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Abstract— Physiological motion, such as cardiac and 

respiratory motion, during Magnetic Resonance (MR) image 
acquisition can cause image artifacts. Motion correction 
techniques have been proposed to compensate for these types of 
motion during thoracic scans, relying on accurate motion 
estimation from undersampled motion-resolved reconstruction. A 
particular interest and challenge lie in the derivation of reliable 
non-rigid motion fields from the undersampled motion-resolved 
data. Motion estimation is usually formulated in image space via 
diffusion, parametric-spline, or optical flow methods. However, 
image-based registration can be impaired by remaining aliasing 
artifacts due to the undersampled motion-resolved reconstruction. 
In this work, we describe a formalism to perform non-rigid 
registration directly in the sampled Fourier space, i.e. k-space. We 
propose a deep-learning based approach to perform fast and 
accurate non-rigid registration from the undersampled k-space 
data. The basic working principle originates from the Local All-
Pass (LAP) technique, a recently introduced optical flow-based 
registration. The proposed LAPNet is compared against 
traditional and deep learning image-based registrations and tested 
on fully-sampled and highly-accelerated (with two undersampling 
strategies) 3D respiratory motion-resolved MR images in a cohort 
of 40 patients with suspected liver or lung metastases and 25 
healthy subjects. The proposed LAPNet provided consistent and 
superior performance to image-based approaches throughout 
different sampling trajectories and acceleration factors. 

  
Index Terms—Magnetic Resonance Imaging, Non-rigid 

registration, deep learning registration, motion correction.  

I. INTRODUCTION 

agnetic resonance imaging (MRI) is a valuable and 
versatile tool in clinical diagnostics. Its capability of 
assessing anatomy and functional processes within the 

human body in a non-invasive manner makes it an essential 
imaging modality. However, MRI is prone to several artifacts 
which can deteriorate images significantly up to the point of 
non-diagnostic quality. Due to the long acquisition times in 
MRI, motion is one of the major extrinsic factors influencing 
image quality. Motion patterns can be categorized into rigid 
motion such as global translations or rotations of stiff structures 
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which arises from movements of whole body parts and non-
rigid motion including (local) deformations under an affine 
model which mainly occurs in the thorax and abdominal region 
caused by physiological motion. Other body parts, such as the 
bowel, can be affected as well. Patient and physiological motion 
induces ghosting along the phase‐encoding direction and/or 
blurring of the image content. The manifestation in the image 
mainly depends on the imaging sequence and sampling 
trajectory. 

Motion visualization, estimation and correction are thus 
important tasks when reconstructing or processing MRI data. 
Several prospective and retrospective motion compensation 
approaches have been developed to minimize or correct for 
motion induced artifacts. These include fast imaging sequences 
[1, 2] to enable acquisitions within resting periods (e.g. under 
breath-holds) or minimal motion (e.g. mid-diastole); tracking of 
motion by sensors (MR navigators [3-10], cameras [11], 
respiratory belts or electrocardiogram [12]) to limit data 
acquisition to periods with minimal movement (e.g. diastole, 
end-expiration); application of motion-robust acquisition 
schemes [13]; prospectively corrected acquisitions [14]; 
retrospective motion-corrected reconstruction [15, 16] and 
motion-resolved imaging [17, 18]. 

In relation to motion-corrected approaches, one can 
differentiate between the correction of rigid motion (e.g. head 
motion) and non-rigid periodic motion (e.g. respiratory and 
cardiac motion). Rigid motion can be tracked by MRI or other 
external sensors and modelled in k-space for translational 
motion as linear phase drifts that can be incorporated into the 
acquisition (prospective correction) or reconstruction 
(retrospective correction) schemes [8-10, 13]. Non-rigid motion 
can be tracked by MRI or sensors as well, but on the other hand 
is more challenging to correct as it involves local deformations 
in image space which are related to changes in the entirety of k-
space (acquisition space) in a non-trivial way. Correction of 
non-rigid motion is therefore usually performed retrospectively 
on motion-resolved images [19]. Accordingly, a prior image 
reconstruction step is required. 

M 
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To achieve fast acquisitions, motion-resolved thoracic and 

abdominal images are usually highly undersampled in k-space. 
In order to reconstruct aliasing-free images these methods rely 
on reconstruction schemes that for example exploit sparsity or 
low-rank redundancies in the spatial and/or motion directions 
to solve the ill-posed reconstruction problem [2, 20]. These 
approaches require careful parametrization and fine-tuning 
between regularization and data consistency to avoid residual 
aliasing (under-regularized) and staircasing or blurring artifacts 
(over-regularized).  

After reconstruction, motion fields can be estimated in image 
space from the motion-resolved reconstructed images. Spatio-
temporal redundancies can be exploited in the reconstruction to 
improve image quality [21-27] which implicitly perform a 
motion correction without directly relying on motion fields. 
Alternatively, motion-compensated reconstructions can be 
carried out which iterate between an image reconstruction and 
image registration step [28-35]. While motion-compensated 
methods have shown to efficiently utilize motion information, 
they require a significantly increased computational demand 
and the achievable imaging acceleration is limited by the 
quality of the motion-resolved undersampled reconstruction. 

