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ABSTRACT

Blur estimation is critical to blind image deconvolution. In
this work, by taking Gaussian kernel as an example, we pro-
pose an approach to estimate the blur size for photon-limited
images. This estimation is based on the minimization of a
novel criterion, blur-PURE (Poisson unbiased risk estimate),
which makes use of the Poisson noise statistics of the mea-
surement. Experimental results demonstrate the effectiveness
of the proposed method in various scenarios. This approach
can be then plugged into our recent PURE-LET deconvo-
lution algorithm, and an example on real fluorescence mi-
croscopy is presented.

Index Terms— Parametric blur estimation, Poisson
noise, photon-limited images, image deconvolution.

1. INTRODUCTION

Images acquired under photon-limited conditions are funda-
mentally limited in resolution by diffraction and corrupted
by Poisson noise. This degradation happens in many appli-
cations such as fluorescence microscopy or astronomy, due
to various physical constraints (e.g. low-power light source,
short exposure time). Image deconvolution is an effective tool
to improve the quality of the measured images [1–4]. When
the imaging point-spread function (PSF) of the optical system
is unknown, a single blurred and noisy image is the only in-
put. In that case, we need to estimate both the original image
and the PSF. Thus current high-quality non-blind deconvolu-
tion algorithms [5–9] cannot be used directly.

A number of techniques have been proposed to address
this problem. One popular approach consists in estimating
simultaneously both the original image and the PSF, based
on prior hypotheses on the original image and the blur ker-
nel [1, 10, 11]. Alternatively, we can also first identify the
PSF, and then carry out non-blind deconvolution to obtain
the restored image. Indeed, the knowledge of the imaging
system often suggests a parametric form for the PSF. For ex-
ample, the PSF of 3D wide-field fluorescence microscopy is
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Fig. 1. Close match between the blur-MSE and the blur-
PURE under a wide range of noise levels. The maximum
difference is 0.59. Example: Cameraman image (256× 256)
degraded by Gaussian kernel (s0 = 2.0) and Poisson noise
(α ∈ [0.05, 20]).

often assumed to be the Gibson-Lanni model [12–14]. In 2D
confocal microscopy, the PSF can be well approximated by a
Gaussian function dependent on its variance [15, 16]. In this
context, during the restoration process, only a small number
of parameters of the PSF need to be estimated, thus dramat-
ically reducing the number of degrees of freedom in the blur
estimation problem [17–19]. Parametric blur estimation has
been applied in linear motion blur [20], atmospheric turbu-
lence [21], astronomical imaging [22, 23] and fluorescence
microscopy [16, 24].

Typical parametric PSF models include Gaussian ker-
nel [19, 25, 26], out-of-focus blur [27, 28], motion blur [20]
and anisotropic Gaussian function [19]. Li et al. [21] pro-
posed to estimate the turbulence blur parameter via kurtosis
minimization. Carasso [23] identified the blur size by fitting
the Gaussian kernel to the observed image, utilizing the prop-
erty of the fast Fourier decrease of the Gaussian kernel. Chen
and Ma [26] chose the Gaussian blur parameter based on the
maximization of the differential coefficients of restored image
Laplacian `1-norm curve. In the work of [29], generalized
cross validation (GCV) is validated to determine the param-
eters of motion blur and out-of-focus blur. We previously
proposed a criterion based on Stein’s unbiased risk estimate
(SURE) for the estimation of several types of PSF [19].

These approaches, however, become sub-optimal for
photon-limited images due to the signal-dependent nature



of Poisson noise (see Section 4). In this work, we extend
the blur-SURE criterion introduced in [19] to the Poisson
noise case. It is based on the Poisson unbiased risk estimate
(PURE) [9, 30] and named as blur-PURE. The parameters of
the PSF are then chosen in such a way as to minimize this
new objective functional over a family of Wiener processings.
We exemplify this strategy using a Gaussian PSF since it can
be used in many real applications [15, 16, 26]. The blur size
is then the only parameter to be identified. Once the PSF is
retrieved, our recent non-blind deconvolution algorithm [9] is
carried out.

The paper is organized as follows: Section 2 introduces
the theoretical basis of this work, specifically the proposed
blur-PURE criterion; in Section 3, we exemplify this crite-
rion with Gaussian blur estimation; finally we present experi-
mental results that illustrate the effectiveness of the proposed
approach.

2. THEORETICAL BACKGROUND

2.1. Problem statement

For photon-limited images, the observation model caused by
blurring and Poisson noise is given by

y = α P
(
H0x

α

)
(1)

where y ∈ RN denotes the distorted observation of the un-
known true image x ∈ RN+ , H0 : RN → RN implements a
convolution of the PSF h, which is unknown as well. P(·)
represents the effect of Poisson noise1 and α ∈ R+ is the am-
plification factor, which controls the strength of noise. Specif-
ically, larger values of αwill lead to higher Poisson noise. We
estimate its value using a robust linear regression performed
on a collection of local estimates of the sample mean and sam-
ple variance, similar to [30] and [32].

