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Abstract—We propose a non-iterative image deconvolution
algorithm for data corrupted by Poisson or mixed Poisson-
Gaussian noise. Many applications involve such a problem,
ranging from astronomical to biological imaging. We parametrize
the deconvolution process as a linear combination of elementary
functions, termed as linear expansion of thresholds (LET). This
parametrization is then optimized by minimizing a robust esti-
mate of the true mean squared error, the Poisson unbiased risk
estimate (PURE). Each elementary function consists of a Wiener
filtering followed by a pointwise thresholding of undecimated
Haar wavelet coefficients. In contrast to existing approaches, the
proposed algorithm merely amounts to solving a linear system
of equations which has a fast and exact solution. Simulation ex-
periments over different types of convolution kernels and various
noise levels indicate that the proposed method outperforms state-
of-the-art techniques, in terms of both restoration quality and
computational complexity. Finally, we present some results on
real confocal fluorescence microscopy images, and demonstrate
the potential applicability of the proposed method for improving
the quality of these images.

Index Terms—Image deconvolution, Poisson noise, mixed
Poisson-Gaussian noise, unbiased risk estimate, MSE estimation,
fluorescence microscopy.

I. INTRODUCTION

IMAGE deconvolution intends to restore the underlying
image from measurements that are degraded by a linear

blurring operator and further corrupted by noise. Blurring is
usually caused by the physical low-pass behaviour of optical
systems, which brings an immediate loss of resolution. Two
predominant sources of noise are often considered during the
acquisition process [1], [2]. One is caused by the intrinsic
thermal and electronic fluctuations of the acquisition devices,
which is usually modeled as additive-white-Gaussian-noise
(AWGN). The other one is due to fluctuations in the number
of detected photons and is an inherent limitation of the detec-
tion process occurring in photosensitive devices, such as the
photomultiplier tube (PMT), photodiodes and charge-compled
device (CCD) cameras. This happens typically in adverse
conditions such as poorly illuminated environments or short
exposure times. In the context of photon-counting, the noise
model follows a Poisson statistics which is strongly signal-
dependent. In the case of images acquired with CCD cameras,
it is reasonable to consider the noise as a mixed Poisson-
Gaussian model [3]–[5]. Astronomy [4], [6], [7], medicine [3],
[8], [9] and biology [10]–[16] are typical applications where
low-intensity signals are frequently encountered.
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A. Overview of Related Works

Many efficient image restoration algorithms have been de-
signed under the additive (and often white) Gaussian noise as-
sumption [17]–[21]. However, these approaches become sub-
optimal when estimating the underlying intensities of Poisson
random variables, potentially further degraded by independent
AWGN. This is due to the signal-dependent nature of Poisson
noise; i.e., the noise variance in each pixel is proportional
to the intensity of the underlying signal. The development
of deconvolution algorithms specifically designed for this
scenario then becomes essential [22]–[24].

In the presence of Poisson noise, a popular method is the
Richardson-Lucy (RL) algorithm [25], [26], see [10], [14],
[27] for a comprehensive review. The RL algorithm can be
understood as a maximum-likelihood (ML) estimate, and has
been used extensively in many applications thanks to its ac-
counting of the Poisson statistics. However, this algorithm will
amplify noise after a few iterations due to the ill-posedness of
the deconvolution problem. Instead, many authors adopt the
optimization framework of an objective function consisting
of a data term, which quantifies the proximity between the
estimated image and the measurement, plus a convex non-
smooth regularizer. In this framework, several different reg-
ularizers are used such as total-variation [28]–[30], wavelet-
based [31]–[34]. However, the Poisson log-likelihood is non-
quadratic (but convex), which often requires the application of
relatively sophisticated optimization theory [22]. Some further
works adopt modified RL algorithm and were proposed to
improve the computational efficiency [13], [15], [22], [29],
[35]–[37]. For example, Figueiredo et al. [22] proposed to
use the alternating direction method of multipliers to solve
the optimization problem, Setzer et al. [35] employed the
split Bregman technique, and Pustelnik et al. [36] proposed
a parallel proximal algorithm based on the use of hybrid
regularization techniques.

Apart from these works, [23] employed a class of second-
order derivative-based regularizers. Dupé et al. [38] proposed a
frame-based method using the Anscombe variance stabilizing
transform (VST), which changes the linear degradation model
with Poisson noise into a nonlinear model with additive
Gaussian noise. However, as pointed out in [29], [39], such
approximations are inaccurate when the observed number of
photons is small and are not really well suited to decon-
volution. Similar to the Anscombe transform but with quite
different mathematical basis, Rond et al. [40] introduced a
Plug-and-Play framework to integrate the existing Gaussian
solvers to Poisson noise problems. Finally, we should mention
a dictionary learning approach [41], which involves a sparse
representation over a learned dictionary.

In the context of mixed Poisson-Gaussian noise, there has
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Fig. 1. Linear image degradation model caused by blurring and noise. Note
that this model includes both the Poisson noise case (σ2 = 0) and the mixed
Poisson-Gaussian noise case (σ2 6= 0). Image deconvolution is to restore the
original image x from the blurred noisy image y.

been a growing interest in noise identification problems [1],
[42], as well as denoising problems [2], [43]–[45]. However,
the literature on deconvolution problems under this noise
hypothesis is limited despite its importance [4], [46]–[50].
Among existing works, a weighted squared `2 norm noise
approximation was proposed in [47], a primal-dual proximal
splitting algorithm was proposed in [48] by investigating the
properties of the Poisson-Gaussian log-likelihood, and more
recently Marnissi et al. [50] proposed a variational Bayesian
approach for this problem.

In most of the above deconvolution approaches, a regular-
ization parameter plays an important role in the quality of the
recovery image, balancing the tradeoff between data-fidelity
and regularization terms. This value needs to be tuned manu-
ally for obtaining the optimal solutions for different scenarios.
This process is both time consuming, since it needs to solve
the minimization problem several times, and unrealistic in
practice. To solve this issue, there are some approaches for
the automatic parameter selection including generalized cross
validation (GCV) [38], [51], the discrepancy principle [34],
[52]–[55]. However, these criteria have many local minima in
general, thus an inaccurate estimate of the termination point
can result in a solution whose relative error is significantly
higher than the optimal value.

B. Contributions

The major contribution of this paper is to extend the
SURE-LET deconvolution approach introduced in [21] to the
Poisson and mixed Poisson-Gaussian noise cases. We also
present the deconvolution results on real confocal fluorescence
microscopy images.

The proposed approach has several advantages over other
existing techniques: 1) It is non-iterative and thus has an
explicit solution; 2) It is a parameter-free method; 3) It has
low computational complexity since it boils down to solving
a small linear system of equations; 4) It favorably compares
to state-of-the-art techniques, in terms of both restoration
quality and computational time. In details, our method con-
sists in approximating the deconvolution process as a linear
combination of elementary processings of the image, termed
“linear expansion of thresholds (LET)” whose coefficients are
obtained by minimizing a quadratic criterion (typically, the
mean-squared error/MSE, or its statistical estimate) [2], [21],
[56], [57]. In the present paper, each elementary process-
ing consists of Wiener filtering followed by wavelet-domain

thresholding. We derive a theoretically unbiased estimate of
the MSE, the Poisson unbiased risk estimate (PURE), and use
it to optimize the coefficients of the LETs. Note that thanks to
the linear representation of the LET processing, this transform-
domain optimization step is actually performed in the image-
domain [56], [58].

Compared to a Maximum A Posteriori (MAP) approach,
PURE minimization is akin to Bayesian Least Squares (BLS)
because the PURE is essentially a proxy for the MSE.
And, indeed, minimizing the MSE E{‖x̂(y) − x‖2} over
all functions x̂ of y, results in the conditional expectation
x̂BLS(y) =

∫
x p(x|y)dx, which involves the posterior pdf

p(x|y) directly [59]. On the other hand, the MAP solution
x̂MAP(y) = arg maxx p(x|y) results from the maximization of
this posterior. It should be obvious that, when p(x|y) is a very
localized function of x, the two expressions should not differ
significantly. The most important difference between the two
approaches is that, contrary to the MAP which requires a prior
knowledge of the statistics of x, the Bayesian Least Squares
solution can be estimated without such a knowledge by using
the PURE as a (very accurate) statistical approximation of the
MSE.

