multiple snapshots, non-uniform
sampling.

I. INTRODUCTION

DOA estimation is a classical topic in array signal process-
ing, and it plays an important role in many disciplines, with

application examples ranging from sonar and radar detection,
mobile communication, to GPS (global positioning system)
services, as shown in Fig. 1. In this paper, we consider the
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far-field scenario where the sources are sufficiently far away
and the sensor array is linear with narrowband processing. In
order to focus on the weak sources, the SNR is defined for
each individual source. Due to the Rayleigh threshold, con-
ventional beamforming (CBF) suffers from low resolution and
large sidelobes, resulting in unsatisfactory performance in the
presence of multiple sources. In order to address this issue,
some high-resolution methods, such as the minimum-variance
distortionless response (MVDR) [1], [2], the multiple signal
classification (MUSIC) [3], the estimating signal parameter via
rotational invariance techniques (ESPRIT) [4] and compressive
sensing (CS) [5], [6], [7], [8], [9] have been developed with
significant performance improvements.1

Although these methods have achieved great success in some
application scenarios, there are still unresolvable problems in
practice. The first challenge is coherent sources. Two sources
are coherent if their amplitudes are statistically correlated [10].
This source coherence leads to the degradation of the rank of
the built covariance matrix [11], which brings about estimation
inaccuracy when using these covariance-based techniques (e.g.
MVDR, MUSIC, and ESPRIT, etc.). The second difficulty in
practice is weak source measurements with very few snapshots.
Many covariance-based techniques [1], [12], [13], [14], essen-
tially rely on sufficient snapshot data to ensure the robustness
and accuracy of DOA estimation [5], especially in the presence
of low signal-to-noise ratio. However, in some applications like
mobile source localization, only very few snapshots are avail-
able, which tremendously restricts the accuracy of these tech-
niques. The next challenge is non-uniform sampling. In practice,
lots of application situations in DOA estimation is data absence
of the uniform sensor array, which eventually gives rise to
non-uniform (i.e. sub-sampled) measurements [15], [16], [17].
In this paper, we refer to sub-sampling as non-uniform sam-
pling in terms of the common practical application require-
ments [18], [19]. This non-uniform circumstances frequently
occur in data collection and causes relatively large error in DOA
estimation when applying the existing techniques (e.g. CBF,
MVDR, MUSIC, etc.) [2].

Another increasingly important issue in many practical ap-
plications is the computational cost of the DOA estimation
algorithm [20]–[23]. Nowadays, more and more DOA-related
tasks require fast run-speed to enable various instant services,
like indoor logistic tracking [24], environmental sensing [25]

1All figures in Fig. 1 are selected from Google Image: https://www.google.
com/imghp?hl=en
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Fig. 1. A wide range of potential applications for DOA estimation. (a) Underwater localization (sonar). (b) Target detection (radar). (c) Wireless communication.
(d) Satellite navigation (GPS).

and traffic surveillance [26]. However, many high-resolution
DOA estimation algorithms (e.g. CS, etc.) rely on dense grid
to guarantee the required estimation precision [27], [28], which
is time-consuming and prohibited in practice.

In order to solve the practical problems in DOA-related tasks,
a faster and more robust high-resolution DOA estimation algo-
rithm is needed. Note that a reliable method called FRI (Finite
Rate of Innovation) [29] shows this potential, which focus on the
perfect recovery of the nonbandlimited signals. This is because
the bandlimited signals can be acquired through sampling and
perfectly recovered from the measured samples in accordance
with Shannon sampling theorem. What are less obvious are
sampling schemes utilizing some sort of sparsity in the nonban-
dlimited signal, and this is the central theme of the FRI work.
Namely, instead of general bandlimited signals, we focus on
the sampling of classes of nonbandlimited signals. This makes
it possible to evade Nyquist and exactly sample and recover
signals exploiting sparse sampling, at a rate characterized by
how sparse they are per unit of time [29]. In some sense, the 1D
signal is sampled at its rate of innovation by applying the Law of
Parsimony (Occam’s razor principle). From an algorithmic point
of view, finding the innovations of a nonbandlimited signal and
retrieving the DOAs from the spatial sinusoids are one and two
sides [30]–[34].

The classic FRI approach utilizing Cadzow denoising is de-
signed for uniform temporal samples, and achieves good per-
formance despite the presence of strong noise [31]. Moreover,
in order to address the non-uniform (i.e. irregularly sampled)
measurements in radioastronomy, a generalized FRI technique
based on annihilation filter was developed that unifies a variety of
FRI-based methods [30], [35]–[39]. The algorithms developed
for that purpose, in principle, can be used in our context. How-
ever, even if they are sufficiently general to retrieve frequencies
of noisy non-uniform samples, they are not robust enough to
handle some practical DOA problems. The main reason is that
the available sensor measurements in practice are sufficiently far
apart in space [40], [41], which does not satisfy the hypothesis
of densely sampled measurements of these algorithms. Besides,
many real DOA data is acquired from uniform sensor array
with data absence at known sensor nodes [18], [19]. This extra
information could be utilized to further improve the accuracy
and robustness of DOA estimation. Apart from these factors,
the computational complexity of these non-uniform FRI algo-
rithms depends on the number of sensor nodes, which is not

fast enough when tackling multiple snapshot sensor data in
practice.

Recently a new FRI algorithm based on a ratio-structure
model that represents the DFT of a sum of sinusoids as ratio
of two polynomials, is proposed for high resolution and fast
run-speed [42], [43]. The computational complexity of this FRI
algorithm essentially only scales with the number of sources,
not the number of sensor samples. However, this algorithm
only applies to the uniform measurements with single snapshot,
which does not meet the needs of practical DOA estimation
applications. Motivated by this, we propose a generic FRI
algorithm for DOA estimation with multiple snapshots and
non-uniform (sub-sampled) measurements: “ss-FRI algorithm”.
The contribution of this work can be summarized as follows:

1) Use ratio-structure model instead of annihilating filter.
The computational cost of the proposed ss-FRI algorithm
merely scales with number of sources independent of the
number of sensor samples and data snapshots, which sig-
nificantly improves the run-speed of the DOA estimation
(see Section IV-D and Section V-B4).

2) Extend the single-snapshot FRI algorithm to multiple
snapshots. A more general ratio-structure model is de-
veloped to jointly perform model-fitting on the multiple
snapshot sensor data, leading to a more accurate and
efficient DOA estimation (see Section V-B2).

3) Extend the uniform FRI algorithm to non-uniform sam-
pling. A new sub-sampling ratio-structure model is pro-
posed to directly perform model-fitting on the non-
uniform sensor measurements, which gives rise to a very
robust DOA estimation even in conditions of strong noise
and insufficient sensor measurements (see Section V-A3).

This paper is organized as follows. The ratio-structure FRI
framework aimed at uniform samples with single snapshot is
briefly reviewed, and then further extended to multiple snap-
shots in Section II. In Section III, we first give the problem
formulation of non-uniform sampling, and then develop a more
general ratio-structure model that represents the non-uniform
measurements as the ratio of two polynomials. We present the
algorithmic implementation and computational complexity of
our ss-FRI algorithm in Section IV. We validate our ss-FRI
algorithm in various conditions, both on substantial simulations
(Section V) and real DOA data (Section VI). We conclude the
paper by summarizing our main results and highlighting the
potential of this method in practical applications in Section VII.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 08,2021 at 00:20:16 UTC from IEEE Xplore.  Restrictions apply. 



