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ABSTRACT

Probably the most important property of wavelets for signal processing is their multiscale derivative-like behavior
when applied to functions. In order to extend the class of problems that can profit of wavelet-based techniques, we
propose to build new families of wavelets that behave like an arbitrary scale-covariant operator. Our extension is
general and includes many known wavelet bases. At the same time, the method takes advantage a fast filterbank
decomposition-reconstruction algorithm. We give necessary conditions for the scale-covariant operator to admit
our wavelet construction, and we provide examples of new wavelets that can be obtained with our method.
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1. INTRODUCTION

Modeling of the surrounding world often is done in terms of continuous domain. Operators, such as the Laplacian
or the gradient, could be used to extract interesting features (e.g., edges) from continuous-domain models. At
the same time, continuous calculus is computationally prohibitive, and therefore can not be directly used in
practice.

A common approach in signal processing is to use sampled data and a discrete approximation of the operator.
The obvious advantage is the speed of computations—applying a shift-invariant operator to the data corresponds
to simple filtering. However, this approach offers almost no control over approximation error.

To combine the advantages of the continuous and the discrete point of view, signals can be represented with
(discrete) coefficients in (continuous) multi-resolution pyramid of linear shift-invariant (LSI) spaces. In this
approach, the signal, most often represented by its samples, is projected on the LSI space at some initial scale,
and all the following treatment is done on its coefficients. The important question is then the choice of convenient
spaces that are adapted for the problem at hand.

In signal analysis, we are typically interested in particular features, and often those can be detected by
continuous operators. These operators could be considered as signal “decorrelators”. For example, edges are
well detected by the derivative in 1-D or by the laplacian in 2-D. A 1-D edge, represented with a step function,
turns into a Dirac delta-function, whose position indicates the location of the edge.

In the past decades, wavelets gained particular interest, as they provide a complete and stable multiscale
representation of L2, and coefficients in the wavelet basis correspond to the samples of the (iterated) derivative
of the smoothed signal. At the same time, the wavelet decomposition is very efficient from the computational
point of view due to the fast filtering algorithm.

In this paper, we construct wavelets that behave like a given operator L. In our approach, the multiresolution
spaces are completely characterized by the Green function of the operator. Importantly, the operator-like wavelet
can be constructed directly from the operator, bypassing the scaling function space. What makes the approach
even more attractive, is that the wavelet space is generated by the shifts of a single wavelet function. Our
work provides a nice generalization of some known and used constructions like elliptic wavelets,1 Laplacian-
like polyharmonic spline wavelets2 and exponential-spline wavelets.3 We give necessary (and nearly sufficient)
conditions on the operator L to be wavelet-admissible.
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A model signal that gets fully “decorrelated” by L, could be constructed from Dirac delta functions using
the inverse operator L−1. The behavior of such a signal is, to a large extent, defined by the configuration of the
discontinuities of L−1. In this paper, we restrict ourselves to the case of pole-type discontinuities. The key result
of the present work is that our wavelet’s behavior at the analysis matches closely that of the underlying operator
near the poles. In our decomposition, the wavelet coefficients at the scale i can be considered as samples of
L{φi ∗ f}, where φi is a smoothing kernel.

2. PRELIMINARIES

Consider a linear, shift-invariant operator L that acts on the class of functions f : Rd → C, where d is the
dimension parameter. The operator L is characterized by its Laplace transform L(s) or, equivalently, by its
frequency response L̂(ωωω) = L(jωωω).

Definition 2.1. L is of order r if and only if, for all positive ρ < r − d/2, we have that

∑
n∈Zd

||ωωω + 2πn||2ρ

1 + |L̂(ωωω + 2πn)|2
≤ Cρ <∞.

Essentially, Definition 2.1 requires the frequency response L̂(ωωω) of the operator to grow at least at the rate
of ||ωωω||r as ||ωωω|| → ∞. The associated Sobolev space is defined by

WL
2 = {f ∈ L2(Rd) :

∫
Rd

|f̂(ωωω)|2(1 + |L̂(ωωω)|2)dωωω <∞}.

