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ABSTRACT

Analytic sensing is a new mathematical framework to es-

timate the parameters of a multi-dipole source model from

boundary measurements. The method deploys two working

principles. First, the sensing principle relates the boundary

measurements to the volumetric interactions of the sources

with the so-called “analytic sensor,” a test function that is

concentrated around a singular point outside the domain of

interest. Second, the annihilation principle allows retrieving

the projection of the dipoles’ positions in a single shot by

polynomial root finding. Here, we propose to apply analytic

sensing in a local way; i.e., the poles are not surrounding

the complete domain. By combining two local projections of

the (nearby) dipolar sources, we are able to reconstruct the

full 3-D information. We demonstrate the feasibility of the

proposed approach for both synthetic and experimental data,

together with the theoretical lower bounds of the localization

error.

Index Terms— EEG, source localization, finite rate of in-

novation, annihilating filter, dipole models, analytic functions

1. INTRODUCTION

Imaging the functioning of the human brain is an important

task in neurosciences and neurology. To access the tempo-

ral properties of the brain circuits, electro- and magneto-

encephalography (EEG, MEG) are predominant since they

allow measuring signals down to millisecond resolution.

Mapping back the measured signal V
∣∣
∂Ω

on the scalp sur-

face ∂Ω to the source configuration ρ inside the brain is

known as “source imaging” [1, 11]. Unfortunately, the un-

derlying electromagnetic inverse problem is ill posed; i.e.,

an infinity of different source configurations can explain
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the same scalp potential. Therefore, additional assumptions

are required to make the solution unique. For this purpose,

the various methods available are putting forward different

hypotheses about the source model, which can be a single

(equivalent) dipole [14, 16], multi-dipole [8, 9], or distributed

dipoles [5, 10, 12]. In the latter case, the problem is under-

determined since the number of parameters of the model

exceeds the number of measurements. Therefore, additional

assumptions on the source distribution (e.g., smoothness,

sparsity) needs to be taken into account.

In this paper, we focus on the multi-dipole source model,

which is overdetermined but challenging since numerical op-

timization is trapped in local minima of the data fitting crite-

rion. Interestingly, multi-dipole source localization received

renewed interest from the mathematical community. In par-

ticular, Baratchart et al, proposed to solve the inverse prob-

lem analytically by so-called “best meromorphic approxima-

tion” [6, 7]. However, its extension to 3D requires an iter-

ative process and the going through many 2D localizations.

We propose to further extend the framework of analytic sens-

ing to the 3-D multilayer setting. Analytic sensing relies on

well-localized test functions, called analytic sensors, to re-

trieve information about the sources from boundary measure-

ments [3]. It also uses the “finite rate of innovation” princi-

ple to solve the localization of the generating sources [18].

One property of 3-D application of analytic sensing is that

we only recover a 2-D projection of the 3-D sources. Here,

we only put analytic sensors (or, more correctly, their singu-

lar points or poles) near the locations where dipolar sources

are expected. The method can be applied in a semi-automatic

way (e.g., operator knows where to look for interesting gen-

erating sources) or in an automatic way (e.g., scanning the

boundary with the “searchlight”).

The paper is organized as follows. In Sect. 2, we intro-

duce the problem setting. In Sect. 3.1, we summarize the 2-D

analytic sensing approach and extend the 2-D method to 3-

D. In sect. 4, we compare the precision of our reconstruction

algorithm against the Cramér-Rao Lower Bounds (CRLBs).

Finally, we use our approach to localize sources for experi-
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mental EEG in a sematosensorial stimulus and compare the

obtained result with those obtained by LAURA [13].

2. PROBLEM FORMULATION

In EEG, one measures the electrical potential V on the scalp

surface ∂Ω. These potential differences are the manifestation

of a source distribution ρ in the brain, which is governed by

the equation:

−∇ · (σ∇V ) = ρ, (1)

where σ is the conductivity of the head. A popular head model

is the multi-shell spherical head model with piecewise con-

stant conductivities [15]. Since no current can leave the head,

we also have the following boundary condition:

(∇V )
∣∣
∂Ω

· eΩ = 0, (2)

where eΩ is the outward surface normal. The problem at

hand, which is the inverse problem associated to EEG, can

be described as:

from V
∣∣
∂Ω

, reconstruct ρ.

However, this inverse problem is ill-posed as the solu-

tion is non-unique and hence, we need additional constraints.

Here, we restrict ρ to a parametric source model, more specif-

ically the multi-dipole model which can be written as:

ρ(x) =
K∑

k=1

pk · ∇δ (x− xk) , (3)

where we have 6K unknowns; i.e., the dipoles’ positions

xk = [xk yk zk]
T and moments pk = [pk1

pk2
pk3

]T .