4104 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

Note that the curly parentheses notation {·} denotes a vector
or matrix in this paper.

II. SS-FRI DOA ESTIMATION FOR ULAS

A. Single Snapshot ss-FRI DOA Estimation

Signal Model for Single Snapshot. Given a ULA (uniform
linear array) with N sensors, for the narrowband sources, the
complex envelope representation of the received signal of the
n-th sensor generated by K sources is given by [2]

yn =

K∑
k=1

xke
−j2π d

λ
n sin θk , n = 0, 1 · · ·N − 1 (1)

where d is the element interval, λ is the wavelength, xk is the
complex amplitude, and sin θk is the DOA (direction of arrival)
of the k-th source (DOA refers to sin θk instead of θk in this
paper.).

Now, in noisy conditions (i.e. additive white noise), the DOA
estimation can be formulated as the following sinusoid fitting
problem:

min
xk,sin θk

N−1∑
n=0

|yn −
K∑

k=1

xke
−j2π d

λ
n sin θk |2

This is equivalent to approximating a stream of 1D samples as
a finite sum of sinusoids, where the high-accuracy Finite Rate
of Innovation (FRI) algorithms can be applied [30], [32]–[34],
[42], [44].

ss-FRI DOA Estimation for Single Snapshot. The
FRI approximation algorithm is built upon model-
fitting [42], [44], [45], [46]. The first key idea is that the Discrete
Fourier Transform (DFT) of a sum of K sinusoids can be
expressed as ratio of two polynomials in e−j2πn/N : a numerator
polynomial PK−1 of degree K − 1 and a denominator QK of
degree K

ŷn =

N−1∑
n′=0

yn′e−j 2πn′n
N

=

N−1∑
n′=0

(
K∑

k=1

xke
−j2π d

λ
n′ sin θk

)
e−j 2πn′n

N

=

K∑
k=1

xk
1− e−j(2πNλ sin θk)/d

1− ze−j(2πλ sin θk)/d

=
PK−1(z)

QK(z)
(2)

where ŷn denotes the DFT of the signal yn and z = e−j2πn/N . In
fact, the denominator polynomial QK is the annihilation filter
in [31] whose zeros uniquely define the DOAs sin θk of the
signal yn. This ratio relationship reveals the following important
aspects:

1) The measured sensor samples are uniquely defined by
the coefficients of two polynomials PK−1 and QK . In
other words, the signal can be exactly recovered if these
coefficients are known.

2) This ratio representation is independent of the number of
samples, as the degree of the polynomials is only related
to the number of sinusoids.

3) It is a sparse representation of the sinusoidal samples.
As a result, this ratio structure is used to perform model-fitting

on the DFT of the measured samples in the presence of noise

min
QK ,PK−1

N−1∑
n=0

∣∣∣∣ŷn − PK−1(z)

QK(z)

∣∣∣∣2 (3)

The second key idea is to consider that any K-sinusoidal
approximation that fits the measured data within a given noise
margin is a valid solution. More specifically, the FRI recovery
is successful as soon as the criterion

MSErec ≤ σ2
noise (4)

is satisfied, where MSErec is the mean square error (MSE)
between the reconstructed samples and measurements yn. σ2

noise

denotes the input noise level, which matches the minimization
defined in (3) and can be estimated from measurements (e.g.
background noise, instrument inaccuracy, etc.).

The minimization as stated in (3) is non-linear and non-
convex. Its direct computation would require non-linear based
methods, such as the Newton-Gauss method or the Levenberg-
Marquard method. In this paper, the solution is estimated in a
linear manner using iterative minimization [42], [47], [48], i.e.
solving the following quadratic minimization problem for Qi

K

min
Q

(i)
K ,P

(i)
K−1

N−1∑
n=0

∣∣∣∣Q(i)
K (z)ŷn − P

(i)
K−1(z)

Q
(i−1)
K (z)

∣∣∣∣2 (5)

gives rise to a batch of candidates forQK (i = 1, 2 . . . imax), and
choose the one for which the MSE is the smallest. Changing the
initializations of these iterations provides even more candidates.
Usually, two random initializations and imax = 20 are sufficient
to attain a solution that is within the expected noise margin. Refer
the reader to [30], [42] for more details.

The DOAs sin θk, k = 1, 2, . . . ,K can be obtained by com-
puting the zeros of the polynomial (QK(zk) = 0)

sin θk = Real

(
−λ log(zk)

2πd
j

)
(6)

and the associated coefficients can be acquired by

xk =
(1− z−1

k z)PK−1(z)

(1− z−N
k )QK(z)

∣∣∣
z=zk

(7)

which gives the sparse recovery of the 1D measured sensor
samples.

B. Multiple Snapshot ss-FRI DOA Estimation

Signal Model for Multiple Snapshots. Given K stationary
sources and L signal snapshots, the DOA estimation in presence
of noise can then be formulated as

min
xk,l,sin θk

L∑
l=1

N−1∑
n=0

|yn,l −
K∑

k=1

xk,le
−j2π d

λ
n sin θk |2
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where yn,l is the measurement of the n-th sensor node in l-th
signal collection.

Some multiple-snapshot DOA estimation algorithms rely on
the hypothesis of incoherent sources to compute the covariance
matrix, which does not match many practical applications, e.g.
coherent arrivals caused by multipath in underwater acoustic or
speech signal processing. Violation of this hypothesis results
into degradation of the rank of the covariance matrix, and
thereby large inaccuracies occur in DOA estimation [5]. With
ss-FRI algorithm, this incoherence hypothesis is not necessary
and the multiple snapshot data helps improve the accuracy and
robustness of DOA estimation.

ss-FRI DOA Estimation for Multiple Snapshots. The initial
FRI algorithm based on ratio-structure model is essentially
designed for single-snapshot uniform sensor data [42]. When
dealing with real multiple snapshot data, simply averaging the
DOA estimates obtained from each individual signal snapshot
is not accurate and robust enough. Hence, a unified FRI model
is needed to efficiently process multiple snapshot sensor mea-
surements.

Each individual snapshot of sensor signals can be expressed
as

ŷn,l =
PK−1,l(z)

QK(z)
, l = 1, 2 · · ·L

where the denominator polynomial QK is invariant across all
signal snapshots due to stationary sources. Following the same
fitting principle, the FRI recovery is considered to be successful
as soon as the reconstructed signal samples fit the sensor mea-
surements within a given noise margin (see (4)). Hence, similar
to minimization (3), the model-fitting performed on the DFT of
the multiple-snapshot signal samples can be formulated as

min
QK ,PK−1,l

L∑
l=1

N−1∑
n=0

∣∣∣∣ŷn,l − PK−1,l(z)

QK(z)

∣∣∣∣2 (8)

where ŷn,l denotes the DFT of the samples yn,l. The coefficients
of two polynomials QK , PK−1,l uniquely define the DOAs
sin θk and coefficients xk,l of the multiple snapshot sensor
samples.

