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ABSTRACT
We propose an algorithm for the 3-D reconstruction of DNA
filaments from a pair of stereo cryo-electron micrographs.
The underlying principle is to specify a 3-D model of a fil-
ament – described as a spline curve – and to fit it to the
2-D data using a snake-like algorithm. To drive the snake,
we constructed a ridge-enhancing vector field for each of
the images based on the maximum output of a bank of ro-
tating matched filters. The magnitude of the field gives a
confidence measure for the presence of a filament and the
phase indicates its direction. We also propose a fast algo-
rithm to perform the matched filtering. The snake algorithm
starts with an initial curve (input by the user) and evolves it
so that its projections on the viewing plane are in maximal
agreement with the corresponding vector fields.

1. INTRODUCTION

Cryo-microscopy is an approach that is used to image bio-
molecules such as DNA [1]. The technique uses a trans-
mission electron microscope (TEM) to obtain stereo views
of specimens preserved in vitrous ice. The TEM images
provide the integrated density of the 3-D volume along the
viewing direction. A typical stereo pair of micrographs is
shown in Fig 1. In this paper, we address the problem of re-
constructing the 3-D filament shape from such noisy stereo
images. We can view the reconstruction process as com-
posed of two separate problems: the detection of filament-
like structures in the noisy 2-D images and the 3-D recon-
struction given the detected filaments.

We solve the first problem using a directional matched
filtering algorithm. We also develop an efficient implemen-
tation of the rotating filter analysis to construct a vector field
(phase + magnitude) that will drive the 3-D reconstruction
algorithm.
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Fig. 1. Stereo views separated by 30◦ with a pair of corre-
sponding points marked.

The 3-D reconstruction from the detected filaments is
well defined once the correspondence between the detected
points is known; it can be solved using simple geometrical
considerations since the angle between the two views are
known. Unfortunately, this correspondence is not known a-
priori which makes the problem ill-posed. Morever, due to
noise, a detected point in one image may not have a corre-
sponding point detected in the other image.

To overcome these problems, we try to match the pro-
jections of a 3-D curve to the detected filaments. We start
with an initial guess of the curve (based on the points speci-
fied by the user) which then the algorithm refines by putting
it in correspondence with the data. This optimization is per-
formed using a snake-like algorithm[2], where the external
energy is a measure of the consistency between the curve
projections and the detected filaments.

Our 3-D curve is described using cubic B-spline basis
functions. Because of the minimum curvature property of
cubic splines, there is no need for an explicit internal energy
to constrain the smoothness of the curve [3]. The user inter-
acts with the algorithm by initializing the curve and by in-
troducing constraints; this information is incorporated into
the model as external constraint energy. The algorithm is
robust and precise because it performs a global optimiza-
tion. This is in contrast with the more classical approaches
such as morphological processing, flying cylinders [4] etc.

The paper is organized as follows. In section 2, we
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present the ridge-enhancing vector field and its implemen-
tation. In section 3, we discuss the active contour algorithm
and the various energies associated with it. In section 4, we
explain the optimization scheme.

2. RIDGE-ENHANCING VECTOR FIELD

Matched filtering is a popular approach to detect signals in
the presence of white Gaussian noise. It is optimal in the
maximum likelihood sense. A matched filter detection of
filament segments can be performed by using a collection
of oriented filters hθ (r) = h(R θr), where R θ is a 2× 2
rotation matrix. h(r)is the typical profile of a horizontally-
oriented filament. The most promising direction corresponds
to the filter with the strongest output; the magnitude of the
output reflects our confidence in the presence of a DNA fil-
ament at that location. This information can be encoded in a
vector field u (r)= u(r)ejθ∗(r) whose direction and mag-
nitude are given by

θ∗ (r) = argm ax
θ

{(hθ ∗ f)(r)} (1)

u (r) =

{
(hθ∗ ∗ f)(r) if (hθ∗ ∗ f)(r)≥ 0

0 otherwise
(2)

This rotating matched filter detection, although optimal, is
computationally expensive and its precision is limited by
the number of directions we consider. In the next subsec-
tion, we discuss an exact and computationally efficient im-
plementation.