The rest of the paper is organized as follows. In Section II,
we introduce the theoretical basis of this work, specifically the
LET framework and PURE for deconvolution problem with
Poisson and mixed Poisson-Gaussian noises. Then we provide
a typical structure of the elementary functions in Section III. In
Section IV, we compare the proposed method on synthetic data
with several state-of-the-art techniques under various noise
levels and different types of convolution kernels. We show an
application to real confocal fluorescence microscopy images
in Section V. Some conclusions are drawn in Section VI.

II. THEORETICAL BACKGROUND

A. Problem Statement

One general observation model is shown in Fig. 1. The first
noise component is signal-dependent, and follows a Poisson
distribution whose mean depends on the true image intensity.
The second one, accounting for detector noise, is modeled as
a Gaussian random variable of mean zero and variance σ2.
Mathematically, this model is given by

y = α P
(

Hx

α

)
+N (0, σ2Id), (1)

where y ∈ RN denotes the distorted observation of the
unknown d-dimensional true image x ∈ RN , N = N1 ×
N2 × ... × Nd. H ∈ RN×N implements a convolution of
the point spread function (PSF) h. We need Hx ∈ RN to
ensure the inherently non-negativity of Poisson intensities.
P(·) represents the effect of Poisson noise and α ∈ R+

is the scaling factor, which controls the strength of noise.
Specifically, larger values of α will lead to lower intensity
images and thus higher Poisson noise. σ2 is the variance of
AWGN.

Note that it is possible to simplify the general model in (1)
depending on the application. For instance, a purely Poissonian
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Fig. 2. The restoration process amounts to finding the processing function
F(·) that minimizes the difference between x̂ and x.
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Fig. 3. The LET idea: the processing F is approximated by a linear
combination of few elementary functions F =

∑K
k=1 akFk . In that setting,

the restoration process amounts to finding the K coefficients a1, a2, ..., aK .

model is a special case, and can be obtained when σ2 = 0 as
in [23], [29], [60]

y = α P
(

Hx

α

)
. (2)

Because the random variable α P(Hx
α ) converges in law to the

deterministic value Hx when α→ 0, this model becomes the
classical Gaussian noise case y = Hx +N (0, σ2Id), which is
considered in [17], [21], [61]–[63]. The behavior of Poissonian
model is fundamentally different from that of AWGN, for
which the noise intensity is uniform and independent of the
underlying signal.

Our objective is to find an estimate x̂ so that it is the closest
possible to x in the minimum MSE sense. That is, ideally we
would like to minimize

MSE =
1

N
E{‖x̂− x‖2} =

1

N
E

{
N∑

n=1

(x̂n − xn)2

}
, (3)

over a set of admissible deconvolution results x̂. Here E{·}
denotes the mathematical expectation operator.

Instead of iteratively estimating x̂ itself, like current state-of-
the-art approaches [23], [29], [37], [38], we choose to express
the processing as an explicit function F : RN → RN of the
measured y such that x̂ = F(y), as shown in Fig. 2. Then the
MSE becomes:

MSE =
1

N
E
{
‖F(y)− x‖2

}
. (4)

B. The MSE-LET Approach

In order to find the restoration function, we approximate it
as a linear combination of K non-linear elementary functions
Fk (Fig.3), termed “linear expansion of thresholds” (LET) [2],
[21], [56]:

F(y) =
K∑

k=1

akFk(y), (5)

Degradation

…
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Fig. 4. Principle of the MSE-LET approach. The processing function F is
described as a linear combination of K possibly non-linear processing Fk .
The optimal coefficients ak are obtained by minimizing the MSE.

where K � N is the number of linear coefficients a =
[ak]k∈[1,...,K] of the LETs. Accordingly, the deconvolution
problem reduces to finding the linear coefficients ak by
minimizing the MSE, as shown in Fig. 4, and to solving

min
ak

∥∥∥
K∑

l=1

akFk(y)− x
∥∥∥

2

,

which leads to a linear system of equations:
K∑

l=1

Fk(y)Fl(y)al = Fk(y)Tx, ∀k ∈ [1,K].

The number of parameters K used to describe the estimator
F(y) should remain much lower than the number of observa-
tions N (typically, the number of image pixels) to avoid fitting
of the observed data. Note that this LET approach does not
imply any hypothesis on the unknown image x itself, although
we may wish to choose the elementary functions Fk to span
the space of “good” processing (which may build upon the
hypothesis that usual images are essentially low-pass). This
strategy has proven to be very effective in image denoising [2],
[56] and image deconvolution in Gaussian noise [21]. In
particular, it comes to be a reasonable idea to use simple
deconvolution processes (like Wiener filtering) followed by
some forms of wavelet denoising as templates for our LET
basis elementary functions.

However, in practice we do not have access to the oracle
MSE between x and the estimate F(y) since x is unknown.
Fortunately, it is possible to obtain an unbiased estimate of
its expected value (termed as PURE), which solely depends
on the observed image y. Then we just replace the MSE
minimization by the minimization of its unbiased estimate
PURE to determine the optimal coefficients.

C. The PURE-LET Approach

In what follows, we will firstly consider the Poisson noise
model (2) and then go to the mixed Poisson-Gaussian noise
model (1).

1) Poisson Noise Case: Considering the linear degradation
model (2), the mathematical expectation of the MSE between
a given estimate x̂ = F(y) and x can be expressed using only
the observed image y. We have the following theorem:

Theorem 1 (PURE). Let F(y) = [fn(y)]n=1...N be an N -
dimensional real-valued vector function. We assume the linear
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degradation model (2) and that H is invertible, then the
random variable

PURE{F} =
1

N
||F(y)||2 − 2

N
yTH−TF−(y) + EP ,

(6)
is an unbiased estimate of the expected MSE; i.e.,

E{PURE} =
1

N
E
{
||F(y)− x||2

}
,

where F−(y)
def
= [fn(y − α en)]n=1,...,N , en is the N -

dimensional vector with components δk−n, k = 1, 2, ..., N ,
EP =

(
yTH−TH−1y − α1TH−TH−1y

)
/N is independent

on F.

The unbiasedness between PURE and MSE and the fact that
N is large indicate that (6) can be used as a reliable substitute
of the MSE (law of large numbers: a sample mean like the
PURE and the MSE, is close to its mathematical expectation).
All terms are computable in practice since we replace the MSE
by a statistical equivalent that does not depend on x anymore.

2) Mixed Poisson-Gaussian Noise Case: For the linear
degradation model (1), we derive the unbiased estimate of
MSE, SPURE (Stein-Poisson unbiased risk estimate). It is
given in the following theorem.

Theorem 2 (SPURE). Under the same hypotheses as The-
orem 1, and now assume F(y) is boundedly differentiable.
Considering the linear degradation model (1) and assuming
H is invertible, then the random variable

SPURE{F} =
1

N
||F(y)||2 − 2

N
yTH−TF−(y)

+
2σ2

N
div{H−TF−(y)} + EP+G ,

(7)

is an unbiased estimate of the expected MSE, where F−(y)
def
=

[fn(y − α en)]n=1,...,N , en is the N -dimensional vector
with components δk−n, k = 1, 2, ..., N , and div{F} =∑
n ∂fn/∂xn is the divergence of a vector function F.

EP+G = EP − σ2Tr{H−TH−1}/N is independent on F.