Following the linear strategy in (5), Qk can be obtained by
solving the following quadratic minimization problem

min
Q

(i)
K ,P

(i)
K−1,l

L∑
l=1

N−1∑
n=0

∣∣∣∣Q
(i)
K (z)ŷn,l − P

(i)
K−1,l(z)

Q
(i−1)
K (z)

∣∣∣∣2 (9)

out of which the candidate with the smallest MSE is chosen.
An efficient implementation of this iterative minimization is
described in Sec IV-B.

The DOAs sin θk can be obtained via (6). The ensemble am-
plitudes |xk| are the incoherent superposition of each individual
snapshot

|xk| =
(

1

L

L∑
l=1

|xk,l|2
) 1

2

, (10)

where xk,l is the estimated amplitude of l-th snapshot acquired
by (7).

III. SS-FRI DOA ESTIMATION FOR NON-UNIFORM ARRAYS

Uniform sampling is a basic assumption in many high-
resolution DOA estimation techniques, whereas it does not
always hold in many scenarios. For example, sensor data loss
or damage frequently occurs in ocean sound source localization
and tracking. In this part, the FRI approximation is further ex-
tended to the non-uniform sampling, where only several sensor
measurements (random selected) of uniform sensor array are
available.

Signal Model for Non-uniform Arrays. When givenLmultiple
snapshots of K stationary sources, consider a ULA with N
uniform sensors. After data collection, only a small subset M 2

ofN sensor nodes can be used. In such circumstances, the usable
sensor samples YM = [yM,1,yM,2, . . .,yM,L],YM ∈ CM×L

can be expressed as in matrix form

YM = GYN ,M < N

where YN = [yN,1,yN,2, . . .,yN,L],YN ∈ CN×L is the uni-
form sample matrix, yM,l denotes the usable sensor samples of
the l-th snapshot, and yN,l denotes the uniform samples of the
l-th snapshot. The matrix G is the sub-sampled identity matrix
that has exactly one entry of 1 in each row and 0 s elsewhere.

Retrieving DOAs and amplitudes from such non-uniform
signal samples is challenging since they are randomly selected
from a collection of uniform measurements in presence of strong
noise. In order to tackle this problem, the ratio-structure model
is further generalized to directly perform model-fitting on the
non-uniform samples.

ss-FRI DOA Estimation for Non-uniform Arrays. First, by
defining W as a N ×N inverse DFT matrix, the following is
shown

yN,l = W

{
PK−1,l(z)

QK(z)

}N−1

n=0

which results from (2) and z = e−j2πn/N . Wu,v =
1
N exp(j2πuv/N). Using this signal representation, the
usable sensor samples can be expressed as

yM,l = GW

{
PK−1,l(z)

QK(z)

}N−1

n=0

which effectively provides a non-uniform sample model com-
prising a ratio of two polynomials that is not far from our FRI
approximation framework. Hence, in noisy conditions, the FRI
DOA estimation for non-uniform arrays can then be formulated
as

min
QK ,PK−1,l

L∑
l=1

∥∥∥∥∥yM,l −GW

{
PK−1,l(z)

QK(z)

}N−1

n=0

∥∥∥∥∥
2

(11)

where model-fitting is performed on the signal samples directly
instead of the DFT samples.

2To ensure that the total problem is well-posed, i.e. the number of parameters
to be retrieved is less than the number of sensors, in practice it is usually required
that M ≥ 2K + 1.
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Using the similar strategy as stated in (5), the problem is
solved in a linear manner using the following iterative mini-
mization

min
Q

(i)
K ,P

(i)
K−1,l

L∑
l=1

∥∥∥∥∥∥GW

{
Q

(i)
K (z)ȳn,l − P

(i)
K−1,l(z)

Q
(i−1)
K (z)

}N−1

n=0

∥∥∥∥∥∥
2

s.t.
∥∥YM −GWȲN

∥∥2 � σ2
noise (12)

where ȲN = {ȳn,l}N−1,L
n=0,l=1 is the predicted DFT of the uni-

form sensor sample matrix YN via the known non-uniform
measurements YM . Solving the constrained iterative quadratic
minimization problem for Qi

K provides a collection of candi-
dates for QK , when i = 1, . . . , imax, out of which the one for
which the MSE is the smallest is selected. The details of the
implementation for (12) in Sec IV.

IV. ALGORITHMIC SETTING

The FRI algorithm based on model-fitting is very robust
and efficient that reaches Cram é r-Rao lower bounds (CRLB)
empirically for a large range of noise level (SNR ≥ 5 dB) [44].
In this paper, the generic FRI framework is proposed to apply
to the multiple snapshot and non-uniform scenes. Applying the
MSE criterion, the FRI recovery is considered to be successful
as soon as the MSE between the signal reconstruction and the
measured samples is within the expected noise margin.

The DOA estimation for the single snapshot signal can be
considered as a special case of the multiple snapshot scenar-
ios, which essentially shares the same signal model and fitting
principle. Hence, this section focuses on the algorithmic imple-
mentation of the FRI approximation for multiple snapshots and
non-uniform measurements.

A. Model Order

For the MSE criterion, any sum of K sinusoids that is
close enough, i.e. within the given noise margin σ2

noise, to the
measured samples is a valid solution. Therefore, following a
parsimony principle, the “best” model order can be determined
as the smallest value of K for which this sum of sinusoids is
a valid solution. The detailed description of this model-order
determination algorithm is presented in [43].

B. ss-FRI DOA Estimation for Multiple Snapshots

Start with rewriting (9) in terms of the product of Fourier
matrices. First, by defining WH

N,K as a N ×K DFT matrix, for
l-snapshot samples, it can be expressed as

{PK−1,l(z)}N−1
n=0 = WH

N,Kpl

{QK(z)}N−1
n=0 = WH

N,K+1q

where pl, q are the coefficients of polynomials Pl,K−1,
QK which uniquely defines the DOA sin θk and ampli-
tude xk,l of the l-th snapshot signals. Now, define ŷN,l =
[ŷ0,l, ŷ1,l, . . . , ŷN−1,l]

T as the DFT of the l-th snapshot measure-
ment vector, and diag(ŷN,l) as the diagonal matrix constructed

from ŷN,l. Then, the quadratic minimization (9) becomes

min
p̃i,qi

‖Ai−1qi −Bi−1p̃i‖2 (13)

where p̃ = [pT
1 ,p

T
2 , . . . ,p

T
L]

T is numerator polynomial coef-
ficients vector of all snapshots. The matrices Ai−1,Bi−1 are
given by

Ai−1 =

⎡
⎢⎢⎢⎢⎣
diag {ŷN,1}
diag {ŷN,2}

...

diag {ŷN,L}

⎤
⎥⎥⎥⎥⎦
(
diag
{
WH

N,K+1qi−1

})−1︸ ︷︷ ︸
def
=Ri−1

WH
N,K+1,

Bi−1 = R̃i−1W̃

where R̃,W̃ are given by

R̃i−1
def
=

⎡
⎢⎢⎢⎢⎣
Ri−1 0 · · · 0

0 Ri−1 · · · 0
...

...
. . .

...

0 0 · · · Ri−1

⎤
⎥⎥⎥⎥⎦ ∈ CNL×NL,

W̃
def
=

⎡
⎢⎢⎢⎢⎣
WH

N,K 0 · · · 0

0 WH
N,K · · · 0

...
...

