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ABSTRACT
Three-dimensional (3D) deconvolution microscopy is very effective
in improving the quality of fluorescence microscopy images. In this
work, we present an efficient approach for the deconvolution of 3D
fluorescence microscopy images based on the recently developed
PURE-LET algorithm. By combining multiple Wiener filtering and
wavelet denoising, we parametrize the deconvolution process as a
linear combination of elementary functions. Then the Poisson un-
biased risk estimate (PURE) is used to obtain the optimal coeffi-
cients. The proposed approach is non-iterative and outperforms ex-
isting techniques (usually, variants of Richardson-Lucy algorithm)
both in terms of computational efficiency and quality. We illustrate
its effectiveness on both synthetic and real data.

Index Terms— 3D deconvolution, fluorescence microscopy,
Poisson noise, unbiased risk estimate

1. INTRODUCTION

Fluorescence microscopy is widely used in biological research to
analyze structures of cells and tissues. Three-dimensional (3D) de-
convolution microscopy is a powerful tool to improve the quality of
fluorescence microscopy images. It can be applied to several mi-
croscopy techniques, for example the conventional wide-field mi-
croscopy [1–6], confocal microscopy [7, 8], structured illumination
microscopy (SIM) [9, 10], or the localization microscopy [11]. Par-
ticularly, in contrast to confocal imaging, wide-field microscopy is
more convenient and up to 30% of the total fluorescent light emitted
by the specimen can be recorded [12]. Combined with deconvolu-
tion techniques, it is very attractive for the observation of subcellu-
lar components in living specimens, thus paving the way for a much
deeper understanding of the dynamics of biological processes.

Two factors deteriorate the resolution in wide-field fluorescence
microscopy. One is blurring, which is caused by the Abbe diffraction
limit and modeled by a convolution of the object with a point spread
function (PSF). The other one is noise, which further degrades the
quality of measured images. In practice, acquisition is performed
under low-light conditions when short exposure times are desired
to avoid photo-toxicity [13]. In that context, the dominant source
of noise follows a Poisson distribution, which is strongly signal-
dependent. In order to restore the high resolution image from the
blurred and noisy observation, it is important to take this statistics
into account. A popular algorithm is Richardson-Lucy (RL) [14–18],
which computes a Poisson maximum likelihood estimate. However,
this algorithm amplifies noise after a few iterations due to the ill-
posedness of inverse convolution. Many authors favor instead the
regularization of the Poisson log-likelihood. In this framework, sev-
eral different regularizers are used such as total-variation [19, 20],
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wavelet-based [21, 22], and Hessian Schatten-norm based [23]. Un-
fortunately, the performance improvement of these iterative algo-
rithms comes at the cost of a significant increase of computational
burden, which puts a strong limitation on the real application to 3D
deconvolution microscopy.

In this work, we extend the PURE-LET approach introduced
in [24] to 3D deconvolution microscopy. By combining multiple
Wiener filtering and wavelet denoising algorithms, we parametrize
the deconvolution process as a linear combination of elementary
functions. The Poisson unbiased risk estimate (PURE) is used to
optimize these elementary functions in a way that is adapted to the
signal-dependent noise statistics. In contrast to existing techniques,
the proposed approach is non-iterative and efficient since it essen-
tially amounts to solve a small linear system of equations.

This paper is organized as follows. We firstly discuss the math-
ematical modeling of the deconvolution problem and our extension
of the PURE-LET approach to 3D deconvolution microscopy. Then
we compare the proposed method with current state-of-the-art tech-
niques. Finally we present the deconvolution result with one real 3D
wide field microscopy image, and compare with the corresponding
image from a structured illumination microscope.

2. 3D PURE-LET FOR DECONVOLUTION MICROSCOPY

2.1. Problem statement

Our approach of restoring the underlying true object x ∈ RN+ from
the distorted observation y ∈ RN is based on the following image-
formation model:

y = α P
(

Hx

α

)
where N = Nx × Ny × Nz is the product of the number of pixels
along each dimension, H : RN → RN implements a convolution
with the PSF “h”. We assume that h is normalized to unity. P(·)
represents the effect of Poisson noise and α ∈ R+ is a scaling factor,
which controls the noise level. Specifically, larger values of α lead
to lower intensity images and thus higher Poisson noise.