The objective of this work is to obtain an estimate H of
the ground truth H0. It can be shown, using standard Wiener
theory arguments, that the best linear processing U that min-
imizes the expected mean squared error (MSE) 1

N E{‖Uy −
H0x‖2} is of the form

UH0,λ0
= H0H

T
0

(
H0H

T
0 + λ0S

−1
x

)−1

,

where Sx = E{xxT} is the covariance matrix of x (assumed
to be stationary) and λ0 is some constant (depends on the
noise level α and the mean value of x). This oracle criterion
is named as blur-MSE. Note that since H0 is a convolution
matrix, UH0,λ0 can be directly implemented in the Fourier
domain as:

UH0,λ0
(ω)

Fourier
 

|H0(ω)|2

|H0(ω)|2 + λ0

Sx(ω)

,

1P(z) is a Poisson random variable of mean z, iff the probability of

P(z) = m ∈ RN
+ is

∏N
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Fig. 2. Flow chart of the proposed approach for Gaussian blur
estimation. The regularization parameter λ and blur parame-
ter s (corresponding to H) are estimated jointly, by minimiz-
ing J(s, λ) defined in (5). Once the blur kernel is available, a
non-blind deconvolution algorithm [9] can be applied to ob-
tain the restored image.

where ω = (ω1, ω2) is the (zero-centered) 2D DFT frequency
variables and ‖ω‖2 = ω2

1 + ω2
2 , H0(ω) is the Fourier repre-

sentation of H0.
In this work, since Sx is unknown, we approximate S−1

x

as PTP where P is the discrete Laplacian operator (‖ω‖2).
Our strategy consists in minimizing

blur-MSE =
1

N
E{‖UH,λy −H0x‖2}, (2)

over H and λ, where

UH,λ = HHT
(
HHT + λPTP

)−1

. (3)

Similar to [19], it can be shown that for all WH, the so-
lution H of (2) that minimizes the blur-MSE is related to the
true matrix H0, say HHT = H0H

T
0 .

However, in practice we cannot minimize the blur-MSE
directly since H0x is unknown. Instead, we will use an unbi-
ased estimate of its expected value, blur-PURE, for the min-
imization. It solely depends on the observed image y thus is
computable.

2.2. Blur-PURE for linear processing

For the linear degradation model (1), we have the following
theorem.

Theorem 1 Consider the Poisson degradation model (1) and
U an arbitrary matrix, the random variable

blur-PURE =
1

N
||Uy||2 + 1

N
‖y‖2 − α

N
1Ty

− 2

N

N∑
n=1

yTU(y − α en),
(4)

is an unbiased estimate of the blur-MSE; i.e.,

E{blur-PURE} = 1

N
E
{
||Uy −H0x||2

}
,
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Fig. 3. Typical examples of the blur-MSE and blur-PURE minimizations. Images are degraded by Gaussian kernel (ground
truth blur size s0) and Poisson noise (amplification factor α). (a) Cameraman image (s0 = 1.5, α = 1); (b) Cameraman image
(s0 = 1.5, α = 10); (c) Lake image (s0 = 3.0, α = 10). All of them can obtain highly accurate estimate of the blur size by
minimizing the blur-PURE (also the blur-MSE).

where en is the N -dimensional vector with components
δk−n, k = 1, 2, ..., N , and N is the pixel number of the
image.

The unbiasedness between blur-PURE and blur-MSE and
the fact that the pixel number of the image N is large (typi-
cally, 256×256 = 65536) indicate that (4) can be used as a re-
liable subsitute of the blur-MSE (law of large numbers). Thus
by using the approximation UH,λ in (3) and minimizing (4),
the optimal H and λ can be obtained in practice. Fig. 1 shows
a typical example showing the blur-PURE matches the blur-
MSE under a wide range of noise levels, indicating the blur-
PURE is a reliable estimator of the blur-MSE.

3. BLUR-PURE BASED GAUSSIAN BLUR
ESTIMATION

By taking Gaussian kernel as an example, in this section we
exemplify the blur-PURE criterion for the blur estimation. We
denote the ground truth parameter by s0. The Gaussian kernel
is characterized by

hs(i, j; s) = C · exp(− i
2 + j2

2s2
)

with variance s2, where (i, j) denotes the 2D coordinates, C
is a normalization coefficient and s is the unknown blur size
to be estimated.