3. LOCAL MULTILAYER ANALYTIC SENSING

3.1. Source Localization in 3D

Sensing Principle: We consider a closed 3-D region Ω with

piecewise constant conductivity σ. Then, Poisson’s equation,

−∇·(σ∇V ) = ρ, holds within Ω. Applying Green’s theorem

yields the following surface integral:

〈ψ, ρ〉 = −
∮
∂Ω

V∇ψ · eΩ ds, (4)

where we have taken into account the boundary condition

(2). Moreover, ψ is a special function called “multilayer an-

alytic sensor”, chosen such that ∇ · (σ∇ψ)
∣∣
Ω

= 0. In [4],

we give the expression of the analytic sensor ψan
(x, y, z)

in such a way that it coincides with the analytic function

ln (x+ iy − an) in the inner compartment (the brain) where

the sources are supposed to be. We need the analytic sensor’s

singular point an = α exp(inθ) to be outside Ω. Therefore,

using a set of analytic sensors, we can compute generalized

measures containing information on ρ knowing only V
∣∣
∂Ω

.

Annihilation Principle: The main principle behind our

technique is that the dipole positions xk = [xk yk]
T can be

found as the complex roots xk+iyk of a polynomial of degree

K. In particular, under the assumption of the source model,

the generalized measures should equal

〈ψan
, ρ〉 =

K∑
k=1

pk1
+ ipk2

xk + iyk − an
, (5)

which can be rephrased under the form
∑K−1

k=0 c′ke
inkθ/R(an),

c′k ∈ R, with R(X) =
∑K

k=0 rkX
k a polynomial of degree

K with roots xk + iyk. The key observation is that the nu-

merator
∑K−1

k=1 c′meinkθ can be annihilated by a filter h with

Z-transform

H (z) =
∑
k∈Z

hkz
−k =

K−1∏
k=0

(
1− eikθz−1

)
. (6)

Therefore, we have that

hn ∗ (R (an) 〈ψan
, ρ〉) = 0 (7)

holds, which is a linear system of equations in rk. Solving (7)

determines the polynomial R, and the dipole positions from

its roots. The dipole moments pk = [pk1 pk2 ]
T are obtained

by solving a linear system of equations (5) with known xk +
iyk. For an in-depth explanation, we refer to [3].

3.2. Local Analytic Sensing in 3-D

The annihilation principle allows recoving a projection of xk

on the X-Y plane. Hence, if we introduce a coordinate trans-

form: [
x′

y′

]
=

[
1 0 0
0 1 0

]
R

⎡
⎣ x

y
z

⎤
⎦ , (8)

with R some rotation matrix, then the corresponding ana-

lytic sensor restricted to the inner compartment, i.e., the brain,

reads as:

ψan
(x′, y′) = ln (x′ + iy′ − an) , an /∈ Ω. (9)

When applying the FRI approach to retrieve the dipoles’ lo-

cations we retrieve

[
x′
k

y′k

]T
=

[
1 0 0
0 1 0

]
R

⎡
⎣ xk

yk
zk

⎤
⎦ .

If we define a set of such rotation matrices Rj , j = 1 · · ·L,

then we obtain a set of 2-D projections {x′
k + iy′k}j=1···L of

the locations xk. Thus, fully recovering xk boils down to

reconstructing a 3-D vector from its 2-D projections which is

a well-studied and well-understood problem [2].

Another key property of this reconstruction scheme is

that the analytic sensors are well-localized around an =
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α exp(inθ), as illustrated in Fig. 1. We do need a number of

sensors with poles an, n = 0, . . . , N − 1, but not necessarily

surrounding the domain Ω. Consequently, we can put sen-

sors only locally, which ignores distant dipoles. Such prior

knowledge improves the assumption that a limited number of

dipoles needs to be localized. The concept of local analytic

sensing is illustrated in Fig. 3(b); i.e., the large black dots are

poles of the analytic sensors (in two planes).

Fig. 1. The analytic sensor ψan
(x), with pole an = 1.01.

Color and size of the arrows represent the magnitude of the

analytic sensor; their directions the complex argument.

4. EXPERIMENTAL RESULTS

In this section, we show the feasibility of the multi-planar an-

alytic sensing technique with both synthetic and experimental

data. We use a 3-shell conductor model, as depicted in fig-

ure 2. Such a model is used in the SMAC head model [15],

where the compartments represent the brain, skull and scalp

with radii r1 = 0.88, r2 = 0.9350 and r3 = 1 and correst-

ponding conductivities σ1 = 1, σ2 = 0.0125 and σ3 = 1.

4.1. Synthetic data

To evaluate the performance of the proposed algorithm in the

presence of noise, we compute the Cramér-Rao lower bounds

(CRLBs) for an EEG setting with the additive white Gaus-

sian noise hypothesis [17]. That is, given an electrode cap,

these bounds establish the minimal covariance matrix of any

unbiased estimate of the position and moment parameters.