Non-rigid motion estimation is usually formulated in image 
space using diffusion-based [36], parametric spline-based [37] 
or optical flow-based registration methods [38]. In general, 
motion estimation can be guided by external motion surrogate 
signals [28, 39], initial motion field estimates [29, 30], from 
motion-aliased images [31] or low-frequency image contents, 
derived from central k-space data [40, 41]. It was shown in MR-
MOTUS [41] that conventional image registrations can be 
modelled as a low-rank optimization for undersampled cases of 
non-rigid respiratory motion and rigid head motion.. 

Recently, deep-learning based approaches have been 
presented [42] to learn generalizable rigid [43, 44] and non-
rigid [45-50] registrations in image space for medical images. 
FlowNet [51] and FlowNet-2 [52] have been proposed as 
supervised optical flow registration networks for fully-sampled 
2D natural scene images and which has also been translated to 
registration of MR images [53, 54]. In CarMEN [55] motion 
fields were derived in an encoder-decoder convolutional neural 
network from dynamic multi-slice 2D MR image stacks to 
perform cardiac motion estimation.  

To summarize the above, motion correction methods depend 
on i) reliable motion-resolved images or low-frequency k-
spaces (i.e. low-resolution images) from which motion fields 
can be estimated, ii) require good initial motion field estimates, 
iii) rely on other external motion sensor signals, iv) constraint 
the imaging or v) motion field (e.g. local affine) optimization. 
In case of highly undersampled data, aliasing or blurring 
artifacts in the reconstructed images can impair the registration 
process as reconstruction errors can propagate into the image 
registration and/or low-resolution images may not provide 
sufficient information for accurate registration. Aliasing-free 
registration from accelerated acquisitions can be of use for i) 
integration into motion-compensated reconstructions, ii) inter- 
or intra-modality motion correction of other imaging 
acquisitions (e.g. PET/MR motion correction), or iii) 
investigation of subject-depending motion behaviour (e.g. 
cardiac wall motion).   

In this work, we propose a deep-learning based approach to 
perform fast and accurate non-rigid motion estimation directly 
from acquired k-space based on optical flow equations. This 
work focuses on “image” registration carried out in k-space. 
The working principle originates from our recently introduced 
Local All-Pass (LAP) technique [56-58], an image-based 3D 
non-rigid optical flow registration. We will first describe the 
basic concepts of LAP and illustrate its extension to a k-space 
based 3D non-rigid registration [59]. We will then introduce the 
proposed deep-learning non-rigid registration network, named 
LAPNet, operating on motion-resolved k-space data to derive 
3D deformation fields. The proposed LAPNet is compared 
against traditional image-based registrations (LAP and 
NiftyReg [60]) and FlowNet-S [51] operating on image inputs. 
We investigate the proposed approach in 40 patients with 
suspected liver or lung metastases and 25 healthy subjects for 
retrospectively and prospectively undersampled data of 3D 
respiratory motion-resolved MR imaging. 

II. THEORY 

In 3D non-rigid image registration, one tries to estimate a 

motion field/deformation field/motion model � = ���, ��, ���
�
 

which maps all voxels of a moving image �� to a 
reference/fixed image �� by minimizing some dissimilarity 

metric � 

�� = arg min
�

�( ��, ��(�)). (1)

To solve this optimization task, one can utilize parametric 
(e.g. B-splines, thin-plate splines) [61] or non-parametric (e.g. 
optical flow, diffusion) [62] approaches. In the following, we 
will derive the notation for an efficient optical flow-based non-
rigid registration in image space (II.A), which builds upon [56-
58],  from which we extend it to a non-rigid registration in k-
space (II.B). A computationally efficient implementation is 
then achieved by deep learning registration network, named 
LAPNet (II.C).   

A. Local All-Pass (LAP) in image space 

Under the assumption of local brightness consistency, i.e. the 
intensity remains constant when flowing from the moving to the 
fixed image, the volumetric images can be linked by a 
translation. The optical flow can be stated as 

����� = ���� − �(�)� (2)

for deforming a moving image �� ∈ ℝ������ to a fixed 
image �� ∈ ℝ������ with a translation ��(�) ∈ ℝ� at voxel 

position � = [�, �, �]� inside the field-of-view (FOV) 

determined by the 3D spatial size ��, �� and ��. This 

relationship also holds true for deforming local 
neighborhoods � ≪ FOV with � ∈ �. Under the hypothesis 
of a motion flow continuum, one can approximate any global 
non-rigid flow � ∈ ℝ� existing on a large grid by a large sum 

of many local translational flows ��(�) in a smaller support �,  

���� = � ��(�)

�

× �(�)    (3)
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In other words, any non-rigid deformation can be regarded as 

a sum of local translational displacements if 3D motion flow is 
smoothly varying.  

For a translational flow, one can equivalently state the 
occurring translation in Fourier domain, following the shifting 
property of the Fourier transform 

����� = ���� − �� �  ⟺  ����� = ����������
�� (4)

resulting in a multiplication of the moving k-space ����� ∈

ℂ������ with a linear phase to obtain the fixed k-space ����� ∈

ℂ������ at all k-space locations � = ���, ��, ���
�
. 

Accordingly, if one then defines 

���� = �����
��, (5)

the fixed k-space ����� becomes an all-pass (i.e. ������ = 1) 

filtered version with ���� in Fourier domain of the moving k-

space �����. Assuming ideal sampling with a sinc kernel, we 

have a digital version ���� of the all-pass filter with (2π,2π,2π) 

periodic frequency response. 
Putting together equations (3) to (5), one sees that solving for 

the non-rigid motion field ��  in (1), i.e. performing a non-rigid 

registration (in image space), can be equivalently explained by 
finding the appropriate local all-pass filters in Fourier space and 
deriving the flow ��  from it. 