The proof of Theorem 2 (which implies Theorem 1) is given
in Appendix. The term div{H−TF−(y)} in (7) corresponds
to the contribution of the Gaussian component of the noise,
while yTH−TF−(y) is due to the Poisson component, respec-
tively. If the Poisson component of the noise is absent, this
unbiased estimate becomes the Stein’s unbiased risk estimate
(SURE) [21], [64]

SURE =
1

N
||F(y)||2 − 2

N
yTH−TF(y)

+
2σ2

N
div{H−TF(y)} − σ2

N
Tr{H−TH−1},

which is the unbiased risk estimate corresponding to a pure
additive Gaussian noise model for the deconvolution problem.
Note that the SURE was initially employed for the image
denoising problem [56], [65]–[68]. We would like to point out
that these unbiased estimates, PURE in (6) and SPURE in (7),
may also be used in conventional iterative regularization-based
deconvolution algorithms (e.g. [29], [34], [37], [38]), to find
the optimal regularization parameters or the optimal number

of iterations. The divergence terms can be estimated reliably
by a Monte-Carlo technique, see [69] and [44].

Implementation Notes.

1) Conditioning of the matrix H. If the matrix H is ill-
conditioned, PURE will fail to be a reliable estimate
of the MSE. To keep the stability of the PURE, the
Tikhonov-regularized inverse [10], [21] is used to ap-
proximate H−1:

H−1
β =

(
HTH + βPTP

)−1
HT, (8)

for some parameter β > 0 and matrix P ∈ RN×N for
which ‖Px‖ is known to be small (typically P is the
discrete Laplacian operator).

2) Approximation of the exact PURE [2]. A direct evalu-
ation of yTH−T

β F−(y) would require the calculation
of yTH−T

β F for N perturbed versions of the input
y: (y − α en) for n = 1, ..., N . Such an evaluation
would be computationally unrealistic even with images
of reasonable size (e.g. 256× 256). Instead, we use the
1st-order derivative to approximate yTH−T

β F−(y) given
by:

yTH−T
β F−(y) ' yTH−T

β

(
F(y)− α∂F(y)

)
, (9)

where ∂F(y) = [∂fn(y)
∂yn

]n=1,...,N is the N × 1 vector
made of the first derivative of each function fn with
respect to yn.

3) Noise parameters. We assume the noise parameters α
and σ to be known in this work. Several methods are
available to estimate them, for example, [1], [70], [71]
and more recently [72], [73].

The value of β in (8) should be selected to achieve a
good balance between the approximation accuracy and the
stability of PURE. In this work, we set β = 10−5α ymean,
where ymean = E{y} is the expected value of y. In fact,
this value is not sensitive to our numerical evaluation. Any
value of β ∈ [5 × 10−6 , 5 × 10−5 ]α ymean yields similar
results (differences are less than 0.1 dB). The error between
the LHS and RHS in (9) is typically bounded by the second
order derivative of the component of F. So provided that F(y)
is smooth enough over intervals of length α, yTH−T

β F−(y)
is well approximated by (9).

For the Poisson noise case, the unbiased MSE estimate in (6)
is then approximated by

PUREapp{F} =
1

N
‖F(y)‖2 − 2

N
yTH−T

β F(y)

+
2α

N
yTH−T

β ∂F(y) + EP .
(10)

By substituting (5) into (10) and performing differentiation
over ak, this PURE-LET minimization is equivalent to solving
the following linear system of equations:

K∑

k′=1

Fk(y)TFk′(y)ak′ = yTH−T
β

(
Fk(y)− α∂Fk(y)

)

︸ ︷︷ ︸
ck

(11)



ACCEPTED BY IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017 5

y

H�1
�1

Transform Domain DenoisingWiener Filtering PURE-LET Minimization

Decomposition Reconstruction

Subband 
Adaptive 

Thresholding
8
>>><
>>>:

F(y) =

KX

k=1

akFk(y)

a = arg min
a2RK

PURE

with 

x̂ = F(y)
H�1

�m

H�1
�M

R

⇥(·, ·)

D̄

D

R

R

⇥a1,1

⇥a1,J

D̄

D

D̄

D

+
⇥am,1

⇥am,J

⇥aM,J

⇥aM,1

Fig. 5. Principle of the PURE-LET approach. Each elementary function
consists of Wiener filtering followed by transform domain denoising. The
estimate x̂ is obtained by minimizing (10) or (12). The number of coefficients
to be determined is K =M×J×L, where M is the number of Wiener filters,
J is the number of subbands and L is the number of thresholding functions.
Note that the reconstruction Rj performed to the specific j-th subband only,
by setting all the other subbands to zero.

for k = 1, 2, ...,K. These equations can be summarized as
Ma = c, where M = FTF ∈ RK×K and c = [c1, ..., cK ]T ∈
RK . We can ensure there will always be a solution to the
above linear system since the minimization of PUREapp{F}
always exists. To cope with the possible singularity of M,
we solve the following regularized linear system of equations
a = (M + µI)−1c where µ = 5 × 10−4 y2

mean is empirically
chosen.

As in the Poisson noise case, the SPURE{F} in (7) can be
approximated by

SPUREapp =
1

N
‖F(y)‖2 − 2

N
yTH−T

β

(
F(y)− α∂F(y)

)

+
2σ2

N
div
{

H−T
β

(
F(y)− α∂F(y)

)}
+ EP+G .

(12)
In what follows, we keep the name of PURE-LET, even in

the mixed Poisson-Gaussian noise case where SPURE (12) is
minimized. The elementary functions for this mixed Poisson-
Gaussian noise case are restricted only by the differentiability
assumption of Theorem 2. Similarly, we can obtain a system
of K linear equations as (11) that involves the same matrix
M and another c given by

ck = yTH−T
β

(
Fk(y)− α∂Fk(y)

)

− σ2div
{

H−T
β

(
F(y)− α∂F(y)

)} (13)

for k = 1, 2, ...,K.
In the next section, we will demonstrate a specific example

of the elementary processing Fk in the PURE-LET approach
for the deconvolution problem of model (1) and (2).

III. MULTI-WIENER PURE-LET DECONVOLUTION

A. Construction of Elementary Functions

We choose to construct the elementary functions Fk’s as
basic deconvolution processes (Wiener filtering) followed by
denoising (transform-domain thresholding).

We use an undecimated filterbank transform in this work
(typically, Haar wavelet transform), which has proved to be
effective for reducing various types of noise degradations [2],
[56], [74]. The coefficients provided by the analysis filter are
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Fig. 6. PSNR comparisons of MSE-LET and PURE-LET for various degra-
dation scenarios where α ∈ [0.1, 500]. (a) The Poisson noise cases, where
Stars and Bridge image are blurred by Gaussian kernel and uniform kernel,
respectively. (b) The mixed Poisson-Gaussian noise cases, where Galaxy
image is degraded by separable filter and Poisson noise, and subsequently
contaminated by Gaussian noise with σ = 10. Hemocyte image is degraded by
rational filter and Poisson noise, and subsequently contaminated by Gaussian
noise with σ = 10. The maximum difference for all degradation scenarios is
0.265 dB.

thresholded, and then finally passed to the synthesis filter band,
as shown in Fig. 5.

The matrices H−1
λk

= (HTH + λkP
TP)−1HT represent

Wiener filters with a regularization parameter λk. Different
values of λk (typical values: see experiment section) capture
different features of the image, thus a suitable combination of
Fk’s is likely to provide a good balance between noise re-
duction and edge preservation. D = [di,j ](i,j)∈[1,...,L]×[1,...,N ]

and R = [ri,j ](i,j)∈[1,...,L]×[1,...,N ] represent a pair of linear
decomposition and reconstruction filterbanks that satisfy the
perfect reconstruction condition RD = I. A linear transfor-
mation (typically, a smoothing) D̄ = [d̄i,j ](i,j)∈[1,...,L]×[1,...,N ]

is applied to the filtered image H−1
λ y in order to provide a

coarse estimation of the transform-domain signal-dependent
local noise variance [2]. The deconvolved estimate x̂ can be
finally expressed as a function F of the blurred noisy input
image y as

x̂ = F(y) = RΘ
(

DH−1
λ y︸ ︷︷ ︸

w

, D̄H−1
λ y︸ ︷︷ ︸

w̄

)
, (14)

where Θ(w, w̄) = [θl(wl, w̄l)]l∈[1,..,L] represents the subband-
adaptive pointwise (nonlinear) thresholding function. In this
work, the w̄l are simply the scaling coefficients of the lowpass
residual at a given scale l.