. . .
...

0 0 · · · WH
N,K

⎤
⎥⎥⎥⎥⎦ ∈ CNL×KL

(14)

Note that,Ri−1 is a square matrix with full rank andWH
N,K is

a N ×K DFT matrix with full column rank, so Bi−1 is a matrix
with full column rank. A normalization constraint is needed to
ensure the uniqueness of the solution qi to (9), where c0qi (c0 is
any arbitrary non-zero constant) is still a valid solution. In this
paper, we use the linear unit constraint: qH

0 qi = 1, where q0

is random initialized. Therefore, with this linear constraint, the
minimization in (13) can be rewritten as

min
qi

∥∥∥(I−Bi−1B
†
i−1

)
Ai−1qi

∥∥∥2 s.t. qH
0 qi = 1 (15)

where B†
i−1 = [BH

i−1Bi−1]
−1BH

i−1. The next iteration qi is
estimated by solving (15) using total least squares, thus QR
decomposition is performed.

For each coefficient initialization q0, we keep iterating the
polynomial coefficientsq until the MSE criterion is satisfied. We
reinitialize the coefficient q0 if the maximum iteration number
(= imax) is attained under the same initializationq0. In practice,
5 random coefficient initialization and imax = 20 are sufficient
to obtain a solution that is within the expected noise margin. We
summarize the main procedure in Algorithm 1.

In practical applications, it is very likely that there are outliers
in the multiple snapshot sensor data. Here, we provides a simple
way to remove the outliers: find the individual snapshot data
from which the estimated DOAs are far from the DOAs using
the full multiple snapshot data. With the “cleaned” multiple
snapshot data, the accuracy and robustness of DOA estimation
can be further improved.
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Algorithm 1: Multiple Snapshot ss-FRI DOA Estimation.
Input: Multiple snapshot measurements YN ,

noise level σ2
noise

Output: Denominator polynomial coefficients q,
numerator polynomial coefficients p̃,
the DOAs sin θk,
the amplitudes |xk|

for loop = 1 to max. initializations do
Initialize q with a random vector q0;
for i = 1 to max. iterations do

Build the matrices involved in (15) with qi−1, such as
Ai−1, Bi−1, and etc;

Update qi by solving (15);
if
∑L

l=1

∑N−1
n=0 |ŷn,l − PK−1,l(z)

Qk(z)
|2 ≤ σ2

noise then
Calculate p̃ by solving (13);
Terminate all loops;

end if
end for

end for
q = qi, p̃ = p̃;
Calculate sin θk and |xk| using (6), (7) and (10).

C. ss-FRI DOA Estimation for Non-Uniform Arrays

The new FRI scheme provides a possibility to directly perform
model-fitting on the non-uniform sensor measurements YM .
Notice that, the sub-sampled identity matrix G is of full row
rank, hence the predicted DFT of the uniform samples ȲN

cannot be uniquely determined via the constrains in (12).
Applying a model-fitting principle, the key idea is that the

correct predicted DFT samples ȲN best fit the ratio-structure
model. In other words, given a collection of candidates for ȲN ,
the correct DFT samples should be the one for which the MSE
is the smallest. This provides an efficient way to estimate the
solution to (11) in a linear manner by alternatively optimizing
DFT samples and polynomial coefficients:

1) Given DFT samples ȲN , Update polynomial coefficients
P

(i)
K−1,l, Q

(i)
K by applying the FRI algorithm.

2) Recover the FRI DFT signal Yrec based on the ratio-
structure model.

3) Update DFT samples ȲN by

min
ȲN

∥∥ȲN −Yrec

∥∥2
F
, s.t.
∥∥YM −GWȲN

∥∥2
F
≤ σ2

noise

(16)

where the subscript F represents the Frobenius norm.
It is straightforward to see that, geometrically (16) is equiva-

lent to the orthogonal projection of the recovered FRI DFT sig-
nal Yrec to the M -dimensional sphere: ‖YM −GWȲN‖2F ≤
σ2
noise, i.e. the proximal mapping of the signal recovery Yrec.
Hence, by repeating these steps, the model-fitting error as

stated in (12) would fast decrease, where is stops as soon as
the criteria (4) is satisfied. The initialization of the DFT samples
ȲN is randomly selected in the solution space, i.e. ȲN

∣∣‖YM −
GWȲN‖2F ≤ σ2

noise}. Typically, ten random initializations and
imax = 20 are sufficient to obtain a solution to the problem that

Algorithm 2: ss-FRI DOA Estimation for Non-Uniform
Arrays.

Input: Multiple snapshot non-uniform measurements YM ,
the rectangular permutation matrix G, noise level σ2

noise
Output: Denominator polynomial coefficients q,

numerator polynomial coefficients p̃,
the DOAs sin θk,
the amplitudes |xk|

for loop = 1 to max. initializations do
Initialize {ȳn,l} with a random vector {ȳn,l}0;
running Algorithm 1 to obtain q0, p̃0 and Y0

rec;
for i = 1 to max. iterations do

Update ȲN using (16);
Update qi, p̃i and Yi

rec by running Algorithm 1;
if ‖YM −GWYrec‖2F ≤ σ2

noise then
Terminate all loops;

end if
end for

end for
q = qi, p̃ = p̃i;
Calculate sin θk and |xk| (6), (7) and (10).

is within the expected noise margin. The detailed algorithmic
implementation is described in Algorithm 2.

In fact, the FRI DOA estimation technique for the ULAs
can be seen as a special case of the non-uniform array, be-
cause we have GTG = Id (Id represents the identity matrix).
That is, this paper proposes a unified FRI algorithm based
on ratio-structure model, i.e. Algorithm 2, to solve the most
common DOA estimation problem in practice, such as single
snapshot with uniform samples, multiple snapshots with uniform
samples, single snapshot with non-uniform samples, multiple
snapshots with non-uniform samples. With high-resolution and
low computational cost, our ss-FRI algorithm can robustly tackle
a wide variety of DOA-related tasks in practice.

D. Algorithmic Complexity

In terms of computational cost, the model-fitting method
requires the QR decomposition of matrix Ai−1 and Bi−1. It
seems that in each inner iteration, our method requires a QR
decomposition of the matrixAi−1 ∈ CNL×(K+1) and the matrix
Bi−1 ∈ CNL×KL. However, the square matrix Bi−1 is repeti-
tive along the diagonal.

B†
i−1 =

⎡
⎢⎢⎢⎣
(Ci−1)

−1 0 · · · 0

0 (Ci−1)
−1 · · · 0

...
...

. . .
...

0 0 · · · (Ci−1)
−1

⎤
⎥⎥⎥⎦BH

i−1 (17)

where Ci−1 = (Ri−1W
H
N,K)HRi−1W

H
N,K and it essentially

only needs to perform a QR decomposition on aK-square matrix
Ci−1. Moreover, notice that, the matrix Bi−1 is also sparse
whose algebraic structure largely reduces the matrix building
and computational cost. Hence, the computational complexity
mainly scales with the number of sources K and varies slowly
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Fig. 2. DOA estimation from L snapshots for two equal strength sources (∗)
at 0.1 and 0.2 with SNR = 20 dB. CBF, MVDR, MUSIC, CS, ESPRIT and
ss-FRI DOA estimation for incoherent sources with (a) L = 1, (b) L = 64, and
(c) L = 3, and (d) for coherent sources with L = 64. The ULA has 10 sensors.

with the number of samples and snapshots, which significantly
increases the algorithm run-speed when processing real DOA
data (e.g. many sensors and snapshots).