To estimate the all-pass filter ����, we use the key 

algorithmic idea proposed in [63], that the all-pass filtering 
between two images can be expressed linearly in terms of 
forward ���� and backward filtering ��−��, yielding 

���� = �����
�� = �(�)/�(−�) (6)

which is all-pass by design, i.e. ������ = ��(�)�/��(−�)� =

1. Consequently equation (4) respectively (2) becomes 
����� = ℎ��� ∗ ����� ⟺  ��−�� ∗ ����� = ���� ∗ ����� (7)

with all-pass ℎ���, forward ���� and backward ��−�� filters 

in image space. The discrete filters � are approximated by a 

filter basis series ����� 

���� = ����� + � ����(�)

�

���

 (8)

where � denotes the number of optimal filter coefficients �� 
without loss of generality setting ��=1. As pointed out in [64], 
a canonical basis �� with support in � of cubic size 
� × � × � would act as an upper bound for the possible 
deformation of � 2⁄ − 1. Hence, following the analysis in [65], 
an all-pass filter can be approximated by a finite filter basis ��, 
if the basis spans the derivatives of an isotropic function. 

The size of the filter basis � confines the non-rigid motion 
estimation to estimating translational flows in a local region, 
respectively estimating local all-pass filters, given by the filter 
support � and defining then the LAP equation 

��−�� ∗ ����� − ���� ∗ ����� = 0    ∀� ∈ � (9)

Combining (8) and (9) allows to conclude the non-rigid LAP 
registration problem in image space 

min
{��}

� � ����� ⋅ ����� ∗ ������ ,

�∈�

���� ⋅ ���−�� ∗ �������   

s. t.  ���� = ����� + � ����(�)

�

���

    ∀� ∈ ℝ� 

(10)

for which at each image position � ∈ ℝ� the � optimal filter 

coefficients �� are estimated by minimizing the dissimilarity � 
(e.g. mean-squared-error, MSE) between �� and ��. For sake 

of simplicity, � describes the window function indicator of the 
neighborhood � in (3). The local all-pass filter yields the local 
translational flow at the central voxel in � and can be derived 
from (6) as 

�� = �
� �� ����

��
�

���

 

⇔ �� = 2 �
∑ ��(�)�

∑ �(�)�

,
∑ ��(�)�

∑ �(�)�

,
∑ ��(�)�

∑ �(�)�

�

�

. (11)

Sliding the window �(�) over all voxel positions provides 

the non-rigid flow � as stated in (3). 
In order to deal with motion of varying strength, a multi-

resolution approach is applied in which the size of � is 
decreased per multi-resolution step, i.e. coarse-to-fine 
estimation. 

B. Non-rigid registration in k-space 

Following the key idea of LAP that any non-rigid deformation 
can be regarded as local translational displacements and 
together with the Fourier shift property, a k-space 
representation is obtained in (4) linking a moving k-space 

����� = ℱ��(�) to a fixed k-space ����� = ℱ��(�) at all k-

space locations �, where ℱ describes the Fourier transform.  

In order to carry out the estimation of local translations in 
Fourier domain (i.e. k-space), we need to consider the local 
windowing �  

����� = ���� ⋅ ���� ⟺  ����� = ���� ∗ ���� (12)

which corresponds in k-space to the convolution by a phase-
modulated (for various � positions) tapering function 

����.Consequently, transforming (10) in Fourier domain  

min
{��}

� � ����� ∗ ����������� ,  ����  

�∈ℝ�

∗ ���−�� �������   

s. t.  ���� = ����� + � ����(�)

�

���

  ∀� ∈ ℝ�  

(13)

yields the non-rigid k-space registration based on the LAP 
optical flow concept. However, not for all dissimilarity � in 
image space exists a representable counterpart in Fourier 
domain. Following the Parseval equation we restrict ourselves 
to � being the MSE.  

Please also note that in the k-space version, summation is 
required over all � positions and for shifted tapering supports at 
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all � positions. Hence, carrying out a registration over the 

complete spectral support of the FOV ∈ ℝ��×��×�� requires 

� ���������
��

� operations at each iteration which can be 

computationally demanding. In comparison, the image-based 
version only operates on the smaller window � ≪ FOV, 

yielding ����������� operations. It should be noted that for 

undersampled acquisitions, only the acquired k-space locations 
need to be visited in the registration. Hence for an 
undersampled acquisition with an acceleration factor of �, we 
obtain a computational reduction of �� which reduces 
computational burden only slightly.  

We therefore seek to simplify these operations and 
significantly reduce the computational burden by learning an 
appropriate registration network that can carry out the 
previously described non-rigid registration in k-space and 
which is furthermore not prone to aliasing artifacts arising from 
undersampled acquisitions, i.e. generalizes for different 
acceleration strategies. 

C. LAPNet: Non-rigid registration network in k-space 

First, we will have a closer look at the effect of the tapering 
function �. In image domain, the windowing � nulls the image 
outside of the chosen filter support and allows thus to crop the 
image to the smaller cubic size. A similar operation can be 
achieved in k-space by tapering with � followed by a regridding 
to yield an input cube of size � × � × � with � ≪ ��,�,�. 

This minimizes the required input dimensions of the network 
and thereby the memory footprint and number of trainable 
parameters in the network. 