We further assume that the transform-domain pointwise
thresholding function of (14) is continuously differentiable,
with piecewise-differentiable partial derivatives. Then for the
Poisson noise case, we have the following corollary.
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Corollary 1. Given the transform-domain pointwise process-
ing F(·) defined by (14), the approximation of the PURE
estimate introduced in (10), can be further expressed as

PUREapp =
1

N
‖F(y)‖2 − 2

N
yTH−T

β F(y)

+
2α

N

(
∂wΘ(w, w̄)T[(DH−1

λ ) ◦ (H−T
β R)T]y+

∂w̄Θ(w, w̄)T[(D̄H−1
λ ) ◦ (H−T

β R)T]y
)

+ EP ,

where ∂wΘ(w, w̄) and ∂w̄Θ(w, w̄) represents the first deriva-
tive with respect to w and w̄ of each thresholding function θl,
respectively. “◦” denotes the Hadamard product between two
matrices.

The computation of transform-dependent terms can be per-
formed similarly as in the case of Gaussian noise [21]. A
similar result for the mixed Poisson-Gaussian noise case is
provided by the following corollary.

Corollary 2. Given the transform-domain pointwise process-
ing F(·) defined by (14), the approximation of the PURE
estimate introduced in (12), can be further expressed as

SPUREapp =
1

N
‖F(y)‖2 − 2

N
yTH−T

β F(y)

+
2α

N

(
∂wΘ(w, w̄)T[(DH−1

λ ) ◦ (H−T
β R)T]y+

∂w̄Θ(w, w̄)T[(D̄H−1
λ ) ◦ (H−T

β R)T]y
)

+
2σ2

N

(
diag

{
DH−1

λ H−T
β R

}
∂wΘ(w, w̄)T+

diag
{

D̄H−1
λ H−T

β R
}
∂w̄Θ(w, w̄)T

)

− 2σ2

N

(
diag

{
(DH−1

λ )2(H−T
β R)

}
∂2

wΘ(w, w̄)T+

2 diag
{

(DH−1
λ ) ◦ (D̄H−1

λ )H−T
β R

}
∂w,w̄Θ(w, w̄)T+

diag
{

(D̄H−1
λ )2H−T

β R
}
∂2

w̄Θ(w, w̄)T
)

+ EP+G ,

where ∂wΘ(w, w̄) ∈ RL and ∂w̄Θ(w, w̄) ∈ RL represents the
first derivative with respect to w and w̄ of each thresholding
function θl, respectively. ∂2

wΘ(w, w̄) ∈ RL and ∂2
w̄Θ(w, w̄) ∈

RL is the second derivative with respect to w and w̄ of θl
respectively. ∂w,w̄Θ(w, w̄) ∈ RL is made of the first derivative
with respect to w and w̄ of each function θl. (DH−1

λ )2 (resp.
(D̄H−1

λ )2) stands for (DH−1
λ ) ◦ (DH−1

λ ) (resp. (D̄H−1
λ ) ◦

(D̄H−1
λ )).

The proofs of Corollary 1 and 2 are similar to that of
Corollary 1 in [2]. The whole deconvolution process can be
expressed as the following linear combination:

F(y) =
M∑

m=1

L∑

l=1

J∑

j=1

am,l,j Rjθl(wm,j , w̄m,j)︸ ︷︷ ︸
Fm,j,k(y)

+
M∑

m=1

RJ+1DJ+1H
−1
λm

y
︸ ︷︷ ︸

lowpass subband

,

where M is the number of Wiener filters (typically M = 3), L
is the number of elementary pointwise thresholding functions

(L = 2 yields satisfactory results), the decomposition and
reconstruction matrices are made of J(N × N) circulant
submatrices Dj and Rj respectively, and J denotes the
number of highpass wavelet subbands (typically J = 12
for four decomposition levels). Note that as is customary in
wavelet-domain thresholding for signal denoising, the (J+1)th
bands, lowpass subbands, are unprocessed. This is supported
by experiments that show that the optimal weights for these
subbbands are almost identical to 1.

B. Choice of Thresholding Functions

We extend the thresholding functions in [21]

θ(w, T ) = w
(
1− e−(w/T )4

)

by taking into account the non-stationarity of the noise, and
the following subband-adaptive thresholding function θj,l is
proposed: {

θj,1(w, w̄) = θ
(
w, 3tj(w̄)

)

θj,2(w, w̄) = θ
(
w, 8tj(w̄)

)
,

(15)

where tj(w̄) =
√

2−j · tanh(αkw̄)αw̄ + σ2 and k is empir-
ically set to 100, so that tj(w̄) '

√
2−j |αw̄|+ σ2. Note

that each transformed coefficient is adaptively thresholded
according to its estimated amount of noise, thanks to these
signal-dependent thresholding functions. Linear combinations
of these two thresholding functions approximate intermediate
thresholds of the form θ

(
w, T

)
for T/tj(w̄) ∈ [3, 8], a range

that has been optimized empirically.
As indicated by (11), there are K = M ×J ×L parameters

to be determined and they are given by the solution of the
linear system of equations (11) of order K.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setting

All experiments are carried out on a Macbook Pro with
a 2.4 GHz Intel Core i5, with 8 GB of RAM. The original
images are firstly convolved by different blur kernels, and sub-
sequently contaminated by Poisson noise or mixed Poisson-
Gaussian noise. The noise levels correspond to different α
in the Poisson noise case, and both α and σ2 in the mixed
Poisson-Gaussian noise case. The algorithm performance is
measured by the peak signal-to-noise ratio (PSNR), defined
as PSNR = 10 log10(I2

max/(‖x̂−x‖2/N)), where Imax is the
maximum intensity of the noise-free image.

In the proposed method, we use M = 3 Wiener filters
with λ1 = 10−4α ymean, λ2 = 10−3α ymean and λ3 =
10−2α ymean, where ymean is the expected value of y. The
undecimated Haar wavelet transform is used because of its
substantial outperformance over other types of redundant
wavelets in image denoising [2], [56]. This observation also
holds for image deconvolution [21]. The decomposition level
is set to be 4 (J = 12). Thus we will have K = 3×2×12 = 72
coefficients to be determined via solving (11) or (13).
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Fig. 7. An algorithm designed for additive Gaussian noise is significantly sub-
optimal for Poisson noise corrupted data: (a) PSNR comparisons of SURE-
LET [21] and PURE-LET for Galaxy image (Fig. 8(c)) degraded by Gaussian
blur (variance is 3) with Poisson noise α ∈ [1, 1000]; (b) One typical example
when α = 100.

(a) (b) (c) (d) (e) (f)

Fig. 8. Set of original natural images. (a) Cameraman 256×256; (b) Bridge
512 × 512; (c) Galaxy 256 × 256; (d) Stars 256 × 256; (e) Erythrocyte
512× 512; (f) Hemocyte 512× 512.

B. Validation

1) PURE-LET vs MSE-LET: To validate the use of the
PURE and its associated approximations as an accurate predic-
tion of the MSE, we compare the performance of PURE-LET
approach to the optimal performance achieved when using the
MSE minimization in the LET framework. In other words,
the MSE is used directly in (11) leading to an oracle solution
obtained by the pointwise thresholding proposed in (15) and
solving MaMSE = FTx. The comparison of PURE-LET and
MSE-LET for four typical degradation scenarios is shown in
Fig. 6. In the Poisson noise cases, the maximum difference
between the oracle MSE-LET and the proposed PURE-LET
is 0.148 dB and 0.173 dB respectively. In the mixed Poisson-
Gaussian noise cases, their maximum difference is 0.265 dB
and 0.194 dB, respectively. As expected, our PURE-LET
consistently remains within 0.3 dB from the MSE-LET for
a wide range of noise levels and different kernels, which is an
evidence that the approximated PURE is an accurate predictor
of the MSE.