While the 2D PSF of a wide field microscope can be reason-
ably well approximated by a Gaussian kernel, no accurate Gaus-
sian approximation exists for 3D PSF [25]. The literature of PSF
modeling is extensive, but the most popular one is the Gibson-Lanni
model [26]. This model is based on a calculation of the optical path
difference between the design conditions and experimental condi-
tions of the objective. It accounts for coverslips and other interfaces
between the specimen and the objective. An example of 3D mi-
croscopy PSF based on the Gibson-Lanni model is given in Fig. 1.

Our objective is to find an estimate x̂ based on y that is the
closest possible to x in the minimum MSE sense. Instead of iter-
atively estimating x̂ itself, we choose to look for an explicit function
F : RN → RN of the measured y such that x̂ = F(y). That is,
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Fig. 1. An example of the 3D microscopy PSF (256 × 256 × 64)
based on the Gibson-Lanni model. (a) (x, y) section in different
slices; (b) (x, z) section in different slices. Such non-symmetric pat-
terns occur due to refractive index mismatch between the specimen
layer and the immersion layer in the microscope system.

ideally we would like to minimize

MSE =
1

N
E{‖x̂− x‖2} =

1

N
E
{
‖F(y)− x‖2

}
, (1)

where E{·} denotes the mathematical expectation operator.

2.2. The Poisson unbiased risk estimate (PURE)

In practice we do not have access to the oracle MSE between x and
the estimate x̂, but we can use an unbiased estimate of its expected
value: Poisson unbiased risk estimate (PURE) [24], which solely
depends on the observed image y.

PURE{F} =
1

N
||F(y)||2 − 2

N
dif {H−TF(y)}

+
1

N

(
‖y‖2 − α 1Ty

) (2)

where dif {H−TF(y)} def
=
∑N
n=1 ynf̃n(y − α en) and F̃(y) =

H−TF(y), en is the N -dimensional vector with components
δk−n, k = 1, 2, ..., N .

However, there are two implementation issues. One is caused
by the possible ill-conditioning of the matrix H−1. This can be
addressed by replacing H−1 with the Tikhonov-regularized inverse
[1, 27]:

H−1
β =

(
HTH + βPTP

)−1

HT,

for some parameter β > 0 and matrix P ∈ RN × RN . In this
work, we choose P to be the discrete Laplacian operator and set
β = 1× 10−5α ymean, where ymean is the mean value of y.

The other issue arises from the impractical evaluation of the ex-
act PURE. A direct evaluation of dif {H−T

β F(y)} would require the
calculation of yTH−T

β F for N perturbed versions of the input y:
(y − α en) for n = 1, ..., N . Such an evaluation would be com-
putationally unrealistic even with images of reasonable size (e.g.
256 × 256 × 128). Instead, we use the 1st-order derivative to ap-
proximate dif {H−T

β F(y)} given by:

dif {H−T
β F(y)} ' yTH−T

β (F(y)− α∂F(y))

where ∂F(y) = [ ∂fn(y)
∂yn

]n=1,...,N is the N × 1 vector made of the
first derivative of each function fn with respect to yn. Consequently,
the PURE unbiased MSE estimate defined in (2) is well approxi-
mated by

PUREapp{F} =
1

N
‖F(y)‖2 − 2

N
yTH−T

β F(y)

+
2α

N
yTH−T

β ∂F(y) +
1

N

(
‖y‖2 − α 1Ty

)
(3)
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Fig. 2. The flowchart of the proposed PURE-LET algorithm
for 3D deconvolution microscopy. The deconvolution process is
parametrized as a combination of elementary functions (LET). Each
elementary function consists of a Wiener filtering followed by adap-
tive thresholding in 3D wavelet domain. We then use the PURE (3)
to optimize these LETs.

