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ABSTRACT

Source localization from EEG surface measurements is an im-

portant problem in neuro-imaging. We propose a new math-

ematical framework to estimate the parameters of a multi-

dipole source model. To that aim, we perform 2-D analytic

sensing in multiple planes. The estimation of the projection

on each plane of the dipoles’ positions, which is a non-linear

problem, is reduced to polynomial root finding. The 3-D in-

formation is then recovered as a special case of tomographic

reconstruction. The feasibility of the proposed approach is

shown for both synthetic and experimental data.

Index Terms— EEG, source localization, finite rate of in-

novation, annihilating filter, dipole models, analytic functions

1. INTRODUCTION

Imaging the functioning of the human brain is an important

task in neurosciences and neurology. To access the tempo-

ral properties of the brain circuits, electro- and magneto-

encephalography (EEG, MEG) are predominant since they

allow measuring signals down to millisecond resolution.

Mapping back the measured signal V
∣∣
∂Ω

on the scalp surface

∂Ω to the source configuration ρ inside the brain is known

as “source imaging” [1, 4]. Unfortunately, the underlying

electromagnetic inverse problem is ill posed; i.e., an infinity

of different source configurations can explain the same scalp

potential. Therefore, additional assumptions are required to

make the solution unique. For this purpose, the various meth-

ods available are putting forward different hypotheses about

the source model (single-dipole, multi-dipole, or distributed)

and its properties (e.g., smoothness).

We propose a new theoretical framework that leads to a

non-iterative technique for EEG multi-dipole fitting. We des-

ignate our method by “analytic sensing”, since the key contri-

bution is to apply analytic sensors (functions ψ with vanish-

ing Laplacian in some domain) that sense the influence of the

source distribution ρ in a specific region. Next, the non-linear
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estimation problem associated to the dipole positions is per-

formed by rephrasing the problem within the framework of

“finite rate of innovation” [8]. Finally, the dipolar moments

are retrieved by solving a linear system of equations. We ex-

tend the 2-D approach, which has been presented before [2],

to 3-D by applying it to multiple planes. Each 2-D localiza-

tion provides us with the projection of the dipoles’ positions

and moments onto the respective plane.

The paper is organized as follows. In Sect. 2, we intro-

duce the problem setting. Next, in Sect. 3, we summarize the

2-D analytic sensing approach and its multi-planar extension.

Finally, we demonstrate the feasibility of the framework by

localizing at the early instant of visual evoked response po-

tentials (ERPs). For this case, state-of-the-art localization us-

ing a distributed source model renders a well localized brain

area. Multi-planar analytic sensing gives consistent results

and leads to 3-D information that is in accordance to the stan-

dard algorithms.

2. PROBLEM FORMULATION

In EEG, one measures the electrical potential V on the scalp

surface ∂Ω. These potential differences are the manifestation

of a source distribution ρ in the brain, which is governed by

the equation:

−∇ · (σ∇V ) = ρ, (1)

where σ is the conductivity of the head. A popular head model

is the multishell spherical head model with piecewise constant

conductivities [5]. Since no current can leave the head, we

also have the following boundary condition:

(∇V )
∣∣
∂Ω
· eΩ = 0, (2)

where eΩ is the outward surface normal. The problem at

hand, which is the inverse problem associated to EEG, can

be described as: from V
∣∣
∂Ω

, reconstruct ρ.

However, determining ρ is an ill-posed problem as the so-

lution is non-unique. Here, we follow the approach to restrict

ρ to a parametric source model. Specifically, the multi-dipole

model can be written as

ρ(x) =
K∑

k=1

pk · ∇δ (x− xk) , (3)
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where we have 6K unknowns; i.e., the dipoles’ positions

xk = [xk yk zk]T and moments pk = [pk,1 pk,2 pk,3]T ,

k = 1, . . . ,K.

3. MULTI-PLANAR ANALYTIC SENSING

3.1. Source Localization in the Planar Domain

Analytic Sensing: We consider a closed 2-D region Ω with

homogeneous conductivity σ = 1. Then, the basic Laplace

equation, −ΔV = ρ, holds within Ω. Applying Green’s the-

orem yields the following line integral:

〈ψ, ρ〉 = −
∮

∂Ω

V∇ψ · eΩ ds, (4)

where we have taken into account the boundary condition (2)

and Δψ
∣∣
Ω

= 0. Hence, using a set of analytic sensors, we can

compute the generalized measures containing information on

ρ knowing only V
∣∣
∂Ω

. Let us now consider a specific set of

analytic sensors:

ψan(x, y) = ln (x+ iy − an) , (5)

where an = αeinθ, α ∈ R
+, n = 0, . . . , N − 1, such that

an /∈ Ω. Since we need at least 2K distinct measures, we

choose N ≥ 2K, θ ≤ 2π
N .