Definition 2.2. L is spline-admissible of order r if and only if the following conditions are satisfied:4

1. L is a linear shift-invariant operator of smoothness order r > d/2;

2. L has a well-defined inverse L−1, and its impulse response ρ(x) of L−1 is a function of slow growth. Thus,
ρ is a Green function of L: L{ρ(x)} = δ(x);

3. There exists a localization operator ∆̂(ejωωω) =
∑

k∈Zd p[k]e−j〈ωωω,k〉 with p ∈ `1(Zd) such that the correspond-
ing generalized B-spline ϕ(x) = ∆{ρ}(x) satisfies the Riesz basis condition.

Suppose now that we have a family of linear, shift-invariant operators {L~ν}, indexed by the parameter vector
~ν = (ν1, . . . , νL).

Definition 2.3. The operators L~ν are called scale-covariant if, for each a > 0, their transfer functions satisfy

La~ν(as) = c(a) · L~ν(s),

where c(a) depends only on the scale a. In other words, the family {L~ν} is invariant with respect to arbitrary
scaling.

In the examples, we will use the unit step function u(x) = (1 + sign(x))/2 and the rectangle fucntion
rect(x) = u(x+ 1

2 )− u(x− 1
2 ).

Example 1. Let d = 1 and Lν = D − νI, where ν < 0 is a parameter, D is the derivative and I is the identity
operator. Let us verify that Lν is spline-admissible and scale-covariant. Indeed, Lν is of order r = 1 > 1

2 , and
its inverse has an impulse response ρν(x) = eνxu(x). With the localization operator ∆̂ν(ejω) = 1 − ejω−ν , we
obtain the first-order exponential B-spline

ϕν(x) = ρν(x)− eνρν(x− 1),

which is a function of compact support. We show this function in Fig.1.
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Figure 1. The generalized B-spline (solid line) is obtained by localization of the operator’s Green function (dashed line).

Furthermore, L̂ν(ω) satisfies L̂aν(aω) = ajω − aν = aL̂ν(ω), which proves that Lν is scale-covariant with
c(a) = a.

The class of scale-covariant operators is large. All scale-invariant operators are scale-covariant, and therefore
included. At the same time, the definition (2.3) allows us to apply our results to more general operator families,
such as Matérn operators L̂ν(ωωω) = ||ωωω||2 + ν2 and differential operators with rational transfer functions.

For the remaining part of this paper, we suppose that {L~ν} is a family of scale-covariant, spline-admissible
operators of order r. We assume that the poles of the operator are bounded; i.e., there exists M > 0 such that
for any p ∈ Rd with ||p|| > M , we have L̂(p) 6= 0. The scale a will take the values a = mi, where m > 0 is the
integer dilation factor; for notational simplicity, we will omit the index ~ν and use i to label the corresponding
operators and functions.

3. MULTIRESOLUTION ANALYSIS

Consider the function si(x) of smoothness order r, which is characterized by the relation

L{si}(x) =
∑
k∈Zd

ckδ(x−mik).

We call this function an L-spline with knots mik. Clearly, si(x) satisfies

si(x) =
∑
k∈Zd

ckρ(x−mik) + p(x),

where L{p}(x) = 0; i.e., the function p(x) belongs to the null-space of the operator L.

Remember that the operator L admits a generalized B-spline ϕi(x) = ∆i{ρ}(x). We define the multiresolution
space Vi by plugging ϕi at the locations mik, k ∈ Zd and taking all linear combinations that are in L2:

Vi = {s(x) : s(x) =
∑
k∈Zd

c[k]ϕi(x−mik), c[k] ∈ l2(Zd)}.

In this paper, we assume that Vi consists of all L-splines that are in L2; this requires that some Strang-Fix-like
conditions on the localization operator ∆i are fulfilled.5 By definition, we have Vi ⊂ Vi−1. The condition on the
operator order r > d/2 ensures that the error rate ||Pif − f ||2 → 0 as i→ −∞ for any f ∈W r

2 , where Pi is the
orthogonal projector on Vi. Consequently, the multiresolution analysis ∪Vi is dense in L2.