The signal model describing the noisy potential measures,

ṽ (x; en), is the following:

ṽ (θ; en) = v (θ; en) + εn, (10)

where v (θ; en) is the theoretical potential difference mea-

sured at electrode en,θ = [x1,p1, · · · ,xM ,pM ] the source

∂Ω2

∂Ω1

σ1

σ2

σ3

r1

r2 r3

∂Ω3eΩ3

(a)

r

σ (r)

r1 r2 r3

σ1

σ2

σ3

(b)

Fig. 2. Figure 2(a) depicts a 3-sphere conductor model. Each

compartment, Ωi, has its own characteristic conductivity, σi

for i ∈ {1, · · · , 3}. Figure 2(b) depicts the corresponding

conductivity profile as a function of r (which is in this case a

piecewise constant). Each discontinuity represents a bound-

ary ∂Ω1, ∂Ω2 or ∂Ω3.

model’s parameters and εn a normally distributed random

variable with expected value 0 and variance σ2.

In order to compute these lower bounds, we determine

the Fisher information matrix, J = [Jk,l]k,l∈{1,··· ,6M}, corre-

sponding to (10), which reads as follows:

Jk,l =
1

σ2

P∑
n=1

∂

∂θk
v (θ; en)

∂

∂θl
v (θ; en) , (11)

with P the number of electrodes. The Cramér-Rao bounds

are the diagonal elements of J−1. The most important aspect

when performing source localization (e.g., in partial epilepsy)

is the reconstruction of the location parameters xm. Hence,

when simulating we only consider the estimation of the loca-

tion parameters.

Figure 3(a) depict the setup, i.e., the SMAC head model

and corresponding electrodes and the generating dipole

whereas figure 3(b) depicts the generated boundary poten-

tial and the positions of the singularities an. We added noise

to the measured potential and plotted the lower bound on the

localization error, ε =
√

σ2
x + σ2

y + σ2
z (where σ2

x, σ2
y and σ2

z

are the CRLBs in X,Y and Z), and the obtained localization

errors against the corresponding noise level in figure 4.1.

We see that we are rather close to the CRLBs. However we

would like to point out that for high SNRs out method will

not perform as well as the CRLBs might indicate because of

the integral (4). That is, this integral requires that we know

V
∣∣
∂Ω

. Since we have V only at the electrode sites we need an

interpolation/approximation scheme which renders the com-

putation of the generalized samples erroneous even when the

measured signal is of high quality. Hence, further research to

devise a proper interpolation/approximation approach could

potentially be fruitful. Note that, in reality the measured

signal is of rather low quality.
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(a) (b)

Fig. 3. Figure 3(a) depicts the SMAC head model, the elec-

trodes (represented by the black dots) and the generating

dipole (depicted in red). This dipole is a radial unit dipole lo-

cated at x1 = [−0.4 0.2 0.6]T . Figure 3(b) depicts the noise-

less generated boundary potential and the placements of the

singularities an (the black dots).
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Fig. 4. This figure plots the expected minimal localization er-

ror made by any unbiased estimator, in red, against the signal-

to-noise-ratio (SNR). The black dots show the localization er-

rors made by our reconstruction algorithm for an instance of

a noisy set of EEG measurements at a given SNR.

4.2. Experimental Data

Two stimulus evoked data sets were collected from normal,

healthy research subjects using a 204-channel EEG sys-

tem. The first data set is a sensory evoked potential (SEP)

paradigm, where the subject’s left index finger was tapped for

a total of 100 trials. The second data set is a SEP paradigm

as well, but the subject’s right index finger was tapped for a a

total of 100 trials. The measured signals were then averaged

over the number of trials to obtain a high quality signal. We

localized a single dipole for each averaged signal, using our

reconstruction algorithm (the assumption that the underlying

source distribution can be modeled through a single dipole

is a valid a priori for such paradigms). Figures 5(a) and 5(b)

show the averaged signals when tapping the left index and

right index finger. The vertical red line marks when the dipole

model is most valid, i.e., 50 ms after the tap. The first row

of Fig. 6 depicts the characteristic boundary potential of the

SEP paradigm where the left finger is taped and the corre-

sponding source localization, using our method whereas the

second line depicts the characteristic boundary potential of

the SEP paradigm where the right finger is taped and the

corresponding source localization.

μ

(a)

μ

(b)

Fig. 5. Figures 5(a) and 5(b) depict the measured signals av-

eraged over 1000 trials, when the subject is tapped on the left

and right index finger, respectively. The vertical red line is

placed 50 ms after the event (a tap on the left or right index

finger). At this moment, the underlying source distribution ρ
is well-modeled by a dipole model.

Fig. 6. The generated boundary potentials and their corre-

sponding source localizations using local multilayer analytic

sensing.

5. CONCLUSION, DISCUSSION & OUTLOOK

We proposed a new parametric approach to estimate dipolar

sources from EEG measurements. The method has several at-

tractive properties such as the ability to locally “sense” and lo-

calize the sources, which makes the multi-dipole assumption

more reasonable. The preliminary results in this paper show

that this method works appropriately for average evoked po-

tentials. We are currently improving the visual representation
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of our results so as to facilitate future comparisons with stan-

dard localization methods (e.g., LAURA, LORETA). Future

work will focus on signals with low(er) signal-to-noise ratio

and stimulation paradigms that evoke (known) multi-dipole

configurations.
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