Annihilation: The main principle behind our technique is

that the dipole positions xk = [xk yk]T can be found as the

complex roots xk + iyk of a polynomial of degree K. Under

the assumption of the source model, the generalized measures

should also equal

〈ψan , ρ〉 =
K∑

k=1

pk · ∇ψan(xk), (6)

which can be rephrased under the form
∑K−1

k=0 c′ke
inkθ/R(an),

c′k ∈ R, with R(X) =
∑K

k=0 rkX
k a polynomial of degree

K with roots xk + iyk. The key observation is that the nu-

merator
∑K−1

k=1 c′me
inkθ can be annihilated by a filter h with

Z-transform

H (z) =
∑
k∈Z

hkz
−k =

K−1∏
k=0

(
1− eikθz−1

)
. (7)

Therefore, we have that

hn ∗ (R (an) 〈ψan
, ρ〉) = 0 (8)

holds, which is a linear system of equations in rk. Solving (8)

determines the polynomial R, and the dipole positions from

its roots. The dipole moments pk = [pk,1 pk,2]T are obtained

by solving a linear system of equations (6) with known xk.

3.2. Multi-planar Extension

The generalized measures (4) can be readily extended to 3-D.

Indeed, the line integral simply turns into a surface integral

over ∂Ω. Next, the same 2-D analytic sensing approach can

be applied for a number of different planes. Specifically, we

propose the analytic sensors

ψan
(x′, y′) = ln (x′ + iy′ − an) , an /∈ Ω, (9)

in the (arbitrary) X’Y’-plane, which is defined by applying

the coordinate transformation⎡
⎣ x′

y′

z′

⎤
⎦ =

⎡
⎣ 1 0 0

0 cos θ sin θ
0 − sin θ cos θ

⎤
⎦

︸ ︷︷ ︸
RX

θ⎡
⎣ cosφ 0 sinφ

0 1 0
− sinφ 0 cosφ

⎤
⎦

︸ ︷︷ ︸
RY

φ

⎡
⎣ x
y
z

⎤
⎦ (10)

to the XY-plane. Each 2-D localization yields the projected

dipole positions

[
x′k
y′k

]
︸ ︷︷ ︸
x′

k,θ,φ

=
[

1 0 0
0 1 0

]
RX

θ RY
φ︸ ︷︷ ︸

Aθ,φ

⎡
⎣ xk

yk

zk

⎤
⎦ , (11)

and, accordingly, the projected moments. By considering a

set of planes, characterized by the angles {θm, φm}m=1,...,M ,

the 3-D reconstruction boils down to a special case of tomo-

graphic reconstruction. In the case where the projections of

the dipoles can be easily separated, one can obtain the 3-D

information by a least-squares fit

⎡
⎣ x̂k

ŷk

ẑk

⎤
⎦ =

⎡
⎢⎣ Aθ1,φ1

...

AθM ,φM

⎤
⎥⎦

P ⎡
⎢⎣

x′k,θ1,φ1
...

x′k,θM ,φM

⎤
⎥⎦ , (12)

where P designates the Moore-Penrose matrix inverse.

Here, we also use the multi-planar projections to evaluate

the robustness of the analytic sensing approach. Ideally, the

“sinogram” that is obtained by letting vary the planar angles

should contain simple trigonometric combinations of θ and φ
only.

4. EXPERIMENTAL RESULTS

In this section, we show the feasibility of the multi-planar an-

alytic sensing technique with both synthetic and experimental

data. We use a simple spherical head model with homoge-

neous conductivity.
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Fig. 1. Schematic view of the multi-planar analytic sensing

approach. The domain of interest Ω is a homogeneous unit

sphere. We show the rotation of the XY-plane around X with

angle θ.

4.1. Synthetic data

We generate the electrical potential V in 162 points on the

surface ∂Ω, using the forward model for two dipoles close to

the surface:

x1 =

[
0.8
0.2
0.4

]
,x2 =

[
−0.6
0.7
−0.3

]
,p1 =

[
1
0

0.4

]
,p2 =

[
−2
1
0

]
.