The proposed deep-learning architecture, denoted as 
LAPNet, for non-rigid registration in k-space is depicted in Fig. 
1. The zero-filled 3D moving �� and fixed �� k-space is 

convolved with the tapering function � following (12) and 
subsequently regridded to an empirically optimized size of 
33x33x33.k-Spaces are sliced along one spatial dimension and 
real and imaginary parts of the moving and fixed k-space are 
concatenated along the channel direction. This bundle of 
tapered k-space patches of size 332x4 is then passed through a 
succession of convolutional filters with dyadic increase in 
kernels and leaky ReLU activation function. Kernel sizes are 
depicted in Fig. 1. In the last layer a fully connected regression 
is performed on the average pooled feature map to estimate the 
in-plane deformations ����, ���� at the given central location of 
the k-space input patch for the �-th run. To obtain a 3D 
deformation field �� = [���, ���, ���], the registration is performed 

on two orthogonal spatial directions. In the first run (� = 1), k-
spaces are sliced along the last spatial dimension (readout 
direction), yielding ����, ����. In the second run, slicing can be 
done e.g. along the first dimension for processing this bundle of 
k-space patches yielding ����, ����. Results are then merged with 
the previous run to yield ��� = ����, ��� = 0.5(���� + ����), ��� =

���� at the central voxel location of the k-space cube �. The 
whole non-rigid deformation field ��  (in image domain) is 

obtained by estimating the deformations ���, ���, ��� at all voxel 

locations by processing tapered k-spaces patches sequentially, 
i.e. sliding the window � over all voxels (as indicated by the 
arrows in Fig. 1). Flows are estimated from each k-space patch 
and correspond to the voxel location of the patch center. Flows 

are in image domain, due to the last fully-connected layer 
learning a weighted transformation. 

This non-rigid registration follows the principle optimization 
stated in (13) where the network learns the canonical basis of 
(all-pass) filters (Fig. 1 convolution filters) as expressed in (8) 
for a local neighborhood (Fig. 1 tapering) as described in (12). 
The � = 6 consecutive convolutional filters can be regarded as 

learnable coefficients and basis functions �����. Training is 
performed in a supervised manner to optical-flow derived 
diffeomorphic reference flows of (11). The estimated flows by 
LAPNet can thus be assumed to be diffeomorphic as well. 
Moreover, performing flow estimation on a k-space input patch 
follows the idea of approximating a global non-rigid flow by 
local translational deformations. 

The network is trained in a supervised manner on pairs of 
moving �� and fixed k-space �� inputs with the corresponding 

reference motion field ���� derived from the image-based LAP 

[56, 57] (details described in section III.B). The squared end-
point error (sEPE) 

sEPE = ������� = � �����,� − ����
�

�∈{�,�,�}

 (14)

was employed as the training loss. The network resulted in 
~25 million trainable parameters and was trained by an Adam 
optimizer [66] (�� = 0.9, �� = 0.999) for an initial learning 
rate of 2.5 ⋅ 10�� with learning rate scheduler (division by 2 
every 50000 iterations) and a batch size of 64 over 50 epochs 
on a Nvidia Titan RTX GPU. Training and test data are further 
specified in section III.B. 

The source code is publicly available under MIT license: 
github.com/lab-midas/lapnet  

III. METHODS 

A. In-vivo 4D MR acquisition 

3D motion-resolved k-space data was obtained in a cohort of 
40 patients (60 ± 9 years, 22 female) with suspected liver or 
lung metastases [58] and 25 healthy subjects (31 ± 4 years, 10 
female) [18]. The study was approved by the local ethics 
committee and all subjects gave written consent. Imaging was 
performed on a 3T PET/MR (Biograph mMR, Siemens 
Healthcare, Erlangen, Germany) equipped with a phased array 
body and spine coil. A 3D T1 weighted spoiled gradient echo 
sequence was acquired in coronal orientation with a continuous 
variable-density Poisson Disc undersampling [67] for a time of 
acquisition (TA) of 5 min. The remaining imaging parameters 
were TE = 1.23ms, TR = 2.60ms, bandwidth = 890Hz/px and a 
flip angle of 7°. A matrix size of �� × �� × �� = 256 x 256 x 

144 (RO x PE x 3D ⇔ FH x LR x AP) was acquired covering 
a field-of-view of 500 x 500 x 360 mm3. A 2D MR self-
navigation signal (256 x 8 x 1, RO x PE x 3D) was acquired 
each 200 ms serving as gating signal [18]. MR data were 
retrospectively gated into �� = 8 respiratory bins, ranging from 
end-expiratory to end-inspiratory position, with a Gaussian 
view-sharing amongst neighbouring bins. Coil sensitivity maps 
were determined by ESPIRiT [68] from the time-averaged 
(across all respiratory gates) central fully sampled k-space data. 
Images were reconstructed by a FOCal Underdetermined 
System Solver (FOCUSS) [67] producing motion-resolved and 
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complex-valued target images ������� ∈ ℂ�������� respectively 

target k-spaces ������� = ℱ������� ∈ ℂ��������. 

