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Abstract: A proper estimation of realistic point-spread function (PSF) in optical microscopy
can significantly improve the deconvolution performance and assist the microscope calibration
process. In this work, by exemplifying 3D wide-field fluorescence microscopy, we propose
an approach for estimating the spherically aberrated PSF of a microscope, directly from the
observed samples. The PSF, expressed as a linear combination of 4 basis functions, is obtained
directly from the acquired image by minimizing a novel criterion, which is derived from the noise
statistics in the microscope. We demonstrate the effectiveness of the PSF approximation model
and of our estimation method using both simulations and real experiments that were carried out
on quantum dots. The principle of our PSF estimation approach is sufficiently flexible to be
generalized non-spherical aberrations and other microscope modalities.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The point-spread function (PSF) describes the response of the imaging system to a point source
or object. It plays a fundamental role in understanding imaging performance, such as the
theoretical resolution limit and the optical sectioning capacity, and to identify any problems with
the microscope settings for calibration [1, 2]. Thus a realistic and accurate knowledge of the
PSF is crucial to optimize the performance of a microscope and for successful deconvolution,
allowing for highly accurate reconstruction of biological structures [3–5].

Depending on the imaging modalities (wide-field, confocal, light-sheet etc), PSFs have different
shapes. As the exact PSF in the microscope is rarely known, one has to rely on an approximation,
which can be accessed using an experimental or an analytical approach. The classical experimental
method is to image sub-diffraction sized fluorescent microspheres or quantum dots (<200 nm
diameter) [1, 6], which contains both the intrinsic and extrinsic aberrations [7]. However, this
process often gets tedious, since several measurements need to be averaged over user selected
ROIs due to noise degradations. Directly denoising them may cause loss in essential information,
and their resolution are tied to the resolution of the acquisition. Moreover, in the case of
deconvolution microscopy, the imaging conditions of experimental PSFs may be different from
those in actual imaging, which makes the restoration performance suboptimal. For instance, the
PSF in Stimulated Emission Depletion (STED) microscopy depends strictly on the properties of
the fluorescence dye, while in most of the cases the dye for microspheres is different from the
one used for labeling the sample.
Several approaches have been proposed to address the question how to accurately model

analytically the PSF in accordance with the laws of optics using diffraction theory and knowledge
of the optical components [8–10]. The advantage is that the generated model can be evaluated
for the entire object space. Because real optical systems are prey to a variety of aberrations, the
PSF does not obey some simplified models. This is especially apparent when using lenses with
high numerical aperture. Extensive PSF models, such as the Richards-Wolf model [11] and the
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Gibson-Lanni model [8], are characterized by a large number of approximations with varying
degrees of accuracy. In addition, despite the widespread PSF approximation by a Gaussian in
single molecule localization microscopy, it has been argued that a more realistic model can
significantly improve the localization accuracy [12–15].
Unfortunately, some of the model parameters such as the refractive index of the specimen,

are difficult to obtain or might change due to heating of live samples during the course of
experiments. Thus the resulting PSF is unlikely to match experimental conditions. Moreover, in
some microscopy techniques, for example Selective Plane Illumination Microscopy (SPIM), the
PSF is object-dependent (the product of the widefield detection PSF and the intensity profile of
the excitation light sheet along the axial direction) [16], which makes it impossible to compute
the PSF.
It is thus preferable to use a more global (i.e. object-dependent) approach for estimating

a PSF, directly from the acquired data. Most algorithms that choose this option perform the
simultaneous estimation of the PSF and of the object, based on prior hypotheses on them under a
maximum a posteriori (MAP) framework (blind deconvolution) [17–19]. Alternatively, based
on an analytic model and a carefully designed optimization criterion, one can estimate the PSF
by finding its parameters first [20–23], then perform deconvolution to restore the image of the
sample. It is this approach that we are going to follow, because it allows to apply higher quality
non-blind image deconvolution techniques [23, 24].