2) Poisson vs Gaussian deconvolution algorithms: We also
compare PURE-LET with SURE-LET deconvolution algo-
rithm [21]. SURE-LET is one of the state-of-the-art methods
designed for Gaussian noise removal. The noise variance
needed by SURE-LET is estimated by the mean squared error
between the blurred noisy image and the blurred image. Fig. 7
shows PSNRs under different noise levels (different values of
α), and visual comparisons for Galaxy image (see Fig. 8(c)).
It can be seen that PURE-LET outperforms SURE-LET in
these scenarios, and the differences are significant (maximum
difference is 4.68 dB). This comparison demonstrates the dis-
tinct advantage of considering the Poisson noise statistics:
Gaussian-noise based restoration algorithms are significantly
sub-optimal.

C. Poisson Noise Case

We perform experiments over six images, which consist of
two natural images1 of size 256 × 256 (Cameraman) and of
size 512 × 512 (Bridge), two astronomical images2 of size
256× 256 (Galaxy, Stars) and two biological images3 of size
512 × 512 (Erythrocyte, Hemocyte). They were converted to
grayscale and displayed in Fig. 8.

The performance of each method is assessed for various
convolution kernels and different noise levels. In particular, we
consider the following five benchmark convolution kernels:

1) Gaussian blur with variance 3;
2) 5× 5 uniform blur;
3) Separable filter: 5×5 filter with weights [1, 4, 6, 4, 1]/16

along both horizontal and vertical directions;
4) Rational filter: h(i, j) = (1 + i2 + j2)−1 for i, j =
−7, ..., 7;

Each image is further corrupted with Poisson noise at six
different noise levels α ∈ [2, 4, 8, 32, 128, 256]. The input
PSNR for each noise level, for all images, varies in the range of
[19.95, 25.70], [18.73, 23.29], [16.57, 20.67], [10.73, 14.94],
[4.76, 8.97], [1.74, 5.97] covering a wide gamut of noise
levels. Note that we have averaged the output PSNRs over
ten noise realizations and different methods are applied to the
same noise realization.

As benchmarks for comparisons, we evaluate our method
against five state-of-the-art deconvolution techniques specifi-
cally designed for Poisson noisy images: PoissonDeconv4 [38],
PIDAL [22], SPIRAL-TAP-TI5 [29], PoissonHessReg6 [23] and
GILAM7 [37]. The source code of PIDAL is kindly included
in the GILAM package. For each of these methods, we used
the parameters suggested in their respective publications and
softwares.

Table I reports the PSNR results we have obtained from
the various deconvolution methods under Gaussian blur with
variance 3, the best results within a 0.1 dB margin are
shown in boldface. Table II reports the PSNR results of the
Hemocyte image for various blurs and noise levels. It is clear
that, the PURE-LET approach consistently outperforms other
approaches often by a significant margin. We would also like
to stress that our algorithm is very robust to a wide range
of noise levels. In particular, significant improvements are
observed at large α, where the signal-dependent nature of the
Poisson noise is more pronounced. Fig. 9 and Fig. 10 show
the comparison of visual quality of Bridge and Hemocyte,
respectively. We observe that our method preserves various
image details, while introducing very few artifacts.

Table III reports the computational time of various decon-
volution algorithms. It can be seen that our method is sub-

1Natural images are available at http://decsai.ugr.es/cvg.
2Astronomical images are available at http://www.hubblesite.org.
3Biological images are available at http://www.cellimagelibrary.org.
4The source code of PoissonDeconv is available at http://fxdupe.free.fr/

software.html.
5The source code of SPIRAL-TAP-TI is available at http://drz.ac/code/

spiraltap/.
6The source code of PoissonHessReg is available at http://www.math.ucla.

edu/∼stamatis/software/PoissonHessReg.zip.
7The source code of GILAM is available at https://www.researchgate.net/

profile/Daiqiang Chen chendaiqiang.
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TABLE I
PSNR COMPARISON WITH SOME STATE-OF-THE-ART ALGORITHMS UNDER GAUSSIAN BLUR WITH VARIANCE 3. RESULTS HAVE BEEN AVERAGED OVER

10 NOISE REALIZATIONS.

α 2 4 8 32 128 256 2 4 8 32 128 256

Image Cameraman 256× 256 Bridge 512× 512

Input 20.56 19.02 16.98 11.88 6.11 3.16 20.90 19.34 17.29 12.17 6.41 3.44
PoissonDeconv 22.61 22.28 21.84 19.97 13.58 10.08 22.65 22.36 21.93 19.91 13.67 10.53

PIDAL 23.51 22.89 22.18 20.25 18.32 17.73 23.21 22.52 21.73 19.89 18.37 17.85
SPIRAL-TAP-TI 23.83 23.33 22.54 21.05 19.34 19.32 22.52 21.87 21.50 20.84 17.62 14.46
PoissonHessReg 22.65 22.15 21.57 20.19 18.28 17.25 22.60 22.09 21.52 20.19 18.75 18.02

GILAM 23.80 22.87 21.66 18.56 16.70 15.71 23.28 22.17 20.80 18.39 16.83 16.37
PURE-LET 24.04 23.63 23.13 21.88 20.49 19.72 23.53 23.09 22.64 21.58 20.40 19.70

Image Galaxy 256× 256 Stars 256× 256

Input 24.76 22.77 20.34 14.83 8.95 5.95 21.00 19.59 17.68 12.71 6.99 4.04
PoissonDeconv 27.27 26.68 25.96 23.36 16.64 13.91 22.35 22.01 21.60 19.67 14.09 11.27

PIDAL 28.03 27.38 26.64 25.00 23.38 22.65 22.82 22.29 21.64 19.94 18.40 17.90
SPIRAL-TAP-TI 27.43 27.03 26.83 25.72 22.20 21.89 21.91 21.48 21.12 20.77 19.72 17.55
PoissonHessReg 27.63 27.12 26.55 25.44 24.05 23.39 22.51 22.10 21.65 20.48 19.16 18.58

GILAM 27.88 26.97 25.81 23.45 20.90 19.22 22.78 21.92 20.77 18.53 17.29 16.72
PURE-LET 28.11 27.74 27.22 26.21 24.99 24.24 22.97 22.62 22.27 21.35 20.35 19.66

Image Erythrocyte 512× 512 Hemocyte 512× 512

Input 22.27 19.52 16.66 10.75 4.75 1.74 20.88 19.59 17.79 12.96 7.30 4.35
PoissonDeconv 29.27 28.16 26.77 22.42 12.60 8.98 21.63 22.08 21.11 18.98 14.10 11.28

PIDAL 31.13 29.68 27.97 24.06 21.15 20.23 23.17 22.11 20.94 18.41 16.36 15.65
SPIRAL-TAP-TI 28.30 26.77 25.86 23.99 14.20 8.55 22.90 22.81 21.66 18.53 16.65 17.21
PoissonHessReg 30.68 29.64 28.40 25.33 21.73 20.30 22.17 21.40 20.53 18.73 16.96 16.21

GILAM 30.02 27.80 25.14 20.88 18.48 17.72 23.33 21.87 20.06 16.69 14.56 13.79
PURE-LET 31.15 30.10 29.11 26.89 24.31 22.89 23.76 23.16 22.48 20.93 19.26 18.42

* Best PSNR results within a 0.1 dB margin are highlighted.

PoissonDeconv: 21.93 dB PIDAL: 21.73 dB

SPIRAL-TAP-TI: 21.50 dB GILAM: 20.80 dB PURE-LET: 22.64 dB

Blurred noisy: 17.29 dB 

PoissonHessReg: 21.52 dB

Original

Fig. 9. Restoration of the Bridge image degraded by Gaussian blur with variance 3 and Poisson noise level α = 8.

stantially faster than other iterative approaches. As observed,
the proposed PURE-LET algorithm is roughly 7 times faster
than the next fastest algorithm for a 256 × 256 image and 5
times faster for a 512×512 image. It is worth mentioning that
our method is implemented using unoptimized MATLAB code
only, without any compiled routines. In addition, the proposed
approach is by nature highly parallelizable for even faster

processing because each basis function Fk can be processed
independently of the others.

