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ABSTRACT

We propose a non-iterative image deconvolution algorithm for data
corrupted by Poisson noise. Many applications involve such a
problem, ranging from astronomical to biological imaging. We
parametrize the deconvolution process as a linear combination of el-
ementary functions, termed as linear expansion of thresholds (LET).
This parametrization is then optimized by minimizing a robust esti-
mate of the mean squared error, the “Poisson unbiased risk estimate
(PURE)”. Each elementary function consists of a Wiener filtering
followed by a pointwise thresholding of undecimated Haar wavelet
coefficients. In contrast to existing approaches, the proposed algo-
rithm merely amounts to solving a linear system of equations which
has a fast and exact solution. Simulation experiments over various
noise levels indicate that the proposed method outperforms current
state-of-the-art techniques, in terms of both restoration quality and
computational time.

Index Terms— Image deconvolution, Poisson noise, unbiased
risk estimate, MSE estimation.

1. INTRODUCTION

Images are often corrupted by noise and blurring during the acqui-
sition process. In a variety of applications, ranging from astronom-
ical imaging to biological microscopy, the predominant source of
noise follows a Poisson distribution due to the quantum nature of
the photon-counting process at the detectors [1–5]. There are many
efficient image restoration algorithms designed under an additive
(often white) Gaussian noise assumption [6–10]. However, these
approaches become sub-optimal for Poissonian images due to the
signal-dependent nature of Poisson noise; i.e., the noise variance in
each pixel is proportional to the intensity of the underlying signal.
The development of deconvolution algorithms specifically designed
for Poisson noise then becomes essential.

A popular method for Poissonian image deconvolution problems
is the Richardson-Lucy (RL) algorithm [11, 12]. Regularized vari-
ants of the RL algorithm include total-variation [13,14] and wavelet-
based regularization [15, 16]. Additional approaches can be found
in [2] and [17]. Most of these methods convert the deconvolution
problem into the optimization of an objective function consisting
of a data term, which quantifies the proximity between the esti-
mated image and the measurement, plus a convex non-smooth regu-
larizer (e.g., the log-likelihood [18, 19]). However, the Poisson log-
likelihood is generally non-quadratic and non-separable, which often
requires the application of relatively sophisticated optimization the-
ory [20]. Other approaches bypass the Poisson statistical model in
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favor of an additive Gaussian noise model through the Anscombe
variance-stabilizing transform [21]. However, such approximations
are inaccurate when the observed number of photons is small [22,23]
and are not really suited to deconvolution.

The major contribution of this paper is to extend the SURE de-
convolution approach introduced in [10] to the Poisson noise case.
We parametrize the deconvolution process as a linear combination
of elementary functions, termed as linear expansion of thresholds
(LET) [4,10,24]. Each elementary function then consists of a Wiener
filtering followed by wavelet-domain thresholding. We finally use
the Poisson unbiased risk estimate (PURE) to optimize these LETs
that are adapted to the signal-dependent noise variance. Note that
this optimization step is performed in the image-domain to ensure
the global mean squared error (MSE) optimality [24, 25]. Impor-
tantly, in contrast to existing techniques, the proposed method is non-
iterative; the PURE being quadratic in nature, the algorithm amounts
to solving a linear system of equations, which is fast and has an exact
solution.

This paper is organized as follows. We firstly introduce the the-
oretical basis of this work, specifically the PURE for deconvolution
problem. Then we present our PURE-LET algorithm and provide a
typical structure of the elementary function. Finally, we compare the
proposed method with three state-of-the-art techniques over various
noise levels.

2. THEORETICAL BACKGROUND

2.1. Problem statement

The observation model for a linear degradation caused by blurring
and Poisson noise is given by

y = α P
(

Hx

α

)
(1)

where y ∈ RN denotes the distorted observation of the unknown
true image x ∈ RN+ , H : RN → RN implements a convolution
of the point spread function (PSF) h, P(·) represents the effect of
Poisson noise and α ∈ R+ is the scaling factor, which controls the
strength of noise. Specifically, larger values of α will lead to lower
intensity images and thus higher Poisson noise.