By extending a similar result for one-dimensional operators,4 it is straightforward to show that L∗L is a
spline-admissible operator of order 2r > d > d/2. Its corresponding B-spline, which is given by ϕi(x) ∗ ϕ∗

i (−x),
generates a Riesz basis. Consequently, the L∗L-spline interpolant φi(x)), given by

φi(x)) ↔ φ̂i(ωωω) =
|ϕ̂i(ωωω)|2∑

k∈Zd |ϕ̂i(ωωω + 2 ·m−iπk)|2
,



is well-defined and generates a Riesz basis. Importantly, φi ∈ WL
2 does not depend on the specific choice of the

localization operator ∆i, as we can see from

φ̂i(ωωω) =
|∆̂i(ejmiωωω)|2/|L̂(ωωω)|2

|∆̂i(ejmiωωω)|2
∑

k∈Zd 1/|L̂(ωωω + 2 ·m−iπk)|2
=

1
1 + |L̂(ωωω)|2

∑
k∈Zd\0 1/|L̂(ωωω + 2 ·m−iπk)|2

.

The L∗L-spline interpolant plays the key role in our wavelet construction, which we describe in the next
section.

4. OPERATOR-LIKE WAVELETS

Let us fix the scale i. We construct the generating wavelet function as

ψi+1 = L∗{φi},

where we can apply the operator L∗ because φi ∈WL
2 . The Fourier domain expression for ψ̂i+1 has the form

ψ̂i+1(ωωω) =
L̂∗(ωωω)

1 + |L̂(ωωω)|2
∑

k∈Zd\0
1

|L̂(ωωω+2·m−iπk)|2
. (1)

Note that for every p ∈ Rd such that L̂∗(p) = 0, ψ̂i+1(ωωω) vanishes at p1 + 2πk/mi. In other words, each pole of
L generates a periodic sequence of zeros in the generating wavelet’s spectrum.

The wavelet system is obtained by shifting ψi+1 to all coset points miZd\mi+1Zd of the dilated grid. Re-
markably, we have only one unique wavelet function even when the dimension d is bigger than one; the md − 1
wavelets ψ(1)

i+1, . . . , ψ
(md−1)
i+1 are shifts of ψi+1.

Let us study the properties of the new wavelet system.

Property 1. The wavelets {ψi+1(x−mik)}k∈miZd\mi+1Zd are orthogonal to the space Vi+1.

Proof. It is sufficient to prove that 〈ρ(x), ψi+1(x−mik)〉 = 0 for all k ∈ miZd\mi+1Zd. Passing the conjugate
operator to the left side of the scalar product, we have

〈ρ(x), ψi+1(x−mik)〉 = 〈Lρ(x +mik), φi(x)〉 = 〈δ(x +mik), φi(x)〉 = 0,

as φi is the interpolant.

We conclude that {ψi+1(x−mik)}k∈miZd\mi+1Zd,i∈Z is a semi-orthogonal wavelet system.

Property 2. The wavelet function ψi+1 behaves like a multiscale version of the underlying operator L in the
sense that, for any f ∈W r

2 , we have f ∗ ψT
i+1 = L{f ∗ φT

i }.
The proof of this property is straightforward with our wavelet construction. For a vast majority of operators,

φi is a lowpass filter with its passband varying accordingly to the scale. Therefore, {L{f ∗ φT
i }}i∈Z corresponds

to the multiscale version of L.

The next property gives the necessary condition on the operator that the corresponding operator-like wavelet
system is Riesz-stable.

Property 3. Let i ∈ Z be an arbitrary scale. If {ψi+1,k}k∈Zd is a Riesz basis, then, for each p ∈ Rd such that
L̂(p) = 0,

L̂(p + 2πl/mi + 2πk0/m
i+1) 6= 0,k ∈ Zd,k0 ∈ {0, 1}d\0. (2)

Proof. We use the result of de Boor et al6 and construct the system’s Gram matrix Gi(ωωω) = [gmn
i (ωωω)] with

gmn
i =

∑
k∈Zd

(ψ̂(m)
i+1 · ψ̂

(n)∗
i+1 )(ωωω + 2πk/mi+1).