2.3. PURE-LET for 3D Deconvolution Microscopy

In order to find the function F, we describe the deconvolution pro-
cess F as a linear combination of K (usually) non-linear elemen-
tary function Fk, termed as linear expansion of thresholds (LET)
[27–29]:

F(y) =

K∑
k=1

akFk(y) (4)

whereK � N is the number of linear coefficients a = [ak]k∈[1,...,K]

of the LETs.
Accordingly, the deconvolution problem is reduced to finding

the linear coefficients ak by minimizing the PURE defined in (3).
By substituting (4) into (3) and performing differentiation over ak,
this minimization is equivalent to solving the following linear system
of equations:

K∑
l=1

Fk(y)TFl(y)︸ ︷︷ ︸
[M]k,l

al = yTH−T
β (Fk(y)− α∂Fk(y))︸ ︷︷ ︸

[c]k

(5)

for k = 1, 2, ...,K. These equations could be summarized as Ma =
c, where M ∈ RK×K and c = [c1, ..., cK ]T ∈ RK .

We construct the elementary functions Fk’s as basic deconvolu-
tion processes (Wiener filtering) followed by denoising (transform-
domain thresholding). We use an undecimated filterbank trans-
form in this work (typically, Haar wavelet transform), which has
proved to be effective for reducing various types of noise degra-
dations [28–30]. The coefficients provided by the analysis filter
are thresholded, and then finally passed to the synthesis filter band.
The elementary functions Fk’s consist of multiple Wiener filtering
followed by thresholding in the 3D wavelet domain. An illustrative
description of the proposed deconvolution approach is shown in
Fig. 2. The matrices H−1

λk
= (HTH + λkP

TP)−1HT represent
the Wiener filter with a given regularization parameter λk. D =
[di,j ](i,j)∈[1,...,L]×[1,...,N ] and R = [ri,j ](i,j)∈[1,...,L]×[1,...,N ] rep-
resent a pair of linear decomposition and reconstruction transforms
that satisfies the perfect reconstruction condition RD = I. A linear
transformation D̄ = [d̄i,j ](i,j)∈[1,...,L]×[1,...,N ] is applied to the
noisy data y in order to yield a coarse estimation of the transform-
domain signal-dependent noise variance [29]. Same thresholding
functions θj,1 and θj,2 as in [24] are used. The 3D wavelet can be
constructed as separable products of 1D wavelets by successively
applying the analyzing/synthesis filters in three spatial directions
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Fig. 3. (x, y) and (y, z) sections of the 3D restoration results of the Bars image with Poisson noise α = 0.5. (a) and (b) The original
image and the blurred noisy image, respectively; (c) RL-TV (PSNR=26.92 dB); (d) ParalIterDecon (PSNR = 26.13 dB); (e) MitivDecon
(PSNR=26.41 dB); (f) PURE-LET (PSNR=28.26 dB). The computational time of PURE-LET is 38.02s while other approaches need more
than 127.05s, see Table 3 for details.

Table 1. PSNRs between the blurred noisy images and the blurred
images to indicate the influence of Poisson noise over six represen-
tative noise levels.

α 0.25 0.5 1 2 4 8
Bars

256 × 256 × 128 21.31 20.07 18.31 16.10 13.55 10.79

Pollen
2 56 × 256 × 32 24.36 21.35 18.33 15.33 12.32 9.30

(x, y, z). The deconvolved estimate x̂ can be finally expressed as a
function F of the noisy input signal y as

F(y) =

M∑
m=1

L∑
l=1

J∑
j=1

am,l,j Rjθl(wm,j , w̄m,j)︸ ︷︷ ︸
Fm,j,k(y)

+ RJ+1DJ+1y︸ ︷︷ ︸
lowpass subband

where wm = DH−1
λm

y, w̄m = D̄H−1
λm

y, M is the number of
Wiener filters, L is the number of elementary pointwise thresholding
functions and J denotes the number of highpass wavelet subbands.
As indicated by (5), we have K = M × J × L parameters to de-
termine and they are given by the solution of the linear system of
equations (5) of order K.