Aiming at 3Dwide-field fluorescence microscopy, we propose a blind PSF estimation algorithm
which does not require to measure any additional materials (e.g. fluorescence beads or quantum
dots). Inspired by the commonly-used Gibson-Lanni model [8], our PSF model which considers
only spherical aberrations consists of a linear combination of 4 basis functions. These basis
functions are also derived from Kirchhoff’s integral formula, thus automatically satisfy all the
constraints imposed by the optical model. Then the PSF is obtained by minimizing a novel
optimization criterion, the “blur-PURE” (Poisson Unbiased Risk Estimate), which is based on
the realistic noise statistics in fluorescence microscopy [25]. Compared with a non-parametric
representation (i.e., from an implicit regularization framework), a parametric formulation requires
much less values to estimate, and dramatically reduces the degrees of freedom in the problem.
In addition, the estimated PSF is defined in the continuous space, thus can be used to restore
different-size acquisitions under the same imaging settings.
The paper is organized as follows. We firstly describe the 4-basis PSF approximation model

for 3D wide-field fluorescence microscopy in Section 2. Section 3 introduces the blur-PURE
criterion and our PSF estimation method. Section 4 and 5 demonstrate the effectiveness of
the proposed PSF approximation model and of our estimation method on both synthetic and
experimental acquired data.

2. 4-basis approximation of a wide-field microscopy PSF

Wide-field microscopy is still the foundation of some advanced techniques, such as multi-photon
microscopy and super resolution localization microscopies. It is widely used to capture the
3D structures of living biological samples by collecting a stack of 2D images. While this
wide-field recording has the advantage of fast acquisition and low light exposure, the 3D image is
always blurred by the contribution of light from out-of-focus planes. Meanwhile, the PSF of
wide-field microscopy is axially asymmetric due to the mismatch between refractive indices of
the immersion medium and of the specimen [8].
Some theoretically derived models of 3D wide-field microscopy that assume the use of an

aberration-free objective lens have been shown experimentally to be inaccurate [26]. Thus the
aberrations introduced when the microscope is used under non-design optical conditions must be
incorporated into the theoretical model. The Gibson-Lanni model [8] is widely used since it can
predict the non-symmetric patterns in the axial direction, which reflects the spherical aberration
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and often appears in realistic imaging conditions. This model is based on a calculation of the
optical path difference (OPD) between experimental conditions and the design conditions of the
objective. It has been shown to be very useful for deconvolution microscopy [5, 27, 28] and also
for particle localization [29–33]. However, for the PSF estimation purpose, the Gibson-Lanni
model depends on a large number of non-linear parameters, which renders it inadequate for a
global optimization approach.

Inspired by the Gibson-Lanni model, we propose to approximate the spherically aberrated PSF
by a linear combination of 4 basis functions. For each basis function, the key idea is to reduce
Gibson-Lanni’s OPD expression (made of a sum of five square roots) to a sum of two square
roots only:

f (ρ, z; η, p, q) = z
√

p2 − ρ2 + η

√
q2 − ρ2, (1)

where z is the axial coordinate of the focal plane, and ρ is the normalized radius in the focal plane.
The (p, q) are akin to refractive indices, and their values are fixed once for all (see below). The
parameter η is an indication of the focus position zp . More specifically, the PSF h is written as

happ(r; c, η) =
4∑

m=1
cm hm(r; η), (2)

where r = (x, y, z) is the 3D spatial coordinate,

hm(r; η) =
�����A∫ min(NA,pm,qm)

0
exp

(
iK f (ρ, z; η, pm, qm)

)
J0 (Krρ) ρdρ

�����2 ,
c = {cm,m = 1, 2, 3, 4} are the coefficients of the basis functions, (p1, q1) = (1.35, 1.35), (p2, q2) =
(1.35, 1.45), (p3, q3) = (1.45, 1.35), (p4, q4) = (1.45, 1.45), A is a constant complex amplitude,
K = 2π/λ is the wave number, r = ‖r‖ and J0 denotes the Bessel function of the first kind of
order zero. Each basis function hm(r; η) is computed efficiently using a fast approach based on
Bessel series approximation in [34]. We demonstrate (see Section 4) that the 4-basis model in
Eq. (2) approximates any Gibson-Lanni PSF very accurately, provided that the range of refractive
index of the specimen are within [1.345, 1.5].
Intuitively, the OPD expression in the original Gibson-Lanni model seems to be over