D. Mixed Poisson-Gaussian Noise Case

To the best of our knowledge, there are very few decon-
volution algorithms that are designed for the mixed Poisson-
Gaussian noise case, even though this noise model is more
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PoissonDeconv: 20.21 dB PIDAL: 19.74 dB

SPIRAL-TAP-TI: 20.70 dB GILAM: 19.90 dB PURE-LET: 21.69 dB

Blurred noisy: 17.29 dB 

PoissonHessReg: 19.59 dB

Original

Fig. 10. Restoration of the Hemocyte image degraded by Rational filter and Poisson noise level α = 8.

Fig. 11. Set of original images. From left to right: Image 1 190×190, Image
2 128× 128, and Image 3 256× 256.

realistic. We compare the proposed approach with the method
in [48]. Since their method needs to carefully select the
regularization parameters for each scenario, we follow their
experiment settings in their provided code8. Specifically, the
considered ground truth image set, including Image 1 of size
190 × 190, Image 2 of size 128 × 128 and Image 3 of size
256 × 256, are shown in Fig. 11. The parameters for these
degradation scenarios are listed in Tab. IV. We choose the
exact model with Hessian-TV prior since it leads to the best
qualitative results compared with other models.

Table V reports the comparison results we have obtained
from the method in [48] and our method, in terms of PSNR
and computational time. Fig. 12 shows a visual comparison. It
can be seen the proposed PURE-LET algorithm significantly
achieves better performance than [48] both in restoration
quality and computational time. In particular, our approach
exhibits very few artifacts and is able to retrieve more image
details, contrary to the method in [48].

V. APPLICATION TO REAL FLUORESCENCE MICROSCOPY
IMAGES

We now apply the PURE-LET algorithm to the restoration
of real 2D confocal fluorescence microscopy images. Al-
though 3D deconvolution is often preferable in wide-field mi-
croscopy [10], [75], it is meaningful to apply 2D deconvolution
to thin specimen [76], [77]. The dataset we used is the image of

8The source code is available at http://www.ibspan.waw.pl/∼jeziersk/
software.html.

Original Blurred noisy: 18.15 dB

[47]: 24.59 dB PURE-LET: 26.20 dB

Fig. 12. Restoration of Image 3. The computational time of PURE-LET is
1.36 s while [48] needs 1570.40 s.

Exocyst-positive organelles (EXPOs) labeled by AtExo70E2-
GFP in Arabidopsis suspension cells [78], acquired on a Leica
TCS SP8 confocal laser scanning microscope with a 63x/1.2
water-immersion objective at the School of Life Science of
the Chinese University of Hong Kong. Images are of size
512× 512, and the pixel dimension is 0.92× 0.92 µm.

The optical sectioning ability of a confocal microscope is
a function of the pinhole size. A larger pinhole size leads to
more out-of-focus light detected, resulting in lower resolution.
With a fully open pinhole, the confocal microscope is close
to a conventional wide-field microscope. By changing the
pinhole size of the confocal microscope, we can balance the
optical resolution and light intensity (Fig. 13). A pinhole of 1
airy unit (AU) typically gives the best signal-to-noise ratio,
thus provides a pseudo ground truth for evaluation of the
deconvolution performance.

We applied our deconvolution algorithm on images collected
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TABLE II
PSNR COMPARISON WITH SOME STATE-OF-THE-ART ALGORITHMS OF THE Stars IMAGE AND THE Hemocyte IMAGE FOR VARIOUS BLURS AND NOISE

LEVELS. RESULTS HAVE BEEN AVERAGED OVER 10 NOISE REALIZATIONS.

Image Stars 256× 256 Hemocyte 512× 512

α 2 4 8 32 128 256 2 4 8 32 128 256

Blur Uniform blur Uniform blur
Input 20.97 19.57 17.67 12.68 6.98 4.04 21.10 19.76 17.90 13.00 7.31 4.36

PoissonDeconv 22.49 22.13 21.59 19.70 13.98 10.50 22.39 22.25 21.34 19.00 14.13 10.82
PIDAL 23.10 22.55 21.85 20.04 18.43 17.92 23.83 22.73 21.46 18.63 16.40 15.68

SPIRAL-TAP-TI 22.65 19.85 17.24 15.01 15.09 15.89 23.32 23.34 22.77 21.09 19.12 18.08
PoissonHessReg 22.72 22.29 21.79 20.57 19.19 18.59 22.70 21.85 20.90 18.91 17.02 16.24

GILAM 22.98 22.05 20.82 18.54 17.29 16.72 23.72 22.18 20.23 16.71 14.55 13.79
PURE-LET 23.17 22.83 22.43 21.45 20.40 19.63 24.15 23.55 22.86 21.20 19.21 18.30

Blur Separable filter Separable filter
Input 22.00 20.28 18.10 12.84 7.02 4.05 22.73 20.89 18.60 13.21 7.37 4.39

PoissonDeconv 22.91 22.44 21.87 19.82 12.46 10.25 23.33 22.81 22.62 19.47 13.04 10.54
PIDAL 23.90 23.19 22.31 20.18 18.45 17.92 25.46 24.19 22.62 19.05 16.47 15.70

SPIRAL-TAP-TI 23.51 21.81 19.96 17.54 14.40 13.26 25.20 24.60 23.70 21.73 18.70 16.36
PoissonHessReg 23.20 22.64 22.04 20.68 19.24 18.62 24.03 22.87 21.62 19.19 17.11 16.30

GILAM 23.49 22.30 20.87 18.54 17.30 16.72 24.73 22.78 20.49 16.72 14.55 13.79
PURE-LET 23.87 23.40 22.89 21.75 20.44 19.76 25.48 24.75 23.90 21.94 19.72 18.56

Image Rational filter Rational filter
Input 20.71 19.37 17.54 12.66 6.97 4.02 19.94 18.87 17.29 12.79 7.26 4.33

PoissonDeconv 21.69 21.33 20.93 18.43 14.04 11.15 20.85 20.28 20.21 18.03 13.90 11.21
PIDAL 22.28 21.70 21.07 19.66 18.31 17.86 22.02 20.81 19.74 17.79 16.18 15.57

SPIRAL-TAP-TI 21.91 19.82 17.79 12.50 10.57 11.95 21.82 21.74 20.70 17.66 16.73 16.96
PoissonHessReg 21.97 21.61 21.21 20.20 19.02 18.44 20.95 20.28 19.59 18.20 16.70 16.07

GILAM 22.63 21.83 20.76 18.55 17.29 16.72 23.07 21.62 19.90 16.69 14.55 13.79
PURE-LET 22.65 22.25 21.86 21.01 20.04 19.46 23.29 22.50 21.69 20.15 18.67 17.97

* Best PSNR results within a 0.1 dB margin are highlighted.

TABLE III
COMPARISON OF THE COMPUTATIONAL TIME OF VARIOUS DECONVOLUTION ALGORITHMS (UNITS: SECONDS).

Degradation scenario PoissonDeconv PIDAL SPIRAL-TAP-TI PoissonHessReg GILAM PURE-LET

Cameraman 256 × 256
Gaussian blur, α = 2

281.43 9.38 68.31 20.23 12.48 1.31

Galaxy 256 × 256
Uniform blur, α = 4

262.93 9.41 8.47 20.01 16.64 1.29

Erythrocyte 512 × 512
Separable filter, α = 32

1053.25 41.45 40.92 115.82 39.06 6.45

Hemocyte 512 × 512
Rational filter, α = 256

1033.50 68.49 31.37 113.29 67.84 6.30

TABLE IV
DEGRADATION PARAMETERS OF ALL IMAGES IN THE MIXED

POISSON-GAUSSIAN NOISE CASE

Image Gaussian blur h Poisson noise α Gaussian noise σ2

Image 1 size = 25× 25, std = 1.6 21.25 9

Image 2 size = 25× 25, std = 1.6 8.5 12

Image 3 size = 9× 9, std = 0.5 4.25 36

TABLE V
COMPARISON WITH [48] IN TERMS OF PSNR AND COMPUTATIONAL TIME

Method
PSNR (dB) Computational time (sec)

Input [48] PURE-LET [48] PURE-LET

Image 1 10.33 28.00 29.24 403.10 0.80

Image 2 15.15 26.67 27.05 911.72 0.43

Image 3 18.15 24.59 26.20 1570.40 1.36

in the condition of pinhole size equal to 3AU. The optical
PSF of the confocal fluorescence microscope is modeled using
the 2D Gaussian kernel [79], parametrized by its variance,
whose value is estimated empirically. In order for these images
to fit the degradation model described in (1) and find the
two parameters σ2 and α, we use a robust linear regression
performed on a collection of local estimates of the sample
mean and sample variance, similar to [2], [80].