B. Training and test data 

Training data was derived from reconstructed motion-
resolved target data �������/�������. Reference flows ���� in 

training were composed of real, smooth and augmented flows. 
Motion fields ����� were obtained with the image-based LAP 

registration for � = 4 over 5 multi-resolution levels with 
window sizes per level of � = 64, 32, 16, 8, 4 between end-
expiratory fixed �� = �������(� = 1) and remaining moving 

bins �� = �������(� > 1) of the target image (denoted as real 

as described realistic motion) with � ∈ [1, ��] being the bin 
number. Moreover, arbitrary smoothly varying flows/motion 
fields ������� were generated with a maximum displacement of 

10 voxels drawn from multivariate Gaussian distribution [56, 
57] (denoted as smooth). Flows ����� were randomly augmented 

by smoothing (convolution with 5x5x5 Gaussian low-pass), 
translating (-10 to 10 voxels in each direction), rotating (-25° to 
25° in all planes) and by multiplication with arbitrary smoothly 
varying flows (denoted as augmented).  

One objective of the proposed approach is to provide non-
rigid registration from undersampled datasets without the need 
of image reconstruction, i.e. not being limited by aliasing 
artifacts. In training, the fixed �� and moving �� k-spaces are 

retrospectively undersampled with a sampling operator �. Two 
undersampling strategies � ∈ ℝ������  are employed: 1) a 
variable-density Poisson-Disc undersampling (vdPD), 
reflecting a typical incoherent undersampling for compressed 
sensing like reconstructions and 2) taking a fully-sampled 
elliptical central region (center), reflecting a low-resolution 
acquisition. Acceleration factors were randomly distributed in 
the range of � = 1 to 30 where � = 1 corresponds to the fully-
sampled case, i.e. �� = ��������(� = 1) with �(�) = 1 ∀�. 

LAPNet was trained jointly on the different undersampling 
strategies and acceleration factors. 

For training, the fixed input corresponds to the fully-sampled 
(� = 1) or vdPD/center (� > 1) undersampled k-space �� =

��������(� = 1) of the target acquisition in end-expiratory 

position and the moving input relates to the registered fully-
sampled or vdPD/center undersampled k-space �� =

�ℱ��������� ∓ ���� , � = 1� deformed with the forward motion 

model ���� (real, smooth or augmented) and bilinear 

interpolation.  
Training data was created by taking k-space patches together 

with their corresponding flows at random spatial locations in 
coronal and sagittal orientation from 33 patients and 18 healthy 
subjects. A total of 15 million training samples with different 
types of motion (real, smooth, augmented) and undersampling 
(fully-sampled, vdPD, center) were generated approximately 
every 5th epoch with empirically determined ratios of 40% real, 
20% smooth and 40% augmented. For training a stride of 1 was 
performed for the Window �. 

For testing, k-space patches of 7 patients and 7 healthy 
subjects (not included in training) were taken and flow 
estimation was conducted at every 2nd k-space location for 
LAPNet, i.e. a sliding window with a stride of 2 was performed 
to boost registration performance during inference, which 
showed best performance without loss of accuracy. In the fully-
sampled case (� = 1) fixed and moving k-space are extracted 
from �������. In testing for � > 1, the continuous sampling in 

the acquisition is cropped to a shorter scan time duration,  and 
thus mimicking a prospective undersampling. Undersampled 
fixed and moving k-space inputs for testing were taken after 
respiratory motion binning of this prospectively accelerated 
acquisition.  

C. Experiments 

For comparison, two conventional image-based 3D non-rigid 
registrations were performed by the image-based LAP (denoted 
as imageLAP) [56-58] which is an optical flow method and by 
NiftyReg [60] which used a free-form deformation cubic B-
spline model [69]. Please note that for � = 1, the imageLAP 
provides the reference flow used in training the networks. 
Comparison to imageLAP is therefore only performed for � >
1. Conventional methods serve as comparison to investigate 

 
Fig. 1: Proposed LAPNet to perform non-rigid registration in k-space. Moving �� and fixed �� k-spaces are tapered to a smaller support. Slicing 

along one dimension and concatenating the respective real and imaginary parts yields the 2D input to the network. The bundle of k-space patches 
(with four input channels) is processed in a succession of convolutional filters (kernel sizes and channels are stated) with dyadic increase in 
channels to estimate the in-plane flows ����, ���� of the �-th run at the central voxel location determined by the tapering � respective window �
for size � × � × � with � = 33. A 3D deformation field �� = [���, ���, ���] is obtained by merging estimations from two runs on orthogonal 

spatial directions and for every voxel in a sliding window procession (yellow arrows). 
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impact of image acceleration on image-based and non-data 
adaptive registrations. Both conventional methods were run on 
an Intel Xeon E5-2697 CPU. Experiments on the conventional 
non-rigid registration in k-space can be found in [59]. 

For further comparison, an image-based FlowNet-S [52] 
network was trained on the respective fully-sampled (� = 1) or 
vdPD/center (� > 1) undersampled zero-filled images and 
corresponding flows ����. Full 2D coronal and sagittal images 

are used as input. The network was trained by an Adam 
optimizer (�� = 0.9, �� = 0.999) for an initial learning rate of 
10�� with learning rate scheduler (division by 2 every 5000 
iterations) and a batch size of 16 over 50 epochs to minimize 
the sEPE loss in (14). Remaining hyperparameters were 
optimized but found to coincide with published parameters 
[51]. Training database composition differed to LAPNet in the 
sense that the best combination of undersampling (fully-
sampled, vdPD, center) was empirically optimized to yield the 
smallest possible validation loss. Two instances of FlowNet-S 
were hence trained for i) fully-sampled + vdPD and ii) fully-
sampled + center. If not stated otherwise, the best performing 
case is reported. 