2.1. Rotating filters: Implementation

We restrict the class of filters to

h(r)=
∂2g (r)

∂y2
=

d2

dα2
g (r+ α ey)

∣∣∣∣
α=0

, (3)

where ey is the vector (0,1)and g is an isotropic window
function; i.e., g (R θ (r)) = g (r). We can show that this
filter is steerable in the sense defined by Freeman and Adel-
son [5]. This leads to a fast implementation in terms of the
Hessian matrix of f ∗ g, denoted by

H f∗g =

[
∂2f∗g
∂x2

∂2f∗g
∂x∂y

∂2f∗g
∂x∂y

∂2f∗g
∂y2

]
(4)

The implementation is given by the following proposition.

Proposition 1 Let h(r) = d2g(r)
dy2 , where g is an isotropic

window function. Then, the ridge-enhancing vector field de-
fined by (1) and (2) is given by

u (r)=

{
λ1 (r)v2 (r); if λ1 (r)≥ 0

0 otherwise
(5)

where λ1 (r)and v2 (r)are the maximum eigenvalue and
the eigenvector corresponding to the minimum eigenvalue
of H f∗g respectively.

Proof From the definition of hθ, we have

hθ (r) =
d2

dα2
g (R θr+ α ey)

∣∣∣∣
α=0

=
d2

dα2
g

(
r+ α R −1

θ ey

)∣∣∣∣
α=0

(6)

where we used the isotropy of g to get (6). Next, we express
the second derivative along w θ = R −1

θ ey in terms of the
Hessian matrix;

hθ (r)= w θ
TH g (r)w θ (7)

Using the commutativity of convolution and differential op-
erators, we get

(hθ ∗ f)(r)= w θ
TH g∗f (r)w θ (8)

Thus, the maximum eigenvector of H g∗f gives the direction
along which hθ ∗ f is a maximum: w θ∗ = v1. Since the
Hessian matrix is symmetric, the eigenvectors (v1 and v2)
are orthogonal and we get (5).

Fig. 2. Directional filters hθ (r) for θ = 0, θ = π
2 , θ =

π
4 , θ = −π

4

2.2. Choice of window function

We choose the window function to be a Gaussian for the
following reasons:

1. Optimal profile for edges: Canny, in his seminal pa-
per on edge detection [6], has derived the optimal
operator for the detection of 1-D ridges in 1-D sig-
nals; this operator can be approximated closely with
the second derivative of a Gaussian. For 2-D signals,
the operator has to be applied orthogonal to the ridge,
while smoothing along the ridge.

2. Separability: The Gaussian is the only function that is
isotropic and separable at the same time. This results
in fast implementation.

3. Localization: The Gaussian achieves the optimal com-
promise in terms of space-frequency localization (un-
certainty principle).
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Some filters hθ for different values of θ are shown in Fig.
2. The result of the application of the ridge-enhancing al-
gorithm to a cryo-electron micrograph containing DNA fil-
aments is shown in Fig. 3. We see that it essentially detects
the structure of interest although there is still some back-
ground noise.

(a) Original micrograph (b) Thresholded value of u(r)

Fig. 3. Illustration of the ability of the ridge-enhancing field
to detect filaments.

3. 3-D RECONSTRUCTION

As discussed before, we have a curve model in 3-D that we
refine to best fit the ridge-enhancing vector fields for both
views. This algorithm is an adaptation of the classical active
contour (snake) algorithm [2] with appropriate energies.

The curve description can be explicit [7, 2] or can be the
level set of a surface. We resort to the former approach as
the topology of the object remains the same and it is easy to
introduce external constraints.

3.1. Parametric curve representation

A curve in 3-D space can be represented in terms of an arbi-
trary parameter t as r(t)= (x(t), y(t), z(t)). Such a para-
metric representation can be approximated efficiently by a
linear combinations of shifted generating functions. If the
curve is closed, the function vector r(t)is periodic. Assum-
ing the period M to be an integer, we describe the curve
as

r(t)=
M−1∑
k=0

ckϕp(t − k), (9)

where

ϕp(t)=
∞∑

k=−∞
ϕ(t − kM) (10)

Here we have chosen ϕ = β3 to be a cubic B-spline for the
following reasons.