Fig. 14 shows the results obtained with the PURE-LET
deconvolution algorithm for three images with pinhole size
3AU. It can be observed that the restored images are very close
to the pseudo ground truth, whose contrast and resolution are
improved. Note that compared with the images with pinhole
size 3AU, the difference is not just the sharpness of these
images, but also the ability of resolving the internal structures.
The EXPO dots in the restored images can be distinguished
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Fig. 13. Illustration of the effect of changing the pinhole size in the confocal
microscope.

clearly. Moreover, compared with the images with pinhole size
1AU, the noise caused by the low light condition is reduced
as well. We suspect these results could be further improved
using a more realistic PSF model [10], [81].

VI. CONCLUSION

We propose a new non-iterative deconvolution approach
for blurred and noisy images with Poisson noise or mixed
Poisson-Gaussian noise. We linearly parametrize the deconvo-
lution process as a linear combination of elementary functions
(LET). Each elementary function consists of a Wiener filtering
followed by transform-domain thresholding. We then use the
data-driven unbiased estimate of the MSE (PURE) to optimize
the coefficients of this linear combination. The proposed
PURE-LET approach outperforms state-of-the-art techniques,
both qualitatively and computationally. We then apply it to
real confocal fluorescence microscopy images to demonstrate
its potential on improving their resolutions. The flexibility
and low computational cost of the proposed approach offer
a framework for developing more sophisticated algorithms.
For example, other transforms such as the block discrete
cosine transform and the combination with the discrete wavelet
transform, could be employed. We are currently extending this
PURE-LET framework to 3D deconvolution: the preliminary
results [16] on wide-field fluorescence microscopy images are
very promising.

APPENDIX A
PROOF OF THEOREM 2

The data are modelized according to

y = p + g,

where p ∼ αP(Hx/α) and g ∼ N (0, σ2Id) are N -
dimensional vector random variables. By expanding the ex-
pectation of the MSE between x and its estimate F(y), we
get (note that x is not random):

E
{
‖F(y)− x‖2

}
= E

{
‖F(y)− x‖2

}

= E
{
‖F(y)‖2

}
− 2E

{
xTF(y)

}
+ ‖x‖2

= E
{
‖F(y)‖2

}
− 2E

{
(Hx)TH−TF(y)

}

+ E{(Hx)TH−TH−1y}.

(a) 3 AU (b) Restored (c) 1 AU

Fig. 14. Acquired and restored confocal fluorescence microscopy images of
EXPOs [78]. (a) Acquired images with pinhole size 3AU; (b) Deconvolved
images using the PURE-LET algorithm; (c) Acquired images with pinhole
size 1AU as the pseudo ground truth.

Thanks to [2], we know that

E{(Hx)TF(y)} = E
{

yTF−(y)− σ2div{F−(y)}
}
.

Using this identity, we can then replace E
{

(Hx)TH−TF(y)
}

by
E
{

yTH−TF−(y)− σ2div{H−TF−(y)}
}
.

The other expression, E{(Hx)TH−TH−1y}, can be obtained
by substituting H−1y to F(y) in that expression, which yields

E
{

yTH−TH−1y − α1TH−TH−1y
}
− σ2Tr{H−TH−1}.

Note that we have used {H−TF(y)}− = H−TF−(y).
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deblurring with Poisson data: from cells to galaxies,” Inverse Probl.,
vol. 25, no. 12, pp. 123 006–27, 2009.

[28] N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J.-C. Olivo-
Marin, and J. Zerubia, “Richardson–Lucy algorithm with total variation
regularization for 3D confocal microscope deconvolution,” Microsc. Res.
Tech., vol. 69, no. 4, pp. 260–266, 2006.

[29] Z. T. Harmany, R. F. Marcia, and R. M. Willett, “This is SPIRAL-TAP:
Sparse Poisson intensity reconstruction algorithms: theory and practice,”
IEEE Trans. Image Process., vol. 21, no. 3, pp. 1084–1096, 2012.

[30] A. Benfenati and V. Ruggiero, “Inexact Bregman iteration with an
application to Poisson data reconstruction,” Inverse Probl., vol. 29, no. 6,
p. 065016, 2013.

[31] J. L. Starck and F. Murtagh, “Image restoration with noise suppression
using the wavelet transform,” Astronom. and Astrophys., vol. 288, pp.
342–348, 1994.

[32] R. D. Nowak and M. J. Thul, “Wavelet-vaguelette restoration in photon-
limited imaging,” Proc. IEEE Int. Conf. Acoust. Speech Signal Process.
(ICASSP), vol. 5, pp. 2869–2872, 1998.

[33] A. Antoniadis and J. Bigot, “Poisson inverse problems,” Ann. Stat.,
vol. 34, no. 5, pp. 2132–2158, 2006.

[34] M. Carlavan and L. Blanc-Feraud, “Sparse Poisson noisy image deblur-
ring,” IEEE Trans. Image Process., vol. 21, no. 4, pp. 1834–1846, 2012.

[35] S. Setzer, G. Steidl, and T. Teuber, “Deblurring Poissonian images by
split Bregman techniques,” J. Vis. Commun. Image R., vol. 21, no. 3,
pp. 193–199, Apr. 2010.

[36] N. Pustelnik and C. Chaux, “Parallel proximal algorithm for image
restoration using hybrid regularization,” IEEE Trans. Image Process.,
vol. 20, no. 9, pp. 2450–2462, 2011.

[37] D.-Q. Chen, “Regularized generalized inverse accelerating linearized
alternating minimization algorithm for frame-based Poissonian image
deblurring,” SIAM J. Imaging Sci., vol. 7, no. 2, pp. 716–739, 2014.
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[42] M. Mäkitalo and A. Foi, “Noise parameter mismatch in variance
stabilization, with an application to Poisson–Gaussian noise estimation,”
IEEE Trans. Image Process., vol. 23, no. 12, pp. 5348–5359, 2014.

[43] ——, “Optimal inversion of the generalized anscombe transformation
for poisson-gaussian noise,” IEEE Trans. Image Process., vol. 22, no. 1,
pp. 91–103, 2013.

[44] Y. Le Montagner, E. D. Angelini, and J.-C. Olivo-Marin, “An unbiased
risk estimator for image denoising in the presence of mixed Poisson–
Gaussian noise,” IEEE Trans. Image Process., vol. 23, no. 3, pp. 1255–
1268, 2014.

[45] S. Yang and B.-U. Lee, “Poisson-Gaussian noise reduction using the
hidden markov model in contourlet domain for fluorescence microscopy
images,” PloS One, vol. 10, no. 9, p. e0136964, 2015.

[46] F. Benvenuto, A. L. Camera, C. Theys, A. Ferrari, H. Lantéri, and
M. Bertero, “The study of an iterative method for the reconstruction
of images corrupted by Poisson and Gaussian noise,” Inverse Probl.,
vol. 24, no. 3, p. 035016, 2008.

[47] J. Li, Z. Shen, R. Yin, and X. Zhang, “A reweighted L2 method for
image restoration with Poisson and mixed Poisson-Gaussian noise,”
Inverse Probl. Imag., vol. 9, no. 3, pp. 875–894, 2015.

[48] E. Chouzenoux, A. Jezierska, J.-C. Pesquet, and H. Talbot, “A convex
approach for image restoration with exact Poisson-Gaussian likelihood.”
SIAM J. Imaging Sci., vol. 8, no. 4, pp. 2662–2682, 2015.

[49] B. Baji, J. Lindblad et al., “Blind restoration of images degraded with
mixed Poisson-Gaussian noise with application in transmission electron
microscopy,” in Proc. IEEE Int. Symp. Biomed. Imaging (ISBI), 2016,
pp. 123–127.