Consequently, the estimation of the true s0 and optimal
λ0 can be formulated as the following minimization problem:

(s0, λ0) = argmin
s,λ

J(s, λ),

where

J(s, λ) =
1

N
||UHs,λy||2 +

1

N
‖y‖2 − α

N
1Ty

− 2

N

N∑
n=1

yTUHs,λ(y − α en).
(5)

In order to determine these two scalar variables (s and λ),
we perform a simple exhaustive search over all the possible
values in a certain range [19]. The procedure is as follows:
for each fixed s, the corresponding optimal λ is determined by
λ0(s) = argmin

λ
J(s, λ); then the function λ0(s) will be used

to find the optimal s by solving s0 = argmin
s
J(s, λ0(s)). For

a 256× 256 image, if we use 30 discrete candidate points for
s and λ, the exhaustive search requires 30 × 30 = 900 com-
putations of the blur-PURE. The proposed approach is sum-
marized in Fig. 2. For the case of multiple blur parameters
to be estimated, more sophisticated minimization algorithms
such as quasi-Newton method can be substituted.

4. EXPERIMENTS AND RESULTS

4.1. Compared with state-of-the-art techniques

We compare with other state-of-the-art approaches including
GCV [29], APEX [23], kurtosis [21], DL1C [26] and blu-
SURE [19]. The blur size of Gaussian kernel is estimated and
then compared with the ground truth parameter s0. Table 1 re-
ports the estimation results we have obtained for two standard
test images (Cameraman and Lake), over two representative
noise levels (α = 1, 10) and two different ground truth blur
sizes (s0 = 1.5, 3.0). Fig. 3 shows typical examples of the
blur-PURE minimization and the estimated s ≈ s0. It can
be seen that the proposed approach generally yields more ac-
curate and consistent estimation of the blur size s than other
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Fig. 4. Restoration of real fluorescence microscopy image. The blur parameter s is firstly estimated by the proposed blur-PURE
approach (a), and the non-blind deconvolution algorithm in [9] is then applied on the measured image (b) to obtain the restored
image (c). Fine structures of the cell can be seen.

Table 1. Comparison with state-of-the-art techniques for the
estimation. Best estimation results are highlighted.

Image Cameraman Lake
true s0 s0 = 1.5 s0 = 3.0 s0 = 1.5 s0 = 3.0

noise level α 1 10 1 10 1 10 1 10
GCV 1.80 2.24 3.72 3.23 1.81 2.05 3.53 3.04

APEX 1.36 1.12 1.62 1.28 0.78 0.78 1.61 0.93
kurtosis 1.55 1.83 2.92 2.35 2.05 2.25 3.29 3.56
DL1C 2.10 2.25 3.47 4.43 2.23 1.98 4.12 2.75

blur-SURE 1.75 2.78 3.43 3.01 1.91 2.11 3.51 3.79
blur-PURE 1.49 1.52 2.98 3.02 1.53 1.57 3.05 3.02

approaches. We would like to stress that the blur-PURE ap-
proach is very robust to high noise level. The computation
time of the blur-PURE is similar to the blur-SURE [19] (less
than 0.7 second for a 256 × 256 image), and thus also sub-
stantially faster than others (more than 1.2 seconds). All ex-
periments are carried out on a Macbook Pro with a 2.8 GHz
Intel Core i7, with 16 GB of RAM.

4.2. Blind deconvolution for fluorescence microscopy

We applied the proposed approach on a real fluorescence mi-
croscopy image of mitotic HeLa cell2. This 3D image is col-
lected on a Leica TCS SP5 confocal laser scanning micro-
scope with 63x/1.4 oil objective lens. We use one slice for il-
lustration, which is of size 256×256. The pixel size is 120nm.
As demonstrated in [15], the PSF in 2D confocal microscopy
can be well approximated by a Gaussian kernel. The noise
level is estimated as α = 0.02 by the mentioned robust linear
regression mechanism, and the blur size of the Gaussian ker-
nel is estimated as s = 1.19 by the proposed approach. Then
the non-blind deconvolution algorithm in [9] is applied. Fig. 4
shows the measured and restored images. It can be seen that
the membranes have become more recognizable with respect

2http://www.cellimagelibrary.org/images/35158.

to the background. Also, the filament structure is visible with
significantly better contrast.

5. CONCLUSION

We proposed a parametric blur estimation method for photon-
limited images. It is based on the blur-PURE, which is
a statistical estimate of the blur-MSE. In conjunction with
Wiener filtering, the blur-PURE minimization yields highly
accurate blur estimation. Results obtained show that the
proposed approach outperforms state-of-the-art techniques.
Combined with our non-blind deconvolution algorithm [9],
a high-quality blind deconvolution algorithm for photon-
limited images can be obtained. Note that the blur-PURE
minimization itself is not restricted to PSF that has a partic-
ular parametric form, even though we limited ourselves to
Gaussian blur in this work.
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