parametrized: it is essentially made of a sum of terms like α
√
β2 − ρ2 which, when ρ � β, are

equivalent to α′ − β′ρ2. Hence, a sum of two square roots as in Eq. (1) should be sufficient to
approximate accurately the OPD in the Gibson-Lanni model.
For the proposed parametrization, when the wavelength λ and NA are provided (which is

usually the case), only the focus indicator η and 4 linear coefficients c have to be determined.
The degrees of freedom is greatly reduced compared with the original Gibson-Lanni model.
Note that the linear approximation in Eq. (2) is different from the approaches in Markham et
al. [20] and Soulez et al. [22], where the phase term of the original model is approximated by
a linear combination of several (typically larger than 6) polynomials (either power or Zernike
polynomials). The corresponding coefficients are thus highly non-linear and more difficult to
estimate accurately since they are involved in an integral. The proposed parametrization is also
distinct from the approach in [18], where the basis functions are learned from a training set of
PSFs with only different focus positions.
By using a different set of basis functions, our strategy can be generalized to non-spherical

aberrations (e.g. coma, astigmatism) that are correctly modelled in vectorial models [10, 11, 35].
In fact, Haeberlé [36] showed that the vectorial model can also be combined with the ease of
use of the Gibson-Lanni scalar approach, which has the advantage of introducing explicitly the
known or sample-dependent parameters [37].
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3. PSF estimation method

3.1. Imaging model

The optical microscope can be modeled as a linear shift-invariant system, due to the incoherent
nature of the emitted light [3,4]. Such a system is characterized by a PSF h(r), where r = (x, y, z)
is the 3D spatial coordinate. We do not consider space-varying PSFs [38–40] in the current work.
The noise degradation during image acquisition is considered to be mixed Poisson-Gaussian
statistics [41,42], which accounts for a broad range of imaging situations (from photon-limited to
sensor-limited imaging).

Y = α P
(
H0X
α

)
+N(0, σ2I), (3)

where Y ∈ RN denotes the distorted observation of the unknown true original image X ∈ RN ,
N = Nx × Ny × Nz is the size of the acquired 3D image. We assume independence of the
individual components of the random variable Y and that of the photon-counting process and the
read-out noise. The Scale α represents the gain of the acquisition device, which controls the noise
during the acquisition process. H0 ∈ RN×N is a block-circulant matrix, which implements a
discrete convolution with the PSF h. I denotes the identity matrix, and P(·) and N(·, ·) represent
the effect of the Poisson noise and the additive Gaussian noise (variance σ2), respectively. The
values of α and σ2 can be estimated by a robust linear regression performed on a collection of
local estimates of the sample mean and variance [42, 43].
Based on the image acquisition model in Eq. (3), the objective of this work is to estimate the

PSF h (namely H0) directly from the measurement Y. This is a well-known difficult inverse
problem since both the original image X and the PSF are unknown. However, as stated in the
introduction part, the PSF approximation with few involved parameters can greatly reduces the
degrees of freedom [20,22–24].

3.2. Blur-PURE as an optimization criterion
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Fig. 1. (a) Reliability of blur-PURE as an estimate of the blur-MSE: a typical example of
the Bars image degraded by a PSF and various noise parameters (α = 0.02, σ2 ∈ [0, 25]).
The values of the blur-PURE for various values of σ closely match those of the blur-MSE,
which confirms that the blur-PURE is an accurate substitute to the blur-MSE in practice.
3D rendering of the blurred noisy image when σ2 = 16 is shown at the right bottom. See
details of the experimental setting in Section 5.1. (b) and (c) show the z and x profiles of
band-indicators (true frequency responses of UH0,µ and approximated Uapp), respectively.