V. SIMULATION RESULTS

In this section, the proposed ss-FRI DOA estimation algo-
rithm is validated in various conditions. In the first part, the
performance comparison between our algorithm and other high-
resolution techniques is concretely presented in Section V-A.
Then, the dependence of the DOA estimation performance on
possible parameters (e.g. position perturbations of sensors, num-
ber of data snapshots, SNR, etc.) is thoroughly investigated in
Section V-B.

To perform these simulations, the algorithm is implemented in
MATLAB 2019b on a computer with i7− 7700 CPU and 16 G
of RAM. The divided grid of CBF, MVDR, MUSIC, and CS is
set as [−1 : 0.01 : 1] by default. The element spacing (i.e. sensor
interval) of all ULAs is half a wavelength, which gives rise to:
d
λ
= 0.5. For non-uniform arrays, the minimum spacing of the

array elements is also half a wavelength. The CVX (convex)
toolbox is used to implement Compressive Sensing techniques
in the MATLAB environment, and we refer the readers to [5] for
more details.

A. Performance Comparison

In this section, ss-FRI is compared with commonly used
algorithms such as CBF, MVDR, MUSIC, ESPRIT, and CS in
several aspects: resolution, weak target detection for uniform
and non-uniform arrays, and basis mismatch.

1) Resolution: Resolution of DOA estimation is very impor-
tant in many practical applications, which directly determines
the performance of the DOA-related tasks. Fig. 2(a) shows the
estimation resolution of ss-FRI, CBF, MVDR, MUSIC, ESPRIT,
and CS under the condition of single snapshot and incoherent

Fig. 3. Multiple snapshot (L = 5) DOA estimation for nine sources (∗) at
−0.98, −0.755, −0.5 −0.305, 0.1, 0.25, 0.45, 0.65, and 0.905 with SNR =
0 dB, 15 dB, 10 dB, 0 dB, 15 dB, 0 dB, 20 dB, −5 dB, and 5 dB, respectively.
CBF, MVDR, MUSIC, CS, ESPRIT and ss-FRI DOA estimation for (a) inco-
herent sources and (b) coherent sources. The ULA has 21 sensors.

sources. Here, the two sources with the same strength (SNR =
20 dB) are located at 0.1 and 0.2. The ULA has 10 sensors.
MVDR, MUSIC, and ESPRIT cannot resolve the two sources
because of insufficient data snapshots. Fig. 2(b)–(d) show the re-
sults of multiple snapshot DOA estimation in incoherent sources
and coherent sources cases. CBF fails to discriminate the two
closely located sources in all cases. MVDR, MUSIC, and ES-
PRIT retrieve the incoherent sources successfully, whereas their
performance degrades significantly as the number of snapshots
decreases.

Notice that, these methods are not robust enough to discrim-
inate the coherent sources due to the degradation of the rank of
the covariance matrix. CS is able to resolve the coherent sources,
despite the drawbacks of false targets due to spectrum leakage.
From Fig. 2, it can be seen that our ss-FRI algorithm is very
robust that can accurately retrieve the source locations in various
conditions.

2) Weak Target Detection for ULAs: Weak target detection is
a challenging problem in practice due to the presence of strong
interferences and inadequate data snapshots. Fig. 3(a) and (b)
present the results of DOA estimation with L = 5 snapshots in
incoherent and coherent source situations respectively. The ULA
has 21 sensors. CBF, MVDR, MUSIC, and ESPRIT can recover
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Fig. 4. Single snapshot DOA estimation for uniform and non-uniform array.
The sources (∗) are at−0.8033,−0.45−0.1, 0.12, 0.436 and 0.953 with SNR =
10 dB, 15.5 dB, 17 dB, 18 dB, 20 dB, and 6 dB, respectively. Reconstruction of
incoherent sources using CBF, Pan’s method, CS and ss-FRI DOA estimation
(a) for the ULA (b) and for the non-uniform array. (c) The non-uniform array
constructed by randomly selecting M = 20 sensors out of a standard ULA with
32 sensors.

the sources with strong strength but fail to locate weak sources
in incoherent source case.

When the sources are coherent, they are not able to be applied
because of the degradation of the covariance matrix computed
(e.g. MVDR, MUSIC, and ESPRIT). Although CS algorithm
has obvious responses at the source positions, there are also
non-trivial amplitudes nearby that gives rise to less sparse DOA
estimates and inaccurate amplitude estimation. As a result of
K-sinusoidal approximation, our algorithm provides an exactly
K-sparsity DOA estimation that retrieves both the DOAs and
the associated amplitudes accurately.

3) Weak Target Detection for Non-Uniform Arrays: Fig. 4
depicts the estimation results of CBF, CS, Pan’s method (gener-
alized FRI [30]), and ss-FRI DOA estimation for single snapshot.
The ULA has 32 sensors and the non-uniform array has 20
usable sensors (see in Fig. 4(c)). CS and ss-FRI achieve good
performance in both uniform and non-uniform scenarios. While,
CBF cannot distinguish some sources due to the interference of
high sidelobes. Pan’s method can locate all sources with high
accuracy for the ULA.

However, given the non-uniform measurements, Pan’s
method can only identify a limited range of DOAs, i.e.

Fig. 5. Multiple snapshot (L = 3) DOA estimation for uniform array and
non-uniform array. The six sources (∗) are at−0.52,−0.35−0.184, 0.25, 0.436
and 0.95 with SNR = 10 dB, 5 dB, 10 dB, 5 dB, 20 dB, and 0 dB, respectively.
Reconstruction of incoherent sources using CBF, MVDR, MUSIC, CS and ss-
FRI DOA estimation (a) for the ULA (b) and for non-uniform array. (c) The
non-uniform array constructed by randomly selecting M = 13 sensors out of a
standard ULA with 21 sensors.

| sin(θk)| ≤ 0.5. This is because the minimum spacing of the
array elements is half a wavelength that is the most common
setting in practice, yet Pan’s approach requires the non-uniform
measurements to be sufficiently dense in space. As a result, the
interval of the interpolated uniform samples by Pan’s method is
essentially larger than the actual physical distance (half of wave-
length), leading to insufficient spatial sampling rate d

λ
> 0.5

[49], [50]. Hence, although Pan’s approach is sufficiently robust
and accurate to handle arbitrary non-uniform sampling, it is less
applicable for the practical DOA applications that make use of
the sub-sampled sensor arrays.

For multiple snapshots, there are two cases: one is fixed
sources; the other is moving sources. For the fixed sources, the
results of uniform and non-uniform arrays withL = 3 snapshots
are shown in Fig. 5(a) and (b). Fig. 5(c) shows the position of
the sensors of the non-uniform array which is constructed by
randomly choosing 13 sensors from a ULA comprising of 21
sensors. CBF, MVDR, and MUSIC can all successfully locate
the strong sources for the ULA, whereas the non-uniform sam-
pling causes estimation inaccuracy. Consistent with the previous
analysis, CS has responses at the ground-truth source positions
with less sparse retrieval due to energy leakage. Performing
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Fig. 6. ss-FRI DOA estimation (◦) with snapshots (L = 3) for four moving
sources (solid line) with different SNR = 10 dB, 0 dB, 5 dB and 20 dB (in order
of DOAs from small to large) respectively for non-uniform array (the array is
the same as Fig. 5(c)).

model-fitting on the non-uniform samples directly, our ss-FRI
algorithm accurately recover the DOAs and amplitudes with
exactly K-sparsity.