The two different undersampling strategies enable to infer 
which k-space locations can potentially contribute to the non-
rigid registration, i.e. is it beneficial to include high-frequency 
components (vdPD) or is it better to only focus on the low-
frequency range (center). The latter undersampling case 
thereby also allows a comparison to previously published 
methods [40, 41] operating on low-resolution images (obtained 
from central k-space sampling) or central k-space data. Testing 
was performed considering the respective undersampling 
strategies (fully-sampled, vdPD, center) independently, for 
LAPNet and FlowNet-S.  

D. Evaluations  

The end-point error EPE = ��� − ������
 and end-angulation 

error EAE = arg(��, ����) between the estimated motion field ��  

was compared with the reference motion field ���� obtained 

from imageLAP (� = 1) of the target acquisition over the 
whole FOV. Structural similarity index (SSIM) [70], 

normalized root mean squared error (NRMSE) = 1/� √MSE, 
peak signal-to-noise ratio (PSNR) = 10 log�� 1/|MSE| and 
normalized cross-correlation (NCC) were calculated between 

the deformed moving image �� = ��������� − �� , � > 1� and 

the end-expiratory fixed target �� = �������(� = 1). Bilinear 

interpolation was performed for non-integer grid points. All 
quantitative results are reported as mean ± one standard 
deviation over all voxel positions, gates and test subjects. Due 
to the lack of a gold-standard ground-truth motion, quantitative 
results can only be interpreted in relation to each other. 
Statistical significance was determined with a paired Welch’s t-
test and Bonferroni correction under the null hypothesis of 
equal means for unequal variances. P-values < 0.05 were 
considered statistically significant. 

IV. RESULTS 

The proposed LAPNet showed statistically significant 
superior performance in the quantitative analysis of EPE and 
EAE over changing acceleration factors for vdPD and center 

sampling as depicted in Fig. 2 and Supplementary Table I. 
LAPNet has the lowest EPE and EAE amongst all cases and 
shows a consistent performance throughout acceleration 
factors. Deviations amongst subjects in conventional image-
based methods (imageLAP, NiftyReg) are larger indicating a 
less consistent performance. Center sampling shows slightly 
higher EPE and EAE metrics towards higher accelerations than 
vdPD indicating that high-frequency information is beneficial 
for the registration task (both in k-space and image space). The 
proposed k-space based LAPNet is less affected by this 
information loss and generalizes better.    

Quantitative similarities between the registered images and 
the fixed images by a voxel-wise intensity comparison is shown 
as violin distributions in Fig. 6 over all test subjects and 
accelerations. Percentage differences and statistical pairwise 
testing to the proposed LAPNet are summarized in 
Supplementary Table I. The proposed LAPNet outperformed 
all other methods in each respective metric with statistical 
significance. LAPNet showed a more consistent performance 
with lower standard deviations. In center sampling slightly 
improved performance of image-based methods were observed. 

 
Fig. 2: End-point error (EPE) and end-angulation error (EAE) over 
all test subjects and gates for comparison of reference motion 
(fully-sampled imageLAP) to the proposed LAPNet in k-space, 
image-based FlowNet-S, image-based LAP (imageLAP) and 
image-based NiftyReg. Mean (solid line) and standard deviation 
(shaded area) are depicted for changing acceleration factors in 
vdPD and center sampling. Please note that imageLAP starts at 
acceleration � = 2 as it serves as reference for � = 1. 
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The respiratory motion-resolved images of a representative 
patient with a neuroendocrine tumor in the liver  are depicted in 
Fig. 4 for a fully-sampled acquisition and for prospectively 
undersampled vdPD and center acquisitions with 8x and 30x 
acceleration. Deformation fields were obtained by the proposed 
LAPNet, FlowNet-S, imageLAP and NiftyReg. The LAPNet 
(i.e. k-space non-rigid registration) shows good performance 
over all acceleration factors with close resemblance to the target 
motion field. Motion flows are only estimated in the body trunk 
with LAPNet whereas estimation in the static (noisy) 
background is relatively low or smoothed out in comparison to 
the conventional methods (imageLAP and NiftyReg). 

Learning-based approaches (LAPNet and FlowNet-S) better 
generalize to the changing input data (remaining aliasing and 
noise impact) than the conventional methods. The data-adaptive 
learning allows to generalize a network-based registration to a 
certain extent for different acceleration factors, i.e. a network is 
able to see through the aliasing and noise artifacts. However, 
one can appreciate the performance difference between 
LAPNet (k-space registration) and FlowNet-S (image-space 
registration). The LAPNet is less obstructed by aliasing 
artifacts, resulting in smoother and more consistent flows 
amongst accelerations with closer agreement to the actual 
underlying respiratory motion which is also reflected in this 

 
Fig. 4: Respiratory non-rigid motion estimation in a patient with neuroendocrine tumor in the liver (pointed out by red arrow) by the proposed 
LAPNet in k-space in comparison to image-based non-rigid registration by FlowNet-S (deep learning), image-based LAP (imageLAP; optical 
flow) and NiftyReg (cubic B-Splines). Estimated flow displacement are depicted in coronal and sagittal orientation. Reference flows are obtained 
from imageLAP on fully-sampled images. Undersampling was performed prospectively with a vdPD and center undersampling for 8x and 30x 
acceleration. Super-inferior liver dome displacement between end-expiratory and end-inspiratory of 1.5 cm was observed. 