When the original image X is known, the estimation of H0 can be done by minimizing the
expected mean squared error (MSE) between the blurred ground-truth image H0X and a linear
processing UH of the acquired image Y [23,24]: 1

N E{‖UHY −H0X‖2}. This oracle criterion
(H0X is assumed to be known) is named “blur-MSE", since it measures the closeness to the
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blurred ground-truth image. A good choice for UH is Tikhonov regularized deconvolution:

UH,µ = HWH, where WH = HT
(
HTH + µP

)−1
, P is an approximation of the power density

spectrum of the origin image X and µ is some positive scalar. Similar to [23], it can be proven that
for all UH,µ, the solution H minimizing the blur-MSE is related to the true matrix H0, through
HTH = HT

0 H0, i.e., ‖ ĥ(ω)‖2 = ‖ ĥ0(ω)‖2 in the Fourier domain. Since ĥ and ĥ0 satisfy a very
low order parametric representation, this equation is equivalent to h(r) = h0(r − r0) where r0 is
some arbitrary shift.
The matrix UH,µ corresponds to a filter whose frequency response can be thought as a kind

of band-indicator since it marks a certain frequency band as 0 or 1 with a narrow transition

between the two values. The exact band-indicator U0(ω) = |H0(ω)|2
(
|H0(ω)|2 +C(ω)/A(ω)

)−1
,

where A(ω) and C(ω) are the power spectral densities of signal X and noise, respectively. The
P in UH,µ is often expressed by the discrete Laplacian operator (‖ω‖2 = ω2

x + ω
2
y + γ ω

2
z ) so

that C(ω)/A(ω) ≈ µ‖ω‖2 and UH,µ thus serves as an approximation to the exact band-indicator,
where γ is the ratio between lateral and axial resolutions.

In practice, the blur-MSE cannot be minimized directly since X is unknown. However, without
any assumptions on the noise-free data, the quantity of blur-MSE can be replaced by an statistical
estimate, blur-PURE (Poisson Unbiased Risk Estimate), which involves the measurement Y only.
For the linear degradation model in Eq. (3), we have the following theorem (similar to [23,24,44]).

Theorem 1 Consider the degradation model in Eq. (3) and U an arbitrary matrix, the random
variable blur-PURE is an unbiased estimate of the blur-MSE; i.e.,

1
N
| |UY| |2 + 1

N
‖Y‖2 − α

N
1TY − 2

N

N∑
n=1

YTU(Y − α en) +
2σ2

N
Tr(U) − σ2

︸                                                                                              ︷︷                                                                                              ︸
blur-PURE

' 1
N
‖|UY −H0X| |2,

where en is the N-dimensional vector with components δk−n, k = 1, 2, ..., N , and N is the number
of pixels of the image.

This theorem is the consequence of probabilistic relation that satisfied for Poisson-Gaussian
random variables: with the notation of Eq. (3), we have that (see Eq. (7) in [42]) E

{
XTHT

0 UY
}
=

E
{
YTU(Y − αen) − σ2Tr(U)

}
, where E{·} denotes the mathematical expectation operator. The

proof of Theorem 1 is very similar to the one in [23], the main difference being that, in [23], only
Gaussian statistics was considered

(
i.e. E

{
XTHT

0 UY
}
= E

{
YTUY − σ2Tr(U)

})
.

This criterion solely depends on the observed image Y thus is computable. The statistical
unbiasedness with the blur-MSE and the fact that the pixel number of the image N is very large
(typically for a 3D image 256 × 256 × 32, N > 2 × 106) indicates that the blur-PURE can be
used as a reliable subsitute of the blur-MSE (law of large numbers). See Fig. 1(a) for a typical
example of the closeness between the blur-MSE and blur-PURE. The maximum difference for all
cases is 3.74 × 10−4. Note that Theorem 1 is valid for any linear distortion H; i.e., is not limited
to convolutions. Here, since UH,µ is a convolution, all matrices involved are diagonalized by the
3D discrete Fourier transformation, and so, the blur-PURE can be efficiently computed in the
Fourier domain.