Our objective is to find a function F : RN → RN for the mea-
sured y such that x̂ = F(y) is the closest possible to x in the MSE
sense. That is, ideally we would like to minimize

MSE =
1

N
E{‖x̂− x‖2} =

1

N
E

{
N∑
n=1

(x̂n − xn)2

}

where E{·} denotes the mathematical expectation operator. Note
that we intend to estimate the function F instead of x̂ itself.



2.2. Poisson unbiased risk estimate (PURE)

Since in practice we do not have access to the oracle MSE between x
and the estimate x̂, we will use an unbiased estimate of its expected
value, which solely depends on the observed image y.

The expectation of the MSE between a given estimate x̂ = F(y)
and x can be accurately computed from the observed image y by
PURE using the following theorem:

Theorem 1 Let F(y) = [fn(y)]n=1...N be an N -dimensional real-
valued vector function. Considering the linear degradation model
(1) and assuming H is invertible, then the random variable (referred
to as PURE)

ε =
1

N
||F(y)||2 − 2

N
difH F(y) +

1

N
||x||2 (2)

is an unbiased estimate of the expected MSE; i.e.,

E{ε} =
1

N
E
{
||F(y)− x||2

}
where difH F(y) =

∑N
n=1 ynf̃n(y−α en) and F̃(y) = H−TF(y),

en is the N -dimensional vector with components δk−n, k =
1, 2, ..., N , H−T is the inverse and transpose of H.

This theorem is a natural extension of PURE in [4] to the distortion
model (1). The unbiasedness between PURE and MSE indicates ε
could be used as a reliable substitute of MSE for large N . Impor-
tantly, the last term ‖x‖2 is irrelevant when minimizing ε, and all the
other terms are computable in practice.

Considering the possible ill-posedness of the matrix H, the
Tikhonov-regularized inverse [2, 10] is used to approximate H−1:

H−1
β =

(
HTH + βPTP

)−1

HT

for some parameter β > 0 and matrix P ∈ RN × RN . In this
work, we choose P as the discrete Laplacian operator and set β =
1× 10−5αµ, where µ = E{y} is the expected value of y. Thus the
PURE in (2), without the constant ‖x‖2, becomes:

εβ =
1

N
‖F(y)‖2 − 2

N
difHβ F(y) (3)

Furthermore, a direct evaluation of difHβ F(y) would require
the calculation of yTH−T

β F for N perturbed versions of the in-
put y: (y − α en) for n = 1, ..., N . Such an evaluation would be
computationally unrealistic even with images of reasonable size (e.g.
256× 256). Instead, we use the 1st-order derivative to approximate
difHβ F(y) given by:

difHβ F(y) ' yTH−T
β (F(y)− α∂F(y))

where ∂F(y) = [ ∂fn(y)
∂yn

]n=1,...,N is the N × 1 vector made of the
first derivative of each function fn with respect to yn. Consequently,
the PURE unbiased MSE estimate defined in (3) is well approxi-
mated by

ε̃ =
1

N
‖F(y)‖2 − 2

N
yTH−T

β F(y) +
2α

N
yTH−T

β ∂F(y) (4)

Note that, if F is linear, the two MSE estimate, (3) and (4), are equiv-
alent.
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Fig. 1. Principle of the proposed PURE-LET approach.

3. MULTI-WIENER PURE-LET DECONVOLUTION

3.1. The PURE-LET approach

In order to find the function F such that F(y) is close to x, we de-
scribe the deconvolution process F as a linear combination of K
possibly non-linear element function Fk, termed as linear expan-
sion of thresholds (LET) [4, 10, 24]:

F(y) =

K∑
k=1

akFk(y) (5)

whereK � N is the number of linear coefficients a = [ak]k∈[1,...,K]

of the LETs.
Accordingly, the deconvolution problem is reduced to finding

the linear coefficients ak by minimizing the MSE estimate ε̃ defined
in (4). By substituting (5) into (4) and performing differentiation
over ak, this minimization is equivalent to solving the following lin-
ear system of equations:

K∑
k′=1

Fk(y)TFk′(y)ak′ = yTH−T
β (Fk(y)− α∂Fk(y))︸ ︷︷ ︸

ck

(6)

for k = 1, 2, ...,K. These equations could be summarized as Ma =
c, where M = FTF ∈ RK×K and c = [c1, ..., cK ]T ∈ RK .