We deploy 16 analytic sensors (9) with an = 1.05 ein π
8 ,

n = 0, · · · , 15, in each of the 32 planes defined by θm =
πm
32 , φm = 0, m = 0, . . . , 31. As we only vary the θ angle,

and the x-coordinate of the positions and moments are quite

distinct, we are able to easily separate the dipoles for the 3-D

recovery as suggested by (12).

To compute the surface integral, we make use of thin plate

smoothing splines [3] without regularization. The measures

are degraded by additive Gaussian noise at various SNR lev-

els. In Fig. 1, we illustrate the general setup. Notice that with

our approach, the two dipoles’ positions are found at once

as the roots of a quadratic equation, while methods based on

numerical optimization using the forward model are prone to

local minima due to the non-linear dependence on the posi-

tions.

In Fig. 2, we depict the sinograms for the various noise

levels for the dipole positions (a) and dipole moments (b).

Notice that for the noiseless case, we obtain perfect localiza-

tion. As the noise level goes up, the estimates of the parame-

ters gracefully degrade. It can be observed that the sinograms

remain quite consistent. The relative errors with respect to

the sphere’s radius for the various SNR levels are listed in

Table 1.

Parameter relative error (10dB) relative error (5dB)

x1 0.2% 4.6%
p1 3.6% 12%
x2 0.1% 4%
p2 3.2% 10%

Table 1. Relative errors with respect to the sphere’s radius

of the estimated dipoles’ positions and moments at different

noise levels.

(a) (b)

Fig. 2. Sinograms obtained for synthetic data at various SNR

levels. (a) Dipole positions. The X’Y’-plane is obtained by

rotation over the angle θ only. (b) Dipole moments.
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Fig. 3. The epoch-averaged EEG signal. The time point

for fitting was chosen at the rise of the main positive peak

(41ms post-stimulus). For visualization purposes, we only

show time-courses for one out of four electrodes.
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Fig. 4. Sinogram of the dipole’s position obtained for exper-

imental data. Full line: experimental sinogram; dashed line:

fitted sinograms.

4.2. Experimental Data

We consider EEG data from visual ERPs (200 flashes to the

left eye; epoch length 0.5s; sampling at 1kHz; 204 chan-

nels). The epoch-averaged signal is used for localization at

the rise of the main positive peak (see Fig. 3). At this in-

stant, the inverse solution using a reference method with dis-

tributed source model and the local autoregressive average

(LAURA) in combination with SMAC (multi-layer spherical

head model) [6] is most focalized1. The solution space for

the distributed source model contains 3005 points uniformly

distributed over the gray matter of the brain (mapped into the

SMAC space), and their moments are oriented perpendicular

to the cortical surface.

We deploy 32 analytic sensors in the same 32 planes as

before. In Fig. 4, we depict the sinogram for a single dipole.

Again, the estimation is consistent as the angle of the plane

changes. In Fig. 5, we show the dipole intensities for the in-

verse solution using the distributed source model. A large

activated region is reported in the occipital cortex. The fitted

dipole using multi-planar analytic sensing is located at the

border of the region detected by the refererence method. The

reason that the dipole is less superficial is probably due to the

fact that we do not consider the external layers (scalp, skull,

cerebrospinal fluid) as in the SMAC model, which tends to

localize more profoundly [7].

5. CONCLUSION & OUTLOOK

In this paper, we demonstrated the feasibility of a multi-planar

analytic sensing to EEG source localization. An attractive

property of our method is that it provides a direct estimation

even for multiple dipoles. While these results are promising,

they also indicate a number of important issues that need to

be addressed in future work.
• SMAC head model: Extend the analytic sensing ap-

1The CARTOOL software is available at

http://brainmapping.unige.ch/Cartool.htm.

Fig. 5. The slice at z = 0.83cm showing high intensities of

the distributed source model as fitted by the reference method.

The location of the dipole, x1 = [−0.76 − 0.01 0.83]T ,

found by multi-planar analytic sensing is superimposed (in-

dicated by a black dot).

proach for a multishell model with piecewise constant

conductivity.

• Interpolation method: Investigate the influence of the

interpolation technique and its interaction with noise on

the computing of the generalized measures.

• Alternative analytic sensors: Explore the use of other

analytic sensors that could contribute to a more direct

solution of the 3-D localization problem.
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