3.3. PSF estimation by band-indicator approximation

The optimization criterion, blur-PURE, provides explicit control over the PSF estimation problem.
However, directly minimizing the blur-PURE cannot guarantee the optimal solution, which is
mainly because this is a highly non-convex optimization problem that has many local minima.
Instead, we propose to firstly approximate the true band-indicator UH0,µ by a linear combination
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Fig. 2. The scheme diagram of the proposed PSF estimation approach. With the help of the
4-basis PSF approximation model, the band-indicator Uapp is firstly estimated by minimizing
the blur-PURE in Theorem 1, and then the estimated PSF HEst is obtained by an iterative
optimization algorithm in Eq. (4).

of basis functions Uapp =
∑

n an UHn,µ. Here Hn’s are constructed by the corresponding PSF
basis hn(r; η), which are described in Section 2. The accuracy of this approximation is shown in
Fig. 1(b). Thanks to the quadratic nature of the blur-PURE, the search for the optimal coefficients
a = {an, n = 1, 2, 3, 4} boils down to the solution of a linear system of equations. Auxiliary
parameters η and λ are estimated during this stage by a derivative-free optimization technique.
Specifically, we used the Nelder-Mead Simplex method with bound constraints to find the optimal
values. The maximum iteration number is set to be 400, and the starting points for η and λ are 0
and 10−3(αYmean + σ

2), respectively.
Once Uapp has been found, finding the PSF H amounts to solving the following unconstrained

minimization problem: min
H
‖HWH − Uapp‖22, where H assumes the parametric expression in

Eq. (2). We propose an iterative optimization algorithm:

H(k) = argmin
H=

∑
m cmHm

‖HWH(k−1) − Uapp‖22, (4)

where

WH(k−1) =
H(k−1) + (H(k−1))T

2

(
(H(k−1))TH(k−1) + µP

)−1
,

and H(0) is randomly initialized. The solution H(k) involves finding the coefficients c(k)m ’s by
solving a linear system of equations at each iteration until ‖H(k) − H(k−1)‖/‖H(k−1)‖ ≤ 10−3.
The convergence to stationary points of the objective function is achieved generally within 50
iterations. The scheme diagram describing the proposed approach is shown in Fig. 2.

4. Evaluation of the PSF approximation model

4.1. 4-basis model validation

The PSF approximation error is measured in terms of the relative squared error (RSE) [34,45]
calculated as

RSE(happ, h0) =
‖happ − h0‖22
‖h0‖22

× 100%,

where the ground-truth PSF h0 is generated based on the complete Gibson-Lanni model under
different acquisition conditions and normalized to have a maximum value of one [34]. The
approximated PSF happ is obtained by fitting the 4-basis model in Eq. (2) to Gibson-Lanni
“ground-truth” from various settings. Basically, the estimation is thought to be accurate when
RSE < 9% [45]. Calculations are carried out on a Macbook Pro with a 2.8 GHz Intel Core i7,
with 16 GB of RAM.
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Fig. 3. (a) Determination of the optimal η in the sense of minimal RSE: typical examples of
three different focus positions zp = 0, 500 nm and 1000 nm. Other settings: λ = 395 nm,
NA = 1.4, ns = 1.38, ni = 1.515. The estimated value is η = 0, 529.10 nm and 1025.07 nm,
respectively. (b) The scatter plot between the true zp and the estimated η. The ideal relation
is indicated by solid red line.

Fitting procedure

To find the optimal parameters (η and c in Eq. (2)) such that the approximated PSF can be as close
as possible to the ground truth, we perform an exhaustive search over the possible values of η
within the thickness of the sample. For each candidate of η, those 4 coefficients c are determined
from the least square fitting by solving a linear system of equations. The one corresponding to
the smallest value of RSE between the reconstructed and ground truth PSFs is selected. Fig. 3(a)
shows a typical example of the fitting process corresponding to different focus positions (zp = 0,
500 nm, 1000 nm). The estimated η is 0, 529 nm, and 1025 nm respectively.
In this work, we focus on the PSF estimation instead of some specific parameters. As stated

before, this η is an indicator of focus position but is not equal to zp . Fig. 3(b) shows the scatter
plot between the ground truth zp and the estimated η. The mean and max difference between
them are 25 nm and 46 nm respectively. As we can see from Fig. 3(b) and other experiments (not
shown here), the relation between η and zp is deterministic (function variables may depend on
wavelength λ, NA etc). This may be caused by the focal shift occurred in optical microscopy due
to the refractive index mismatch [46]. This suggests that it is possible to tabulate the relation
between η and zp , which may have some interest beyond the scope of this paper.