3. EXPERIMENT AND RESULTS

In our approach, we use M = 2 Wiener filters with λ1 =
10−3α ymean, λ2 = 10−2α ymean, where ymean is the mean
value of y. The decomposition level of 3D undecimated Haar
wavelet transform is set to be 2 (J = 14). Thus we will have
K = 2 × 2 × 14 = 56 coefficients to be determined via solv-
ing (5). Algorithm performance is measured in terms of the
peak signal-to-noise ratio (PSNR) in dB, defined as PSNR =
10 log10(I2max/(‖x̂ − x‖2/N)), where Imax is the maximum in-
tensity of the reference image. All experiments are carried out
on a Macbook Pro with a 2.8 GHz Intel Core i7, with 16 GB of
RAM. Further images illustrating these results can be found at
http://www.ee.cuhk.edu.hk/˜jzli/3D_PURE.

3.1. Simulation results

We perform experiments over two images, Bars1 and Pollen2. The
synthetic Bars image consists of six parallel hollow bars, and the

1The Bars image is collected from http://bigwww.epfl.ch/
deconvolution/bars.

2The Pollen image is collected from http://www.
cellimagelibrary.org/images/35532.

Table 2. PSNR comparison with some state-of-the-art algorithms
under different noise levels.

α 0.25 0.5 1 2 4 8
Image Bars 256× 256× 128
R-L 27.07 26.90 26.06 26.05 25.06 23.37

RL-TV 27.08 26.92 26.64 26.11 25.38 23.70
ParalIterDecon 26.35 26.13 25.99 25.58 25.38 25.25

MitivDecon 26.48 26.43 26.41 26.30 26.28 26.37
PURE-LET 28.58 28.26 27.81 27.57 27.24 27.06

Image Pollen 256× 256× 32
R-L 28.60 28.03 27.06 25.52 23.21 20.04

RL-TV 28.64 28.13 27.22 25.71 24.80 24.08
ParalIterDecon 25.95 26.11 25.58 24.92 24.01 23.34

MitivDecon 27.55 27.56 27.51 27.47 26.94 25.48
PURE-LET 29.42 28.77 28.16 27.61 26.96 26.39

*Best PSNR results within a 0.1 dB margin are highlighted.

Table 3. Comparison of the averaged computational time of various
deconvolution algorithms (Units: seconds).

Method Bars
256 × 256 × 128

Pollen
256 × 256 × 32

R-L 284.15 62.29
RL-TV 314.23 88.76

ParalIterDecon 257.60 67.39
MitivDecon 125.43 27.29
PURE-LET 36.35 11.01

Pollen image is a thin optical section through the center of the des-
iccated stage of the mature pollen showing autofluorescence or har-
monic generation of intrinsic structures. The corresponding PSFs
with different sizes are generated based on the Gibson-Lanni model
[26]. They are used to convolve the ground truth images. The
blurred images are subsequently contaminated by Poisson noise with
different noise levels (corresponding to different α values). Table
1 presents the PSNRs between the blurred noisy images and the
blurred images (as reference), to indicate the influence of Poisson
noise over six representative noise levels from α = 2−2 to 23.

As benchmarks for comparisons, we compare the performance
of the PURE-LET algorithm against four state-of-the-art soft-
wares. R-L and RL-TV represent the classical Richardson-Lucy
algorithm [14, 15] and its Total-Variation regularized variant [19],
respectively. They are implemented efficiently in the Deconvolu-

http://www.ee.cuhk.edu.hk/~jzli/3D_PURE
http://bigwww.epfl.ch/deconvolution/bars
http://bigwww.epfl.ch/deconvolution/bars
http://www.cellimagelibrary.org/images/35532
http://www.cellimagelibrary.org/images/35532
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Fig. 4. (x, y) and (x, z) sections of the 3D restoration results of
the Pollen image with Poisson noise α = 1. (a) and (b) The orig-
inal image and the blurred noisy image, respectively; (c) RL-TV
(PSNR=27.22 dB); (d) ParalIterDecon (PSNR = 25.58 dB); (e) Mi-
tivDecon (PSNR=27.51 dB); (f) PURE-LET (PSNR=28.16 dB). The
computational time of PURE-LET is 11.09s while other approaches
need more than 27.52s, see Table 3 for details.

tionLab software3. ParalIterDecon4 is an ImageJ plugin for iterative
deconvolution. MitivDecon [4] is an Icy [31] plugin designed for the
restoration of wide field fluorescence microscopy.