The determinant of this matrix should be separated from zero and bounded for all ωωω. This is possible if and
only if the md − 1 “fibers” (ψ̂(m)

i+1 (ωωω + 2πk/mi+1)k∈Zd) are linearly independent. In our case, the fibers have
particularly simple structure: they are m-periodic d-dimensional sequences, multiplied by ψ̂i+1(ωωω).

Suppose that L violates the necessary condition; i.e., there exist p1,p2 ∈ Rd such that L̂(p1) = L̂(p2) = 0
and p1 = p2 + 2πl/mi + 2πk0/m

i+1. Then, ψ̂i+1(p1) = ψ̂i+1(p1 + 2πk0/m
i+1) = 0. For ωωω = p, the md − 1

fibers will have two zeros on their main period at the positions corresponding to k = 0 and k = k0. The size of
the main period is md, so the fibers are linearly dependent.

The condition (2) is close to sufficient; however, the exact formulation of the latter is slightly technical and
will be published elsewhere. Instead, let us study several examples that illustrate the richness of our wavelet
construction.

Example 2. For the first-order differential operator Lν = D − νI from Example 1, the autocorrelation filter
is identity. Therefore, we have

∑
k∈Zd |ϕ̂i(ω + 2 ·m−iπk)|2 = 1 and the L∗L-interpolant φi(x) is a symmetric

exponential spline with poles {ν,−ν∗}. As d = 1 and m = 2, the wavelet space is generated by a single shift of
the wavelet function, which is the exponential-spline wavelet (see Figure 2).
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Figure 2. First order exponential-spline wavelet corresponds to the choice of Lν = D− νI.

Example 3. With m = 3 and the derivative operator L = D, we get the wavelet system, generated by two Haar
wavelets, shifted to the points x = 1 and x = 2. Interestingly, despite the apparent simplicity of this operator,
the separable extension to multiple dimensions is not possible — for example, the 2-D operator DxDy fails the
necessary stability condition.

Example 4. The 2-D Matérn operator L̂ν(ωωω) = ||ωωω||2 + ν2 does not have poles. Therefore, no localization
operator is needed for its Green’s function. We show the corresponding wavelet in Figure 3. The function has
sharp peaks, which are caused by slow decay of the wavelet spectrum in the Fourier domain.

Example 5. As ν → 0, the Matérn operator tends to the scale-invariant Laplacian operator ∆̂(ωωω) = ||ωωω||2. The
corresponding wavelet is shown in Fig. 4. In case of iterated Laplacian operator ∆̂2(ωωω) = ||ωωω||4, faster Fourier
decay of the wavelet spectrum leads to better regularity in space domain (see Fig. 5).

5. CONCLUSION

We have constructed wavelet-like bases that behave like the multiresolution version of a given scale-covariant,
spline-admissible operator. In our construction, all wavelets are shifts of a single generating function. In the
multidimensional setting, the wavelets are not separable. In general, separable wavelets can not be obtained
with this non-separable construction.

From the computational point of view, our wavelets still admit fast Mallat’s filterbank algorithm, although,
the filters are generally scale-dependent. Whenever the transform is used intensively, it might be a reasonable
option to precompute these filters and store them in memory to accelerate computations.

Our wavelet bases have potential of application in areas of signal processing, where one is dealing with data
convolved with a known imaging operator L−1. The wavelets derived from this operator would behave like a
multiscale version of L and essentially decorrelate the data, concentrating the object’s energy into a small number
of coefficients.



Figure 3. Wavelet obtained from the Matérn operator; ν = 1.

Figure 4. Wavelet obtained from the Laplacian operator.



Figure 5. Wavelet obtained from the iterated Laplacian operator.
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