3.2. Construction of elementary function: multi-Wiener filter-
ing followed by transform-domain thresholding

The elementary functions Fk’s consist of multi-Wiener filtering
followed by transform-domain thresholding. An illustrative descrip-
tion of the proposed deconvolution approach is shown in Fig. 1.
The matrices H−1

λk
= (HTH + λkP

TP)−1HT represent the
Wiener filter with a given regularization parameter λk. D =
[di,j ](i,j)∈[1,...,L]×[1,...,N ] and R = [ri,j ](i,j)∈[1,...,L]×[1,...,N ] rep-
resent a pair of linear decomposition and reconstruction transforms
that satisfies the perfect reconstruction condition RD = I. A linear
transformation D̄ = [d̄i,j ](i,j)∈[1,...,L]×[1,...,N ] is applied to the
noisy data y in order to yield a coarse estimation of the transform-
domain signal-dependent noise variance [4] . The deconvolved
estimate x̂ can be finally expressed as a function F of the noisy input
signal y as

x̂ = F(y) = RΘ(DH−1
λ y︸ ︷︷ ︸

w

, D̄H−1
λ y︸ ︷︷ ︸

w̄

) (7)

where Θ(w, w̄) = [θl(wl, w̄l)]l∈[1,..,L] represents the pointwise
(nonlinear) thresholding function. In this work, we set w̄l as the
scaling coefficients of the lowpass residual at a given scale l.
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Fig. 2. PSNR comparison of MSE-LET and PURE-LET for Fluo-
cells image where the input PSNR is between 0.37dB (α = 1400)
and 28.03dB (α = 1). The maximum difference between the oracle
MSE-LET and the proposed PURE-LET is 0.27dB.

Corollary 1 Given the transform-domain pointwise processing
F(·) defined by (7), the approximation of the PURE estimate ε̃
introduced in (4), can be further expressed as

ε̃ =
1

N
‖F(y)‖2 − 2

N
yTH−T

β F(y)+

2α

N

(
∂wΘ(w, w̄)T[(DH−1

λ ) • (H−T
β R)T]y+

∂w̄Θ(w, w̄)T[(D̄H−1
λ ) • (H−T

β R)T]y
)

where ∂wΘ(w, w̄) and ∂w̄Θ(w, w̄) represents the first derivative
with respect to w and w̄ of each thresholding function θl, respec-
tively. “•” denotes the Hadamard product between two matrices.

The whole deconvolution process can be linearly parametrized
as

F(y) =

M∑
m=1

L∑
l=1

J∑
j=1

am,l,j Rjθl(wm,j , w̄m,j)︸ ︷︷ ︸
Fm,j,k(y)

+ RJ+1DJ+1y︸ ︷︷ ︸
lowpass subband

where w = DH−1
λ y, w̄ = D̄H−1

λ y, M is the number of Wiener
filters (typically M = 3), L is the number of elementary pointwise
thresholding functions (typically L = 2) and J denotes the number
of highpass wavelet subbands (typically J = 12 for four decom-
position levels). In this work, we propose the following subband-
adaptive thresholding function θj,l as:

θj,1(w, w̄) = w

(
1− exp

(
−
(

w

4tj(w̄)

)4
))

θj,2(w, w̄) = w

(
1− exp

(
−
(

w

9tj(w̄)

)4
)) (8)

where tj(w̄) =
√

2−j/2 · tanh(τw̄)w̄ and τ is empirically set to
be 100, so that x tanh(τx) ≈ |x|. As indicated by (6), we have
K = M × J ×L parameters to determine and they are given by the
solution of the linear system of equations (6) of order K.