 
Fig. 3: Quantitative evaluation between registered images and end-expiratory target over all accelerations and gates by means of structural 
similarity index (SSIM), normalized root normalized squared (NRMSE), peak signal-to-noise ratio (PSNR) and normalized cross-correlation 
(NCC) for the proposed LAPNet in k-space, image-based FlowNet-S, image-based LAP (imageLAP) and image-based NiftyReg. Mean (central 
white dot) and standard deviation (vertical gray bar) are depicted in both undersampling strategies (vdPD and center). 
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subject in a statistically significant lower (� < 0.001) EPE of 
64% ± 3% and lower EAE of 42% ± 6% in LAPNet than 
FlowNet-S. It can also be appreciated that for higher 
accelerations the aliasing is less pronounced in the images. 
Images are blurrier and smoothed out which arises from the fact 
that vdPD sampling is concentrated towards the low-frequency 
central region similar to the center sampling.  

LAPNet produced consistent results over all acceleration 
factors as well as for different sampling strategies. Image-based 
methods (FlowNet-S, imageLAP and NiftyReg) show a similar 
trend for reducing performance with increasing acceleration 
factors. FlowNet-S performs better than conventional methods 
but shows substantial misregistration at the diaphragm. 
Misregistered flows in the image background were increased 
for FlowNet-S with center and vdPD sampling even for 
carefully optimized training database composition. FlowNet-S 
handles low-resolution image input (center) statistically 
significant better (� < 0.001) than undersampling artifact-
affected images (vdPD) for accelerations � ≤ 15. Registration 
of conventional image-based methods (imageLAP and 
NiftyReg) failed for center with � > 10, yielding random 
flows. Overall letting us conclude that high-frequency samples, 
i.e. image edges, carry relevant information for the image-based 
registrations which are inevitable lost at one point for a 
decreasing sampled central region size (increasing 
acceleration �), respectively stronger low-pass filtered image.  

In the coronal orientation, superior-inferior respiratory 
motion is mainly dominating. Static non-moving regions such 
as the spine are not deformed by the proposed LAPNet, as well 
as the image-based registrations for the fully-sampled case, 
indicating that local non-rigid deformations can be correctly 

captured. In sagittal orientation, the superior-inferior 
respiratory motion shows an additional posterior displacement.  

Fig. 5 shows the deformed images obtained from non-rigid 
registration in undersampled data for the proposed LAPNet and 
FlowNet-S in a patient with pancreatic carcinoma and liver 
metastasis. For increasing acceleration factors, a rising trend of 
misregistered local deformations and non-smooth flows were 
obtained with the image-based methods yielding overall a less 
consistent performance. The proposed LAPNet provided 
consistently good flow estimation over all motion states (end-
expiratory to end-inspiratory) and accelerations. Deformed 
images of LAPNet matched the fixed reference image better 
than that of FlowNet-S. In general, performance of FlowNet-S 
was inferior to LAPNet.  

Fig. 6 and 7 show the motion estimation capability for 
periodic (Fig. 6) and linear drifting (Fig. 7) respiration in two 
patients with neuroendocrine tumors. Motion estimates 
obtained from shorter 1 min portions of the scan (i.e. 
corresponding to ~25x undersampling), are consistent for cyclic 
motion. Deep learning based registrations are superior to 
conventional image registration (NiftyReg). Flows of the 
proposed LAPNet are in accordance with reference flows. For 
linear drifting respiration, FlowNet-S and NiftyReg fail to 
capture deformations accurately. LAPNet produced in this 
scenario reliable results.  

The depicted cases in Fig. 4-7 show the observed performance 
variations amongst test subjects. No outlier or failed cases were 
observed in the test cohort with similar performance amongst 
subjects. 

 Non-rigid registration with LAPNet required ~12 hours in 
training whereas inference required only ~18s. FlowNet-S 
required ~2.5 hours of training and ~12s in inference. 

 
Fig. 5: Respiratory non-rigid motion estimation in a patient with pancreatic carcinoma and liver metastasis (pointed out by red arrows). Motion 
displacement is estimated by the proposed LAPNet in k-space in comparison to image-based non-rigid registration of FlowNet-S for vdPD
undersampling with 8x and 30x acceleration. Fully-sampled moving images overlaid with estimated flows and deformed images are shown. 
Reference images and flows depict the image-based imageLAP registration. Horizontal yellow lines indicate liver dome displacement. Super-
inferior liver dome displacement between end-expiratory (t=1) and end-inspiratory (t=8) of 2.8 cm was observed. 
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Registrations with conventional methods were performed on 
average in 23 ± 4s for imageLAP and 83 ± 28s for NiftyReg.  

V. DISCUSSION 

In this work, we propose a deep learning network based non-
rigid registration in k-space. The proposed LAPNet was 
compared against image-based non-rigid registration methods 
in healthy subjects and patients for fully-sampled acquisitions 
and two undersampling strategies (vdPD and center). A 

throughout consistent and superior performance of the proposed 
LAPNet was found. Non-rigid motion estimation is feasible in 
k-space which generalizes well for highly accelerated cases. 
Data-driven learning of image registration (LAPNet, FlowNet-
S) outperformed conventional image registrations (imageLAP, 
NiftyReg) for accelerated acquisitions, although being trained 
in a supervised manner on imageLAP derived flows. The 
LAPNet, i.e. k-space registration, showed a more consistent and 
improved performance over image-based registration 
(FlowNet-S) for different acceleration factors. 