In order to further demonstrate the effectiveness of our algo-
rithm, the test comprising of four moving sources is conducted
in the second scenario. The first source moves from −0.5 to 0
with SNR = 10 dB; The second source moves from 0.1 to 0.4
with SNR = 0 dB; The third source moves from 0.4 to 0.6 with
SNR = 5 dB; The fourth source is at 0.9 with SNR = 20 dB. The
sensor positions are exactly the same as Fig. 5(c). As shown
in Fig. 6, the results of ss-FRI accurately coincide with the
ground-truth trajectory, which further validates our algorithm
in practical settings.

4) Basis Mismatch: CS has a pretty good performance in
above cases, but it suffers from basis mismatch due to inadequate
grid discretization. The fundamental assumption for CS is that
the signal can be sparsely represented on the grid, but very
likely the target is not exactly located on the grid in practical
applications. Consequently, basis mismatch occurs frequently.
Fig. 7(a) and (b) show the results of CS without basis mismatch
and with basis mismatch respectively. In this circumstances, the
ULA has 10 sensors. CS has an extra wrong target detection
induced by basis mismatch. Usually, it can be improved by using
a denser grid, however, this will lead to the worse orthogonality
condition of the sensing matrix built. Besides, this also comes
with significant increase on the algorithm computational cost,
which is time consuming and prohibited in practice. Using
a grid-free ratio-structure model, our algorithm can achieve
accurate DOA estimations within a very short run-time.

B. Performance Analysis

In this section, the performance of our ss-FRI algorithm
is investigated on the following aspects: sensitivity to sensor
position perturbations, multiple-snapshot enhancement, perfor-
mance curve, and computational time.

1) Sensitivity to Position Perturbations: In DOA estimation,
the signal model often assumes that the positions of sensors
are accurate. However, this assumption usually does not hold in

Fig. 7. Single snapshot CS performance in DOA estimation in terms of the
discretization of the DOA space. CBF, CS and ss-FRI reconstruction for two
equal strength incoherent sources at 0 and 0.31 with SNR = 20 dB. CBF and
CS are (a) on a grid [−1 : 0.01 : 1], and (b) on a grid [−1 : 0.02 : 1]. The ULA
has 10 sensors.

practice, e.g. the turbulent current or the mobile sampling would
inevitably influence the sensor displacement. This inaccuracy
of sensor positions brings about a series of model degradation,
like wide beamwidth, strong sidelobes and disappearance of
spectrum peaks [51]. Consequently, it is necessary to check the
robustness of our ss-FRI algorithm against the sensor position
perturbation.

Fig. 8(b) shows the configuration of the ULA (21 sensors) with
large position perturbations that are randomly generated with the
standard deviation as 15% of the element spacing (e.g. 0.56m if
d = 3.75m) along both the array direction and vertical direction.
Fig. 8(a) shows the results of 60 random realizations for CBF and
ss-FRI algorithm, which intuitively demonstrates the robustness
of our algorithm against sensor position perturbations.

2) Multiple Snapshot Enhancement: The enhancement of
running our ss-FRI algorithm with multiple snapshot data is
investigated in this part. Fig. 9 intuitively describes the com-
parison between multiple snapshots and single snapshot. Two
sources with the same strength locate at −0.1 and 0.1 with
SNR = 0 dB, where the ULA consists of 10 sensors. The ss-FRI
with single snapshot gives less accurate estimated DOAs as
shown in Fig. 9(a). In this circumstance, the DOA retrieval
is intrinsically limited where its estimation inaccuracy can be
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Fig. 8. Single snapshot DOA estimation of two equal strength sources (at
0.1 and −0.1 with SNR = 5 dB) for 60 realizations with position error.
(a) Reconstruction with CBF (background color), ss-FRI DOA estimation (◦)
and the true DOAs (the blue vertical dotted line). (b) Top view of the array
configuration with position error (“∗”) and no position error (“+”). The ULA
has 21 sensors.

predicted by computing the Cramér-Rao bounds of the para-
metric estimation problem [31], [44].

Fig. 9(b) shows the result of CBF and our ss-FRI algorithm
under multiple snapshots. Given more available data, the DOA
estimation can be significantly improved both on accuracy and
robustness. We further use the root mean square error (RMSE)
as the evaluation metric to test the ss-FRI algorithm

RMSE =

√√√√E

(
1

K

K∑
k=1

(
sin θk − sin θ̂k

)2)
(18)

where sin θ̂k is the estimated DOA and E denotes the expected
value operator.

Fig. 10(a) shows the relationship between RMSE (K = 1) and
the number of snapshots at different noise level: SNR = 0 dB,
3 dB and 6 dB. The number of snapshots increases from 1 to 100.
RMSE decreases rapidly as the number of snapshots increases.

Notice that, the degree of source separation also affects the
accuracy of DOA estimation. As shown in Fig. 10(b), RMSE
decreases with the increase of source separation and the num-
ber of snapshot. The separation of two sources increases from
0.02 rad/π to 0.16 rad/π, where SNR increases from 1 dB to
12 dB (the ULA comprises of 10 sensors). In fact, the more
separated the sources, the more accurate the final DOA retrieval.

Fig. 9. Comparison of single snapshot and multiple snapshot DOA estimation
for two equal strength coherent sources (at 0.1 and−0.1with SNR = 0 dB, blue
vertical dotted lines) along 200 snapshots. (a) Single snapshot CBF (background
color) and ss-FRI (dots) DOA estimation. (b) Magnitude distribution of single
snapshot ss-FRI DOA estimation (∗), multiple snapshot ss-FRI DOA estimation
(◦) and ground truth (arrow). The ULA has 10 sensors.

3) Performance Curve: In this section, the RMSEs of our ss-
FRI algorithm and other methods are compared with the Cramér-
Rao lower bounds (CRLB). Fig. 11(a) shows the RMSEs and
CRLB with single-snapshot. The ULA consists of 11 sensors
and two incoherent sources are located at −0.205 and 0.505.
CS, Cadzow and ss-FRI have a similar performance at low SNR
(< 3 dB). However, when signal is less noisy (≥ 3 dB), ss-FRI
has a better performance than both CS and Cadzow. Moreover,
the computed MSE curve of our ss-FRI algorithm coincides with
CRLB at about SNR = 4 dB, which effectively demonstrates its
good performance. Note that, CS is limited by grid accuracy at
higher SNR.