Noise-free conditions

We consider the wavelength λ used in the range from 340 nm to 750 nm with a step of 10 nm, as
usual in real experiments. The refractive indices ns’s of typical cellular components are in the
range from 1.354 to 1.5 with a step of 0.02. Other parameters are consistent with the setting of a
100× magnification, 1.4 NA oil immersion objective (the refractive index ni = 1.515). The focus
position zp varies from −1.24 µm to 1.24 µm with a step of 0.05 µm, which covers the range of
expected spherical aberrations. There are totally 20, 496 PSFs of size 127 × 127 × 63 generated.
The mean and standard deviation of the RSE are 0.26% and 0.42% respectively. Fig. 4(a)

shows the mean RSEs with respect to the wavelength. Note that PSFs with longer wavelength
have lower frequency (less rings) thus are more accurately approximated. For a typical PSF
(zp = 500 nm, ns = 1.394 and λ = 395 nm), the z-profiles of the true and fitted PSFs are shown
in Fig. 4(b). Apart from the low fitting errors, the non-symmetric pattern caused by the refractive
index mismatch can be well predicted by the proposed model. These results indicate that the
4-basis approximation model fits the Gibson-Lanni model very well, thus can be used as a good
alternative with much fewer parameters, albeit with less straightforward physical interpretation.
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Fig. 4. Evaluation of the proposed approximation model on simulated PSFs. (a) Plot of
the mean RSE between the theoretical and fitted PSFs over different wavelengths λ. (b)
Axial intensity profile of typical PSFs (λ = 395nm, zp = 500 nm) generated by the complete
Gibson-Lanni model (the black curve) and fitting (the dashed red curve). The focal shift can
be observed. The fitted PSF closely matches the ground truth PSF (RSE = 0.48%). (c) x-z
section of the theoretical PSF. Note the non-symmetric pattern caused by the refractive index
mismatch. The degraded PSFs in (d) and (f) are fitted by the proposed approximation model
in Eq. (2) resulting in (e) and (g), respectively. Images have been cropped and rescaled for
visualization purpose.

Noisy conditions

To evaluate the fitting performance in noisy conditions, we further degrade the above typical PSF
with two noise levels (low noise: α = 0.02, σ = 0 and high noise: α = 0.2, σ = 0.02). Then the
approximation model in Eq. (2) is again used to fit these noisy PSFs. The ground truth, noisy
and fitted PSFs are shown in Figs. 4(b)–4(f), which shows that the model in Eq. (2) provides a
robust approximation to the spherically aberrated PSFs even in noisy conditions.

4.2. Experimental PSF fitting

For experimental validation, we prepared samples by drying dilutions of QdotTM 605 ITK
streptavidin conjugated quantum dots (Qdots) on to a slide. These Qdots including the coating
have an approximate diameter of 20 nm. A small drop of the mounting medium was added and a
coverslip was placed to cover the dried Qdots on the slide. Fluorescence was collected by a 100×,
1.49 NA oil-immersion objective (Nikon) with an sCMOS camera (Andor Zyla VSC-03278). The
excitation and emission peaks of these Qdots are 375 nm and 605 nm, respectively. The physical
pixel size of the camera mounted on the microscope is 65 nm, and the measurement of the 3D
stack is performed with a step size of 89 nm, whose value is suggested in [1] to ensure the proper
sampling frequency. Complete 3D stacks of the sample are acquired, and PSFs are extracted by
the PSFj software [2] from the dataset. The average PSF is taken as the measured PSF.

The x-y and y-z sections of such a PSF (55 × 55 × 113) and its fitted result is shown in Fig. 5.
It shows that the proposed approximation model fits the data well over the complete sample space,
even for current relatively difficult condition (high NA, obvious asymmetric pattern). Fitting
a Gaussian function will certainly fail in this case to represent the long tails of the measured
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Fig. 5. A practical example. The x-y (a) and y-z (b) sections of the experimental PSF. (c-d)
The x-y and y-z sections of the fitted PSF by the proposed approximation model in Eq. (2).
The focus indicator (parameter η) is estimated to be 1.855 µm. The mismatch between the
refractive indices of the sample and immersion medium contributes to an axially asymmetric
PSF. Scale bar: 0.5 µm.