 
Fig. 6: Respiratory non-rigid motion estimation in a patient with neuroendocrine tumor and liver metastastis (pointed out by red arrow). Motion 
displacement is estimated by the proposed LAPNet in k-space in comparison to image-based non-rigid registration by FlowNet-S (deep learning) 
and NiftyReg (cubic B-Splines). Motion is estimated from 1 min parts of the scan, corresponding to a ~25x undersampling. Reference flows 
depict the imageLAP registration from the complete 5 min scan. Cyclic respiration with 1 cm super-inferior displacement was observed. 

 
Fig. 7: Respiratory non-rigid motion estimation in a patient with neuroendocrine tumor and liver metastastis (pointed out by red arrow). Motion 
displacement is estimated by the proposed LAPNet in k-space in comparison to image-based non-rigid registration by FlowNet-S (deep learning) 
and NiftyReg (cubic B-Splines). Motion is estimated from 1 min parts of the scan, corresponding to a ~25x undersampling. Reference flows 
depict the imageLAP registration from the complete 5 min scan. Linear drifting respiration with ~3 cm super-inferior displacement was observed.
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A comparison of the proposed LAPNet to image registration 
methods that are more robust towards undersampled aliasing 
and blurring would be desirable. However, registration methods 
in this field are primarily paired up or interleaved into an image 
reconstruction [28-35]. Examination of sole impact and effect 
of image registration becomes hereby difficult. We therefore 
used the image-based conventional and deep learning image 
registrations as comparison.   
The influence of the receptive field for LAPNet and FlowNet-
S were investigated. In LAPNet, an empirically optimized size 
� was determined which provided a good trade-off between 
computational time and accuracy. For increasing receptive field 
size, non-rigid motion estimation was less accurate and overall 
performance dropped. If receptive field was chosen too small, 
the local neighbourhood was not contributing to the non-rigid 
motion estimation resulting in non-smooth flows. A good trade-
off was found for � = 33 and filter kernel sizes. In contrast to 
imageLAP, maximum possible displacement that can be 
registered with LAPNet was not confined by cubic size �. 
Here, the question for maximum possible displacement that can 
be registered corresponds to maximum possible perceived 
phase changes. Furthermore, it is expected that data-driven 
deep learning registrations can benefit from learning various 
motion patterns and displacement amplitudes. In the examined 
cases, motion of varying amplitude was seen for which LAPNet 
provided good registrations. Future investigations are required 
to examine registration accuracy limits.     

We observed that for the same acceleration factor the LAPNet 
seems to handle motion estimation in the presence of aliasing 
artifacts (image space) better as obtained with vdPD sampling 
than from low-resolution data as in center sampling (see Fig. 1, 
2). For high acceleration factors (>15x) it seems to be beneficial 
to include some high-frequency samples in the registration. In 
these accelerations, more low-frequency samples are 
contributing to the estimation, suggesting that there might be an 
optimal amount and distribution of low-frequency and high-
frequency samples which contribute to the overall registration. 
It is hence conceivable training a network to identify the most 
significant k-space samples contributing to the registration 
which is related to works of adaptive sampling for image 
reconstruction [71].  

 Qualitatively, smoother flow estimations were observed from 
center sampling in the test cohort. Especially FlowNet-S was 
operating better under blurring than aliasing artifacts. While 
quantitative metrics are often used for driving the conventional 
image registration tasks, the voxel-wise measures do not 
necessarily reflect the correction of motion [72], but provide a 
good indicator of how well each of the respective methods 
perform in relation to each other. 

Spatial alignment between flows and undersampled data was 
achieved by retrospective undersampling in training. In order to 
account in the supervised training for changing and subject-
specific respiratory motion patterns, augmentation of real flows 
was performed. Bilinear interpolation can introduce 
interpolation errors but was found to be sufficient and least 
computationally demanding for training. Testing was 
conducted on prospectively undersampled data with varying 
motion patterns. Consistent and superior performance of the 
proposed LAPNet was found for cases ranging from mild (up 

to 1.5 cm liver dome displacement) to strong motion (up to 6 
cm) with linear drifting respiration. However, future 
investigation on larger cohorts is warranted with strongly 
varying motion patterns.     

We acknowledge further limitations of this work. The 
proposed LAPNet was trained and tested for a single imaging 
sequence with two different sampling strategies in a coil-
combined setting for 2D k-space input. In the future, we want 
to extend LAPNet for multi-coil 3D k-space input and 
investigate its generalizability for different imaging sequences 
and sampling trajectories, e.g. radial sampling, as well as 
applications. An empirically optimized input size was set, but a 
multi-resolution approach is conceivable and needs to be 
investigated in the future. The trained filters are not restricted 
to have all-pass characteristic but approximate their behaviour 
which needs to be further investigated in the future. A 
supervised learning was used which may be biased by the 
image-based LAP reference flow, potentially also limiting 
FlowNet-S capabilities. Future work will investigate on self-
supervised and unsupervised learning together with other 
suitable dissimilarity measures in Fourier domain. 

VI. CONCLUSION 

A deep-learning based non-rigid registration method, 
LAPNet, which can be directly performed in the acquired k-
space domain is proposed. Results indicated improved 
performance of LAPNet in comparison to image-based 
registration approaches for high acceleration factors. LAPNet 
showed consistent performance throughout different sampling 
trajectories and acceleration factors. It thus enables non-rigid 
motion registration from highly accelerated acquisitions. 
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