The results of multiple snapshots (L = 10) are shown in
Fig. 11(b). Our algorithm outperforms the other techniques.
The performance curve of ss-FRI approach reaches the CRLB
at −4 dB. Multiple snapshots not only reduce the estimation
error, but also make the algorithm reach the CRLB earlier at
lower SNR. Therefore, multiple snapshot data provides a DOA
estimation with higher robustness and accuracy. Note that, the
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Fig. 10. (a) RMSE (averages over 1000 realizations) for multiple snapshot
ss-FRI DOA estimation (K = 1) versus number of snapshots with SNR = 0 dB,
3 dB, and 6 dB. (b) RMSE (averages over 1000 realizations) for multiple
snapshot ss-FRI DOA estimation versus SNR and Separation between two equal
strength incoherent sources with L = 5. Note that the ULA has 10 sensors.

curves of MVDR, MUSIC, and CS drift away from the CRLB
at higher SNR due to insufficient grid division.

4) Computation Time: In this section, we compare the effects
of the number of snapshots (L = 1 : 3 : 31) and array element
number N = 31 : 30 : 301 on computation time for CS and
ss-FRI. CS is on a grid division as [−1 : 0.01 : 1], which is a
commonly used grid accuracy, although it needs to be denser in
some scenarios. There are two sources with SNR = 15 dB. The
computation times (L = 1) of the three methods are shown in
Fig. 12(a). The times of both Cadzow and CS increases with the
number of sensors N , while the time of ss-FRI (about ≤ 0.01 s)
is almost unchanged. ss-FRI only requires a QR decomposition
of a small matrix. As shown in Fig. 12(b), the cost of CS also
increases with the number of snapshots, whereas ss-FRI rarely
varies with the number of snapshots L. This is because the
computation of ss-FRI with multiple snapshots can be decoupled
as if it was dealing with single-snapshot. Thus, the complexity
of our algorithm is mainly related to the number of sources and
varies quite slowly with the number of samples and snapshots,
which makes it possible to process a large amount of real DOA
data within a very short time. This is particularly meaningful

Fig. 11. Comparing the performance curve (averages over 2000 realizations)
of Cadzow, MVDR, MUSIC, CS, ESPRIT and ss-FRI DOA estimation with
CRLB. There are two equal strength incoherent sources at −0.205 and 0.505
with (a) L = 1 and (b) L = 10. The ULA has 11 sensors.

for real-time tracking and localization. Fig. 12(c) presents the
convergence rate of Cadzow and ss-FRI with 21sensors, which
suggests that less iterations are needed when running our ss-FRI
algorithm.

VI. EXPERIMENTAL DATA RESULTS

A. SWellEx-96 Experiment

The performance of our ss-FRI algorithm under both single
and multiple-snapshots is further validated using real data of
a complex multipath shallow-water environment. The data set
is from the shallow water evaluation cell experiment 1996
(SWellEx-96) Event S5, occurred from 23:15 to 0:30 in the west
of Point Loma, CA.

During the event, the data is collected by a vertical ULA. The
array has 64 sensors with spacing d = 1.875m and is distributed
from depth 94.125 m to depth 212.25 m. The water depth is
216.5 m. Starting with the first sensor, select one for every three
sensors uniformly, the element spacing is thereby d = 5.625m.
In addition, the data of the 43 rd sensor is missing, and therefore,
the data used is only from non-uniform 21-sensor array. The
data of interest occurred at about 00:15 when the depth of the
towed source is at depth 54 m and the distance from the array
is around 900 m. The towed source signal emitted a set of nine
frequencies [112 130,148 166,201 235,283 338,388] Hz. The
signal with 112 Hz is used here. The duration data of 1.5 min
sampled with 1500 Hz was divided into 87 snapshots of 2.7 s
duration with 63% overlap.

Fig. 13(a) shows CBF and ss-FRI DOA estimation for exper-
imental data using the frequency 112 Hz with single snapshot.
CBF merges some of the closely located DOAs, while ss-FRI
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Fig. 12. Comparison of computation time (averages over 500 realizations)
for two equal strength incoherent sources with SNR = 15 dB between CS and
ss-FRI with (a) different number of sensors N (L = 1) and (b) different number
of snapshotsL (N = 21). (c) Convergence rate (averages over 2000 realizations)
of Cadzow and ss-FRI for two equal strength sources with SNR = 20 dB and
21 sensors. “◦” represents the number of iterations to terminate the loop.

achieves a much better result with higher resolution and suf-
ficient sparsity. More importantly, there are several stationary
DOAs along the several snapshots, which may correspond to
multipath arrivals in the underwater surroundings. The results of
multiple snapshot CBF, MVDR, MUSIC, CS, and ss-FRI DOA
estimation are shown in Fig. 13(b). Consistent with the above de-
scription, MVDR and MUSIC have unsatisfactory performance
even though there are sufficient snapshots data L = 87. This
is because the data contains the information of the coherent
sources due to multipath propagation. CBF cannot distinguish
the adjacent paths due to wide mainlobe and high sidelobes.
CS and ss-FRI can clearly distinguish the paths submerged by
CBF sidelobes. However, CS has a DOA spectrum leakage
caused by basis mismatch, which leads to less sparse DOA
estimations. Compared with single-snapshot results, there is no
significant difference except for some DOAs with very weak
energy, because the SNR of most snapshot data is large enough.

Through the comparison of multiple snapshots and single
snapshot, the final DOA estimation results are proved to be

Fig. 13. (a) Single snapshot CBF (background color) and ss-FRI (dots) DOA
estimation for frequency f = 112 Hz. (b) Multiple snapshot CBF, MVDR,
MUSIC, CS, and ss-FRI DOA estimation for frequency f = 112 Hz.

sufficiently accurate in some sense (In fact, it is difficult to
directly connect DOAs to some very specific paths because the
sound speed varies largely with regard to the depth of water, thus
virtually the sound does not travel in a way like straight line.).

B. South China Sea Experiment

The second test data was collected by the horizontal towed
line array at the South China Sea from August 7 to August 10,
2020. The array has 96 uniform sensors with sampling interval
d = 0.4167m (design frequency: 1800 Hz). The data (55 arrival
signals) of interest was collected from 23:30, August 7 to 00:40,
August 8 when the source remains stationary and the towed
array was moving at the depth of 56 m. During this period, the
linear frequency modulation (LFM) signal is transmitted in the
frequency range of 1700 Hz to 1900 Hz with a duration of 1 s
and the period of 50 s. Here, the real DOA trajectory can be
obtained from GPS and the attitude sensor data.

Fig. 14(a) demonstrates that ss-FRI DOA estimation for a
single snapshot can locate the source correctly, even though the
source is moving. In order to further verify the ss-FRI DOA
estimation for non-uniform arrays, 12 sensors are randomly
selected from 96 sensors. In this case, the sidelobes of CBF
increases and appears ambiguity due to non-uniform sampling
as shown in Fig. 14(b). Note that, the shape of the towed
array is affected by the ocean current and gravity. In general,
this will results in the perturbations of sensor positions, which
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Fig. 14. DOA trajectory estimation (frequency f = 1800 Hz) for CBF (back-
ground color), ss-FRI (◦), and GPS (solid line). (a) ULA. (b) Non-uniform array.
Note that the non-uniform array constructed by randomly selecting M = 12
sensors out of a standard ULA with 96 sensors.

largely deteriorates the DOA estimation. Despite the weak signal
strength of sources and this perturbations of sensor positions, our
ss-FRI still achieves a sufficiently good recovery within a very
short time, which effectively demonstrates the performance of
our algorithm when processing real DOA data.