Table 2 reports the PSNR comparison results with the ground
truth image we have obtained for the various deconvolution meth-
ods. This table demonstrates the PURE-LET consistently outper-
forms other approaches. We would like to stress that our approach
is very robust to a wide range of noise levels. Fig. 3 and Fig. 4
show the comparison of visual quality of Bars and Pollen images in
sections. Our method can preserve more image details with limited
artifacts.

Table 3 reports the computational time of various deconvolution
methods. It can be seen that our approach is significantly faster than
other approaches. For instance, our algorithm is roughly 9 times
faster than the commonly used RL-TV algorithm for the Bars image
with size 256 × 256 × 128. Importantly, the PURE-LET compu-
tational time is achieved using only a direct Matlab implementation
(no mex files), which contrasts with the Java optimized code of other
algorithms.

3.2. Real image result

We use the image of microtubules in a Drosophila S2 cell5. Cells
were chemically fixed, and labeled with an anti-tubulin primary an-
tibody and an Alexa Fluor 488 secondary antibody. This dataset is
collected on a Zeiss Elyra structured illumination microscope (SIM).
It consists of one 3D wide field image and a super-resolution SIM
image which can be used for comparison. We cropped and rescaled
these images to highlight the main structures. These images are of
size 256× 256× 44. The pixel size is then 0.1588 µm.

3The DeconvolutionLab software is available at http://bigwww.
epfl.ch/deconvolution/deconvolutionlab1.

4The ParalIterDecon is available at http://imagej.net/
Parallel_Iterative_Deconvolution.

5http://www.cellimagelibrary.org/images/36797.
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Fig. 5. Comparison of the deconvolution result and the super-
resolution SIM image on the real data. (a-c) (x, y) section; (d-f)
(x, z) section. (a) and (d) the measured wide field image; (b) and (e)
the super-resolution image given by the SIM technique; (c) and (f)
the deconvolved image obtained by the PURE-LET approach (com-
putation time: 21.48 seconds).

We manually tuned the parameters of the Gibson-Lanni model
in order to estimate the PSF and the noise factor α. The deconvo-
lution result and the comparison with the SIM image are shown in
Fig. 5. Compared with the wide field image, the deconvolved im-
age produces a much better quality image, in particular increases the
image resolution along the axial direction. Note that SIM is known
to produce a two-fold increase of the resolution compared with that
of the wide field image [32]. Our approach can achieve roughly the
same resolution, but with a much faster acquisition time: the SIM
technique needs 15 wide field images (with different illuminations)
to reconstruct one super-resolution image [32] while our deconvolu-
tion approach needs to process just one wide field image.

4. CONCLUSION

We proposed a non-iterative and efficient deconvolution approach
for 3D fluorescence microscopy images. The deconvolution process
is linearly parametrized as a combination of few elementary func-
tions (LET). By considering the Poisson noise statistics in the flu-
orescence microscopy images, we use a statistical estimate of the
MSE (PURE) to optimize these LETs. The proposed PURE-LET
approach outperforms current state-of-the-art techniques, both qual-
itatively and computationally. We expect to further improve its per-
formance by using more decomposition levels or more sophisticated
transforms. In addition, the result on real wide field image shows the
potential of deconvolution techniques to achieve the super-resolution
of Structured Illumination Microscopy. Future work will focus on
estimating the PSF automatically from the measurements.

http://bigwww.epfl.ch/deconvolution/deconvolutionlab1
http://bigwww.epfl.ch/deconvolution/deconvolutionlab1
http://imagej.net/Parallel_Iterative_Deconvolution
http://imagej.net/Parallel_Iterative_Deconvolution
http://www.cellimagelibrary.org/images/36797.
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