4. EXPERIMENT AND RESULTS

4.1. Experimental settings

We perform experiments over three images, Cameraman, Moon
and Fluocells. The original images are firstly convolved by Gaus-
sian kernel with variance 3. The blurred images are subsequently

SPIRAL-RDP-TI: 25.61 dB

Blurred noisy: 24.42 dB

PURE-LET: 27.66 dBPoissonHessReg: 27.00 dB

PoissonDeconv: 25.03 dB

Original image

Fig. 3. Restoration of Moon image degraded by Gaussian blur and
Poisson noise with α = 1. The computational time of PURE-LET
is 6.5s while other approaches need more than 146.3s.

contaminated by Poisson noise with different noise levels (corre-
sponding to different α). The algorithm performance is measured
by the peak signal-to-noise ratio (PSNR), defined as PSNR =
10 log10(I2

max/(‖x̂− x‖2/N)), where Imax is the maximum inten-
sity of the noise-free image. Note that all the reported results have
been averaged over 10 noise realizations.

In the proposed method, we use M = 3 Wiener filters with
λ1 = 10−4αµ, λ2 = 10−3αµ and λ3 = 10−2αµ, where µ is the
expected value of y. The undecimated Haar wavelet transform is
used and the decomposition level is set to be 4 (J = 12). Thus we
will have K = 3 × 2 × 12 = 72 coefficients to be determined via
solving (6).

4.2. Validation: PURE-LET vs MSE-LET

To validate the use of the PURE, we compare the performance of
the PURE-LET to the optimal performance achieved when using the
MSE in the LET framework. In other words, the MSE is used di-
rectly in (6) leading to an oracle solution obtained by the pointwise
thresholding proposed in (8) and solving MaMSE = FTx. This



SPIRAL-RDP-TI: 30.40 dBPoissonDeconv: 30.96 dB

PURE-LET: 31.42 dBPoissonHessReg: 30.59 dB

Blurred noisy: 28.02 dBOriginal image

Fig. 4. Restoration of Fluocells degraded by Gaussian blur and Pois-
son noise with α = 1. The computational time of PURE-LET is
7.15s while other approaches need more than 124.99s, see Table 2
for details.

oracle solution is named as the MSE-LET. The comparison of the
PURE-LET and MSE-LET for Fluocells image is shown in Fig. 2.
As expected, our PURE-LET consistently remains within 0.27dB
from the MSE-LET for a wide range of noise levels, which is an
evidence of the robustness of the proposed PURE-LET approach.

4.3. Comparison with the state-of-the-art

As benchmarks for comparisons, we evaluate our algorithm against
three competitive deconvolution techniques specifically designed for
Poisson noisy images: PoissonDeconv [26], SPIRAL-TAP-TI [23]
and PoissonHessReg [27]. For each of these methods, we used the
parameters suggested in their respective publications and softwares.

Table 1 reports the PSNR results we have obtained for the vari-
ous deconvolution methods over six representative noise levels from
α = 1 to α = 200. This table demonstrates that the PURE-LET
consistently outperforms other approaches. We would also like to
stress that our algorithm is very robust to a wide range of noise lev-
els. In particular, significant improvements are observed at large α,

Table 1. PSNR Comparison with some state-of-the-art algorithms
under Gaussian blur with variance 3.

α 1 5 10 50 100 200
Image Cameraman 256× 256
Input 21.59 18.41 16.24 10.07 7.16 4.20

PoissonDeconv 22.78 22.07 21.57 18.65 15.03 10.86
SPIRAL-TAP-TI 24.06 23.12 22.22 20.91 20.30 18.26
PoissonHessReg 23.04 21.97 21.38 19.64 18.70 17.57

PURE-LET 24.46 23.35 22.85 21.41 20.65 19.87
Image Moon 512× 512
Input 24.42 20.09 17.56 10.99 8.05 5.06

PoissonDeconv 25.03 24.77 24.62 20.66 15.28 11.95
SPIRAL-TAP-TI 25.61 24.15 24.93 22.01 21.68 19.11
PoissonHessReg 27.00 25.73 25.15 23.87 23.27 22.46

PURE-LET 27.66 26.26 25.69 24.35 23.91 23.45
Image Fluocells 512× 512
Input 28.02 23.57 21.01 14.43 11.46 8.48

PoissonDeconv 30.96 27.75 27.19 21.86 18.51 15.90
SPIRAL-TAP-TI 30.46 28.59 28.05 26.39 25.17 23.18
PoissonHessReg 30.59 28.58 27.60 25.14 24.06 23.17

PURE-LET 31.42 29.69 28.88 26.79 25.81 24.81
* The results have been averaged over 10 noise realizations.