VII. CONCLUSION

Motivated by the practical requirements of various DOA-
related tasks, a robust generic DOA estimation method has been
proposed in this paper that aims at tackling the common DOA
estimation problems (i.e. non-uniform sampling with multiple
snapshots) within a short time. Representing the DOA samples
as fraction of two polynomials, the model-fitting is directly
performed on the non-uniform and multiple snapshot sensor
measurements, which leads to a very efficient and robust DOA
estimation (ss-FRI) algorithm. We have demonstrated the ver-
satility of the proposed approach via simulated and experimen-
tal data in various conditions, e.g. multiple coherent sources,
insufficient data snapshots, low SNR, etc. The computational
complexity of our algorithm has been proven to be only related to
the number of sources independent of both the number of sensors
and snapshots, which meets the needs of many DOA-related
applications. For future work, the ss-FRI can also be applied

to point source reconstruction in other scenarios. Besides, the
ss-FRI DOA estimation for wide-band signals needs more study.
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FRI-based DOA estimation for arbitrary array layouts,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process., 2017, pp. 3186–3190.

[36] Y. Pan, G. Q. Luo, H. Jin, X. H. Zhang, and C. Yin, “DOA estimation with
planar array via spatial finite rate of innovation reconstruction,” Signal
Process., vol. 153, pp. 47–57, 2018.

[37] H. Pan, “Looking beyond pixels: Theory, algorithms and applications of
continuous sparse recovery,” Ph.D. dissertation, IC, Lausanne, 2018.

[38] R. Scheibler, “Rake, peel, sketch: The signal processing pipeline revisited,”
Ph.D. dissertation, IC, Lausanne, 2017.

[39] M. Simeoni, A. Besson, P. Hurley, and M. Vetterli, “CPGD: Cadzow
plug-and-play gradient descent for generalised FRI,” IEEE Trans. Signal
Process., vol. 69, pp. 42–57, 2021.

[40] R. Cohen and Y. C. Eldar, “Sparse array design via fractal geometries,”
IEEE Trans. Signal Process., vol. 68, pp. 4797–4812, 2020.

[41] C.-L. Liu and P. P. Vaidyanathan, “Super nested arrays: Linear sparse arrays
with reduced mutual coupling—Part I: Fundamentals,” IEEE Trans. Signal
Process., vol. 64, no. 15, pp. 3997–4012, Aug. 2016.

[42] C. Gilliam and T. Blu, “Fitting instead of annihilation: Improved recovery
of noisy FRI signals,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., 2014, pp. 51–55.

[43] C. Gilliam and T. Blu, “Finding the minimum rate of innovation in the
presence of noise,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., 2016, pp. 4019–4023.

[44] R. Guo and T. Blu, “FRI sensing: Retrieving the trajectory of a mobile
sensor from its temporal samples,” IEEE Trans. Signal Process., vol. 68,
pp. 5533–5545, 2020.

[45] R. Guo and T. Blu, “FRI sensing: 2D localization from 1D mobile sensor
data,” in Proc. Asia-Pacific Signal Inf. Process. Assoc. Annu. Summit Conf.,
2020, pp. 986–991.

[46] R. Guo and T. Blu, “FRI sensing: Sampling images along unknown curves,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2019, pp. 5132–
5136.

[47] C. Sanathanan and J. Koerner, “Transfer function synthesis as a ratio of
two complex polynomials,” IEEE Trans. Autom. Control, vol. AC-8, no. 1,
pp. 56–58, Jan. 1963.

[48] A. K. Shaw, “Optimal design of digital IIR filters by model-fitting fre-
quency response data,” IEEE Trans. Circuits Syst. II. Analog Digital Signal
Process., vol. 42, no. 11, pp. 702–710, Nov. 1995.

[49] D. H. Johnson and D. E. Dudgeon, Array Signal Processing: Concepts
and Techniques. New York, NY, USA: Simon & Schuster, Inc., 1992.

[50] D. G. Manolakis, V. K. Ingle, and S. M. Kogon, Statistical and Adaptive
Signal Processing: Spectral Estimation, Signal Modeling, Adaptive Filter-
ing, and Array Processing, Norwell, MA, USA: Artech House, Apr. 2005.

[51] T. C. Yang, “Deconvolved conventional beamforming for a horizontal line
array,” IEEE J. Ocean. Eng., vol. 43, no. 1, pp. 160–172, Jan. 2018.

Yongfei Li received the B.E. degree in electronic en-
gineering from Sichuan University, Chengdu, China,
in 2017. He is currently working toward the Ph.D.
degree with the College of Information Science
and Electronic Engineering, Zhejiang University,
Hangzhou, China. His research interests include DOA
estimation and signal processing.

Ruiming Guo received the B.E. degree in electronic
engineering from Sichuan University, Chengdu,
China, in 2017. He is currently working toward the
Ph.D. degree with the Department of Electronic En-
gineering, Chinese University of Hong Kong, Hong
Kong. His research interests include sampling theory,
image, and signal processing.

Thierry Blu (Fellow, IEEE) was born in Orléans,
France, in 1964. He received the Diplôme d’ingénieur
from École Polytechnique, France, in 1986 and from
Télécom Paris (ENST), France, in 1988, and the Ph.D.
degree in electrical engineering from ENST in 1996,
with a study on iterated rational filterbanks, applied
to wideband audio coding.

From 1998 and 2007, he was with the Biomedical
Imaging Group, Swiss Federal Institute of Technol-
ogy, Lausanne, Switzerland. He is currently a Profes-
sor with the Department of Electronic Engineering,

The Chinese University of Hong Kong, Hong Kong. His research interests
include wavelets, approximation and sampling theory, sparse representations,
image denoising, biomedical imaging, optics, and wave propagation.

Dr. Blu was the recipient of two best paper awards from the IEEE Signal
Processing Society in 2003 and 2006. He is also coauthor of a paper that received
the Young Author Best Paper Award in 2009 from IEEE Signal Processing
Society.

He has been a member of the IEEE Signal Processing Theory and Methods
Technical Committee in 2008–2013, and an Associate Editor for the IEEE
TRANSACTIONS ON IMAGE PROCESSING in 2002–2006, the IEEE TRANSACTIONS

ON SIGNAL PROCESSING in 2006–2010, and Signal Processing in 2008–2011. He
is currently on the board of EURASIP Journal on Image and Video Processing
and SIAM Journal on Imaging Sciences, and a Member of the IEEE Bio Imaging
and Signal Processing Technical Committee.

Hangfang Zhao received the B.E. degree in elec-
tronic engineering from Xidian University, Xi’an,
China, in 1991, the M.E. degree in underwater engi-
neering from Harbin Engineering University, Harbin,
China, in 1997, and the Ph.D. degree in communica-
tion and information systems from Zhejiang Univer-
sity, Hangzhou, China, in 2010. From 1991 to 2012,
she was with Hangzhou Applied Acoustics Research
Institute, Hangzhou, China, where she conducted
research in acoustic signal processing and acoustic
engineering. In 2012, she joined Zhejiang University,

where she is currently a Professor with the Department of Information Science
and Electronic Engineering. Her research interests include array signal process-
ing, acoustic tomography and acoustic imaging, and robust signal processing in
uncertain environments.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 08,2021 at 00:20:16 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