1. The parallel projection of a B-spline curve onto a plane
is still a B-spline curve because the B-spline represen-
tation is invariant to affine transformations,

2. B-splines are compactly supported, which gives a lo-
cal control over the contour.

3. Splines have excellent approximation properties

4. B-splines can be efficiently handled using filtering-
based algorithms[8].

3.2. Internal energy

Conventional snakes are not parametric in the sense spec-
ified above. They are represented as an ordered collection
of points. This is simple but requires the use of an explicit
internal energy to enforce the smoothness and continuity of
the curve. In contrast when the curve is represented in a cu-
bic B-spline basis as in [7], this term is no longer required.
This is due to the minimum curvature interpolation property
of cubic spline curves [3], when described in the curvilinear
abscissa. To ensure the validity of the assumption, we re-
sample the initial curve (spline interpolation of the user in-
put points) spacing the knots at equal intervals with respect
to the curvilinear abscissa. The number of B-spline knots
determines the internal energy of the curve. The absence of
an explicit stiffness constraint also makes the optimization
simpler.

3.3. External Energy

The choice of the external energy is the most crucial one; it
is the term that drives the active contour close to the image
features. As mentioned before, we project the 3-D curve
onto the viewing planes; we choose the external energy as
a measure of consistency between the curve projections and
the ridge-enhancing field (5). Let the curve in 3-D be de-
noted by C and its projection along the kth viewing direc-
tion by Ck. We denote the vector field corresponding to the
kth view by uk. Our measure of consistency between the
curve projections and the detected filaments is

E =
1∑

k=0

∮
Ck

|uk (r)· dr| (11)

One limitation of (11) is that it is computationally ex-
pensive, especially since it is to be evaluated over multiple
iterations. Moreover, it gives a good measure only when the
contour is close to the object (small region of attraction).
Hence we also use an approximate, but fast, external energy
to speed up the algorithm. It is given by

E =
1∑

k=0

∮
Ck

(Gβ ∗ fk)(r)dr, (12)

where fk correspond to the kth image and Gβ stands for a
Gaussian of variance β. This energy has also a larger region
of attraction, depending on the choice of β. We use this
alternate energy for the initial optimization and switch to
(11) at a later stage.

599



3.4. External Constraints

The more difficult cases can be handled by imposing some
hard constraints. The user specifies any number of con-
straint points that are on the filament; we penalize the snake
for not passing through them. This improves the robustness
of the algorithm. The external constraint energy is given by

Econst =
N−1∑
k=0

|r(tk)− rk|2 , (13)

where rk is the kth constraint point and tk is the associated
parameter value.

4. USER INTERFACE

We have designed a user interface with two input modes.

1. Initialization mode: In this mode, the user enters cor-
responding points on the projective views. Once the
curve is closed, we compute the corresponding 3-D
curve by resampling the interpolated curve to a spec-
ified number of spline knots; this number determines
the intrinsic stiffness of the snake.

2. Constraint Input mode: In this mode, the user can re-
fine the curve by entering constraints. The curve com-
puted in the initialization mode is further optimized
with the new constraint points.

Fig. 4. Estimated 3-D shape of the molecule viewed from
different angles. The curve is projected orthogonally to the
corresponding viewing planes

5. OPTIMIZATION

We use a conjugate gradient optimization scheme. To re-
duce the computational cost and to improve the region of
convergence, we adopt to a two-step strategy.

1. The cheap cost function (12) is used first. In this case,
we also use a multiscale approach; we start with a
large β followed by smaller values to speed up the
iteration.

2. In the second step, we use the more precise cost func-
tion (11). The variance of the Gaussian window is a
trade off between robustness to noise and precision; it
depends on the width of the ridge and the noise vari-
ance.

Fig. 4 shows an example of the 3-D reconstruction of a
DNA molecule obtained with our algorithm. The estimated
3-D curve is orthogonally projected onto different planes.
The first projection corresponds to the view in Fig. 3-a.

6. CONCLUSION

We proposed a computational procedure for determining the
3-D shape of DNA filaments from stereo cryo-electron mi-
crographs. We derived a ridge-enhancing vector field from
the projections using rotating matched filters. The magni-
tude of the field gives the confidence measure of the pres-
ence of the filament; its phase gives the direction of the fil-
ament. We modelled the DNA filament as a cubic B-spline
curve in 3-D and developed an active contour algorithm that
finds the best match with the image data.
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