PSF. The estimated focus indicator η in Eq. (2) is 1.855 µm. We can also see a substantial
suppression of the extraneous noise in the fitted PSF. These results illustrate the appropriateness
of this 4-basis model in Eq. (2) for microscopy PSF in wide-field fluorescence microscopy.

5. PSF estimation results

5.1. Validation on simulated data

We adapt the confocal image simulator in [47] to the wide-field settings. Two PSFs with different
focus positions (zp = 0 µm, 2 µm respectively) are generated [34] according to the Gibson-Lanni
model with typical values for the parameters (λ = 622nm, NA=1.4, ni = 1.33, ns = 1.46).
They are corresponding to the cases without and with the spherical aberration respectively.
Other parameters are consistent with the setting of a Nikon Apo microscope. The pixel
size is 100 nm in the x-y plane and 250 nm along the z-axis. The Bars image (available at
http://bigwww.epfl.ch/deconvolution) is convolved with these PSFs. The blurred
images are subsequently contaminated by mixed Poisson-Gaussian noise with different noise
levels (corresponding to different α and σ values). Typically, we obtain a low noise image when
α = 0.02, σ = 0.02 and a high noise image when α = 0.2, σ = 0.2.
We compare the proposed approach with a popular blind deconvolution method (the

blind Richardson-Lucy algorithm [48]) and the EpiDEMIC plugin in Icy (http://icy.
bioimageanalysis.org/plugin/EpiDEMIC). The latter uses a PSF parametrization
by means of decomposition of the pupil on Zernike basis, and a continuous optimization method
to iteratively estimate both PSF parameters and the object. Similar to the present method, the
PSF parametrization requires only some general parameters (wavelength λ, NA and the refractive
index of the immersion medium ni).

Table 1 presents the RSEs between the estimated and ground-truth PSFs over different scenarios.
Note that all estimated PSFs are optimally shifted in the z-axis to best match the ground-truth
PSF. It can be seen that the proposed approach generally yields significantly more accurate and
consistent PSF estimation than other methods. Two typical cases are shown in Fig. 6. The
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Ground truth Proposed EpiDEMIC Blind-RL

(a
)

x

z

RSE = 1.43% RSE = 2.90% RSE = 33.03%

(b
)

x

z

RSE = 5.61% RSE = 10.09% RSE = 82.01%

Fig. 6. Comparison results of PSF estimations in the high noise conditions (α = 0.2, σ =
0.02). (a) zp = 0 µm; (b) zp = 2 µm. Other settings: λ = 622 nm, NA = 1.4, ni = 1.33 and
ns = 1.46. Locators (orange line) indicate the location of displayed sections (z = 0). Images
have been cropped and rescaled for visualization purpose.

proposed approach succeeds in estimating the spherical aberration of the PSF. The iterative
algorithm in Eq. (4) generally converges within less than 50 iterations. The proposed method
takes around 60 seconds generally, the Blind-RL takes around 70 seconds and EpiDEMIC
takes more than 120 seconds for the estimation. Fast computation is particularly beneficial in
localization microscopy and, generally, for high-throughput image restoration. Note that we do
not estimate the physical parameters (refractive indices, working distance etc), but only the PSF
that they generate. It may be interesting, though, to investigate how to retrieve some of these
physical parameters from the estimated PSF.

Table 1. RSE (%) comparison of the PSF estimation accuracy with other approaches under
different scenarios. The results have been averaged over 5 random initializations.

Focus position zp = 0 µm zp = 2 µm

Noise low high low high

Blind-RL 8.65 33.03 36.45 82.01

EpiDEMIC 0.68 2.90 9.85 10.09

Proposed 0.56 1.43 3.72 5.61

5.2. Validation on real data

In practice, Qdots in the acquired images are not always well-separated due to aggregation and
sedimentation. In this case, we can estimate the PSF from the acquired image using our algorithm
(described in Section 3), and then compare the estimated PSF with the measured one from
isolated Qdots under the same setting.
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The x-y and z-y sections of the estimated PSF from the real wide-field image shown in Fig. 8(a)
are shown in Figs. 7(a) and 7(b) respectively. Fig. 7(c) shows the z profile of the estimated PSF
as well as the Qdot experimental (“measured”) PSF and its approximation (“fitted”) using the
parametric expression in Eq. (2). As can be seen from this figure, these three profiles show
similar signal distributions, including their sidelobes, which indicates that the proposed method
can make an accurate estimation of the PSF in real conditions. Note that the PSF fitting is
performed on a single measured PSF (described in Section 4.2), while the estimation is done for
the whole image. As expected, under the same imaging setting, the difference between estimated
and fitted PSFs is very small (RSE = 2.12%).