[50] Y. Marnissi, Y. Zheng, E. Chouzenoux, and J.-C. Pesquet, “A variational
bayesian approach for image restoration. application to image deblurring
with poisson-gaussian noise,” IEEE Trans. Comput. Imaging, 2017, to
appear.

[51] V. Kempen and V. Vliet, “The influence of the regularization parameter
and the first estimate on the performance of Tikhonov regularized non-
linear image restoration algorithms,” J. Microsc., vol. 198, no. 1, pp.
63–75, 2000.

[52] J. M. Bardsley and J. Goldes, “Regularization parameter selection
methods for ill-posed Poisson maximum likelihood estimation,” Inverse
Probl., vol. 25, no. 9, p. 095005, 2009.

[53] M. Bertero, P. Boccacci, G. Talenti, R. Zanella, and L. Zanni, “A
discrepancy principle for Poisson data,” Inverse Probl., vol. 26, no. 10,
p. 105004, Oct. 2010.

[54] A. Stagliano, P. Boccacci, and M. Bertero, “Analysis of an approxi-
mate model for poisson data reconstruction and a related discrepancy
principle,” Inverse Probl., vol. 27, no. 12, p. 125003, 2011.



ACCEPTED BY IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017 13

[55] D.-Q. Chen and L.-Z. Cheng, “Spatially adapted regularization param-
eter selection based on the local discrepancy function for Poissonian
image deblurring,” Inverse Probl., vol. 28, no. 1, p. 015004, 2012.

[56] T. Blu and F. Luisier, “The SURE-LET approach to image denoising,”
IEEE Trans. Image Process., vol. 16, no. 11, pp. 2778–2786, 2007.

[57] F. Luisier, C. Vonesch, T. Blu, and M. Unser, “Fast interscale wavelet
denoising of poisson-corrupted images,” Signal Process., vol. 90, no. 2,
pp. 415–427, 2010.

[58] M. Raphan and E. P. Simoncelli, “Optimal denoising in redundant
representations,” IEEE Trans. Image Process., vol. 17, no. 8, pp. 1342–
1352, 2008.

[59] E. P. Simoncelli, “Bayesian denoising of visual images in the wavelet
domain,” in Bayesian inference in wavelet-based models. Springer,
1999, pp. 291–308.

[60] J. Li, F. Luisier, and T. Blu, “Deconvolution of Poissonian images with
PURE-LET approach,” in Proc. IEEE Int. Conf. Img. Proc. (ICIP), 2016,
pp. 2708–2712.

[61] C. Vonesch and M. Unser, “A fast thresholded landweber algorithm
for wavelet-regularized multidimensional deconvolution,” IEEE Trans.
Image Process., vol. 17, no. 4, pp. 539–549, 2008.

[62] J.-C. Pesquet, A. Benazza-Benyahia, and C. Chaux, “A SURE approach
for digital signal/image deconvolution problems,” IEEE Trans. Image
Process., vol. 57, no. 12, pp. 4616–4632, 2009.

[63] M. V. Afonso, J. M. Bioucas-Dias, and M. A. Figueiredo, “An aug-
mented lagrangian approach to the constrained optimization formulation
of imaging inverse problems,” IEEE Trans. Image Process., vol. 20,
no. 3, pp. 681–695, 2011.

[64] C. M. Stein, “Estimation of the mean of a multivariate normal distribu-
tion,” Ann. Stat., vol. 9, pp. 1135–1151, 1981.

[65] D. L. Donoho and I. M. Johnstone, “Adapting to unknown smoothness
via wavelet shrinkage,” J. Am. Stat. Assoc., vol. 90, no. 432, pp. 1200–
1224, 1995.

[66] J.-C. Pesquet and D. Leporini, “A new wavelet estimator for image de-
noising,” in Proc. 6th Int. Conf. Image Processing and Its Applications,
vol. 1. IET, 1997, pp. 249–253.

[67] F. Luisier, T. Blu, and M. Unser, “A new SURE approach to image
denoising: Interscale orthonormal wavelet thresholding,” IEEE Trans.
Image Process., vol. 16, no. 3, pp. 593–606, 2007.

[68] C. Chaux, L. Duval, A. Benazza-Benyahia, and J.-C. Pesquet, “A
nonlinear Stein-based estimator for multichannel image denoising,”
IEEE Trans. Image Process., vol. 56, no. 8, pp. 3855–3870, 2008.

[69] S. Ramani, T. Blu, and M. Unser, “Monte-Carlo SURE: A black-
box optimization of regularization parameters for general denoising
algorithms,” IEEE Trans. Image Process., vol. 17, no. 9, pp. 1540–1554,
2008.

[70] A. Jezierska, C. Chaux, J.-C. Pesquet, H. Talbot, and G. Engler, “An EM
approach for time-variant poisson-gaussian model parameter estimation,”
IEEE Trans. Signal Process., vol. 62, no. 1, pp. 17–30, 2014.

[71] L. Azzari and A. Foi, “Indirect estimation of signal-dependent noise
with nonadaptive heterogeneous samples,” IEEE Trans. Image Process.,
vol. 23, no. 8, pp. 3459–3467, 2014.

[72] C. Sutour, C.-A. Deledalle, and J.-F. Aujol, “Estimation of the noise level
function based on a nonparametric detection of homogeneous image
regions,” SIAM J. Imaging Sci., vol. 8, no. 4, pp. 2622–2661, 2015.

[73] M. Rakhshanfar and M. A. Amer, “Estimation of Gaussian, Poissonian–
Gaussian, and processed visual noise and its level function,” IEEE Trans.
Image Process., vol. 25, no. 9, pp. 4172–4185, 2016.

[74] J. L. Starck, J. Fadili, and F. Murtagh, “The undecimated wavelet
decomposition and its reconstruction,” IEEE Trans. Image Process.,
vol. 16, no. 2, pp. 297–309, 2007.

[75] M. Arigovindan, J. C. Fung, D. Elnatan, V. Mennella, Y.-H. M. Chan,
M. Pollard, E. Branlund, J. W. Sedat, and D. A. Agard, “High-resolution
restoration of 3D structures from widefield images with extreme low
signal-to-noise-ratio.” Proc. Natl. Acad. Sci. U.S.A., vol. 110, no. 43,
pp. 17 344–17 349, Oct. 2013.

[76] R. Zanella, G. Zanghirati, R. Cavicchioli, L. Zanni, P. Boccacci, M. Bert-
ero, and G. Vicidomini, “Towards real-time image deconvolution: appli-
cation to confocal and STED microscopy,” Sci. Rep., vol. 3, p. 2523,
Aug. 2013.

[77] A. Wong, X. Y. Wang, and M. Gorbet, “Bayesian-based deconvolution
fluorescence microscopy using dynamically updated nonstationary ex-
pectation estimates,” Sci. Rep., vol. 5, p. 10849, Jun. 2015.

[78] J. Wang, Y. Ding, J. Wang, S. Hillmer, Y. Miao, S. W. Lo, X. Wang,
D. G. Robinson, and L. Jiang, “EXPO, an exocyst-positive organelle
distinct from multivesicular endosomes and autophagosomes, mediates
cytosol to cell wall exocytosis in arabidopsis and tobacco cells,” Plant
Cell., vol. 22, no. 12, pp. 4009–4030, 2010.

[79] B. Zhang, J. Zerubia, and J.-C. Olivo-Marin, “Gaussian approximations
of fluorescence microscope point-spread function models,” Appl. Opt.,
vol. 46, no. 10, pp. 1819–1829, 2007.

[80] J. Boulanger, C. Kervrann, P. Bouthemy, P. Elbau, J.-B. Sibarita, and
J. Salamero, “Patch-based nonlocal functional for denoising fluorescence
microscopy image sequences,” IEEE Trans. Med. Imag., vol. 29, no. 2,
pp. 442–454, 2010.

[81] J. Li, F. Xue, and T. Blu, “Fast and accurate three-dimensional point
spread function computation for fluorescence microscopy,” J. Opt. Soc.
Am. A, vol. 34, no. 6, pp. 1029–1034, 2017.