Table 2. Comparison of the computational time of various deconvo-
lution algorithms (Units: seconds).

Degradation scenario Cameraman 256 × 256
α = 100

Fluocells 512 × 512
α = 10

PoissonDeconv 210.30 978.84
SPIRAL-TAP-TI 101.61 301.01
PoissonHessReg 22.26 124.99

PURE-LET 1.04 7.15

where the signal-dependent nature of the Poisson noise is more pro-
nounced. Fig. 3 and Fig. 4 show the comparison of visual quality of
Moon and Fluocells, respectively. It is observed that the proposed
method preserves various image details, while introducing very few
artifacts.

4.4. Computational time

All experiments are carried out on a PC with a 3.3 GHz Intel Core
i3, with 4 GB of RAM. Table 2 reports the computational time of
various deconvolution algorithms. It can be seen that our method
is substantially faster than other approaches. As observed, the pro-
posed PURE-LET algorithm is roughly 22 times faster than the next
fastest algorithm for a 256 × 256 image and 16 times faster for a
512 × 512 image. It is worth mentioning that the proposed method
is implemented using unoptimized MATLAB code only, without any
compiled routines.

5. CONCLUSIONS

We proposed a new non-iterative deconvolution approach for Pois-
son noisy images. We linearly parametrize the deconvolution pro-
cess as a combination of elementary functions (LET). Each elemen-
tary function consists of a Wiener filtering followed by transform-
domain thresholding. We then use the purely data-driven unbiased
estimate of the MSE (PURE) to optimize these LETs. The pro-
posed PURE-LET approach outperforms current state-of-the-art
techniques, both qualitatively and computationally. Moreover, the
flexibility and low computational cost of the proposed approach of-
fers a framework for developing more sophisticated algorithms. For
example, other transforms such as the block discrete cosine trans-
form and the combination with the discrete wavelet transform, could
be employed or multivariate thresholding functions considered.
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age deblurring with Poisson data: from cells to galaxies,” In-
verse Probl., vol. 25, no. 12, pp. 123 006–27, Nov. 2009.

[18] A. Danielyan, V. Katkovnik, and K. Egiazarian, “Deblurring
of poissonian images using bm3d frames,” in Proc. SPIE 8138,
Wavelets and Sparsity XIV, 2011, pp. 8 138 121–7.

[19] L. Ma, L. Moisan, J. Yu, and T. Zeng, “A dictionary learn-
ing approach for Poisson image deblurring,” IEEE Trans. Med.
Imag., vol. 32, no. 7, pp. 1277–1289, Jul. 2013.

[20] M. A. Figueiredo and J. M. Bioucas-Dias, “Restoration of pois-
sonian images using alternating direction optimization,” IEEE
Trans. Image Process., vol. 19, no. 12, pp. 3133–3145, 2010.

[21] P. Fryzlewicz and G. P. Nason, “A Haar-Fisz algorithm for
poisson intensity estimation,” J. Comput. Graph. Stat., vol. 13,
no. 3, pp. 621–638, 2004.

[22] R. Willett, “Multiscale analysis of photon-limited astronomical
images,” in Statistical Challenges in Modern Astronomy IV,
vol. 371, 2007, pp. 247–264.

[23] Z. T. Harmany, R. F. Marcia, and R. M. Willett, “This
is SPIRAL-TAP: Sparse Poisson Intensity Reconstruction
ALgorithms–Theory and Practice,” IEEE Trans. Image Pro-
cess., vol. 21, no. 3, pp. 1084–1096, Feb. 2012.

[24] T. Blu and F. Luisier, “The SURE-LET approach to image
denoising.” IEEE Trans. Image Process., vol. 16, no. 11, pp.
2778–2786, 2007.

[25] M. Raphan and E. P. Simoncelli, “Optimal denoising in re-
dundant representations,” IEEE Trans. Image Process., vol. 17,
no. 8, pp. 1342–1352, 2008.
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