By using the experimental or estimated PSF with our approach, we can perform deconvolution
on the image to retrieve the contrast of Qdots. We firstly apply the popular Richardson-Lucy
algorithm and our recent 3D PURE-LET algorithm [5, 42] with the experimental PSF. Figs. 8(a)-
8(c) show the blurred noisy observation as well as the deconvolved images with these two
approaches. With the experimental PSF, the Richardson-Lucy algorithm fails to reconcentrate
the spreading pattern. In addition, both approaches produce some unpredictable structures or
ring artifacts, which is mainly due to the inevitable noise of the measured PSF.

We further obtained the restored image using the PURE-LET algorithm with the PSF estimated
by the proposed estimation method (described in Section 3), as shown in Fig. 8(f). As baselines,
the blind-RL algorithm and the EpiDEMIC plugin are applied and the restored images are shown
in Figs. 8(d) and 8(e). Compared with these two methods, the PURE-LET significantly enhances
image resolution as many dots details can be clearly resolved in the deconvolved image (see
zoomed-in regions). The restored image has clearly removed the blur and suppressed the noise.
In particular, the elongation phenomenon and asymmetric pattern along the optical axis due to
the PSF are effectively eliminated. These results demonstrate that a properly estimated PSF by
the proposed approach is an essential ingredient, in addition to an efficient restoration algorithm,
to effectively improve the spatial resolution in wide-field fluorescence microscopy.

Es
tim

at
ed

x
y

(a) (b)
(c)

y
z

Fig. 7. The PSF estimation results of experimental data from Qdots. (a-b) the x-y and z-y
sections of the estimated PSF. (c) the z profile of the PSF estimated with our algorithm
(described in Section 3), compared to the z profiles of the experimental and fitted PSFs
(same conditions as in Fig. 5).
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Fig. 8. Deconvolution results of experimental Qdots data. (a) raw image (256 × 256 × 113
voxels); (b) and (c) restored images by the Richardson-Lucy algorithm and PURE-LET
algorithm [5] with the measured PSF, respectively; (d) restored image by the blind-RL
algorithm; (e) restored image by the EpiDEMIC plugin; (f) restored image by the PURE-LET
algorithm with the PSF estimated by our approach (described in Section 3). Locators (yellow
line) indicate the location of displayed sections (z = 0). Zoomed-in regions (×2) show
the resolution improvement of our method in (f). Also note the significant reduction of
out-of-focus blur in the x-z plane. Scale bar: 1µm.

6. Conclusion

We have proposed a blind PSF estimation approach dedicated to wide-field fluorescence
microscopy. The method consists in expressing the PSF as a linear combination of four basis
functions, which makes it depend only on five parameters (4 linear and 1 non-linear). In order
to estimate these parameters, we have introduced a novel criterion based on the mixed Poisson-
Gaussian noise statistics (namely blur-PURE) and an efficient iterative algorithm to minimize
this criterion. We illustrate the effectiveness of proposed approach using both simulations and
experimental measured data, and demonstrate that the estimated PSF can be used to effectively
deconvolve 3D wide-field fluorescence microscopy data. The flexibility of our approach makes it
suitable for generalization to other microscope modalities. Various source codes are available
at http://www.ee.cuhk.edu.hk/~tblu/demos.
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Although our parametrization takes care of spherical aberrations only, preliminary tests show
that our algorithm is quite robust to other types of aberration (coma and astigmatism), as long as
they remain mild (e.g. 30mλ): the result obtained is a close, spherically aberrated approximation
of the true PSF. Moreover, using this approximation in a state-of-the-art restoration algorithm,
results in negligible quality loss. Our future plans are to incorporate more aberrations into the PSF
approximation model, and apply the PSF estimation technique to microscope calibration [49, 50].
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