
An Exact Method for Computing the Area
Moments of Wavelet and Spline Curves

Mathews Jacob, Student Member, IEEE, Thierry Blu, Member, IEEE, and

Michael Unser, Fellow, IEEE

AbstractÐWe present a method for the exact computation of the moments of a region bounded by a curve represented by a scaling

function or wavelet basis. Using Green's Theorem, we show that the computation of the area moments is equivalent to applying a

suitable multidimensional filter on the coefficients of the curve and thereafter computing a scalar product. The multidimensional filter

coefficients are precomputed exactly as the solution of a two-scale relation. To demonstrate the performance improvement of the new

method, we compare it with existing methods such as pixel-based approaches and approximation of the region by a polygon. We also

propose an alternate scheme when the scaling function is sinc�x�.

Index TermsÐArea moments, curves, splines, wavelets, Fourier, two-scale relation, box splines, wavelet-Galerkin integrals.
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1 INTRODUCTION

MOMENTS are standard descriptors of the shape of an
object [1], [2], [3]; they easily yield features that are

invariant to translation and rotation [4] or, more generally,
to affine transformations, which makes them useful tools
for pattern recognition. In the standard formulation, they
are computed as surface integrals which requires raster
scanning through the image. However, there are many
instances where the boundaries of objects are described by
parametric curves. This is the case, for example, when the
objects are detected using parametric snakes which are
represented using B-spline [5], [6], [7], [8] or wavelet basis
functions [9], [10]. Another simple case is when the region is
described as a polygon [11].

In this paper, we address the problem of computing the
area moments of objects described by such parametric
curves when the basis functions are scaling functions. The
popular wavelet curve descriptors also fall into this class.
The originality of our approach is that the computation is
exact and also more direct than the conventional pixel-
based method which requires an explicit labeling of the
inner region of the curve prior to computation. Moreover,
the pixel-based schemes suffer a low accuracy due to the
loss of subpixel details in the rasterizing process. Also, the
error in the area-based computation of moments is
dependent on the orientation of the shape.

Since a polygon can be represented in terms of linear

splines, the computation of moments by approximating the

shape as a polygon [11], [12], [13] is a particular case of our

approach. While the polygon method can be made as

accurate as desired by increasing the number of segments,

the convergence is slow because of the low approximation

order of linear splines. Moreover, it is not suitable for

computing the curvature, which is an interesting shape

feature as it is invariant to rotation and translations, and can

be easily normalized to scale changes. This motivates us to

investigate higher order schemes where the curve is

represented by smoother basis functions such as B-splines

and other scaling functions that appear in wavelet theory

[14], [15]. These type of basis functions also occur naturally

when one seeks multiresolution representation of curves

which are well suited for pattern recognition and shape

simplification [16], [10].
The paper is organized as follows: In Section 2, we show

how Green's Theorem can be used for the computation of

the area moments of a parametric curve. In Section 3, we

consider the computation of the moments of such a curve

represented in spline or wavelet bases. Here, we also

discuss the properties of the multidimensional kernel used

in the computation of moments. In Section 4, we give the

implementation details of the moment computation. In the

following section, we deal with the precomputation of the

kernel. In Section 6, we present an alternate implementation

that works for any order moments, but it is rigorously exact

only when the scaling function is sinc�x�. This is especially

interesting because it makes our method applicable to the

Fourier representation of curves as well. In the last section,

we compare the new method with the existing schemes

such as approximation using polygons and rasterizing.

2 PRELIMINARIES

2.1 Computation of Moments Using
Green's Theorem

Green's Theorem relates the volume integral of the

divergence of a vector field in a closed region to the

integral of the field over the surface enclosing it. In this

section, we show how it can be used to compute the

moments of an area enclosed by a curve.
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Consider a closed region V, bounded by a surface S.

Green's Theorem states that, for any vector field F,Z
V
�r:F� dV �

Z
S

F:dS; �1�

where dS is the unit vector pointing out of the surface S.

Assuming the volume has a constant cross-section bounded

by the curve C and that the variation of the field along the

z-direction is zero, we can restrict the theorem to two

dimensions as,Z
S

@Fx

@x
� @Fy

@y

� �
dxdy �

I
C
�Fydxÿ Fxdy�: �2�

The first integral is evaluated over the area S enclosed by

the curve and the second one along the curve C in the

clockwise direction. The computation of the moments

involves the evaluation of the integral
R
S x

m:yn:dxdy on the

surface bounded by the curve. This, by (2), is equivalent to

Im;n �
I
C

xmyn�1

n� 1
dx; �3�

with F � ey�xmyn�1

n�1 �; ey denotes the unit vector along the

y direction. Note that the choice of F is not unique. We

choose the vector field F that makes the computation

simple. Another possible choice that has the same computa-

tional complexity is F � ÿex�xm�1yn

m�1 �.
2.2 Parametric Representation of a Curve

A curve in the x Ð y plane can be represented in terms of an

arbitrary parameter t as r�t� � �x�t�; y�t��. If the curve is

closed, as discussed in the paper, the functions x�t� and y�t�
are periodic.

When the curve C is represented as above, r�t� can be

approximated efficiently as linear combinations of some

basis functions, which makes the representation compact

and easy to handle.
In this paper, we mainly focus on the representation of

the function vector r�t� in a scaling function basis as

r�t� �
X1
k�ÿ1

bk '�tÿ k�: �4�

Here, bk denotes the sequence of vector coefficients given

by bk � �ck; dk�. If the period, M, is an integer, we have

bk � bk�M . This reduces the infinite summations to

r�t� �
XMÿ1

k�0

bk 'p�tÿ k�; �5�

where

'p�t� �
X1
k�ÿ1

'�tÿ k:M�: �6�

In the context of wavelets, ' is called the scaling function; it

satisfies the two-scale difference equation

'�t� �
X
k

h�k�'�2tÿ k�; �7�

where h�k� is the mask of the corresponding refinement

filter [14]. The scaling function representation enables us to

have local control of the contour, which is desirable in many

applications. It also permits a multiresolution representa-

tion of the curve [9], [17]. Moreover, the scaling function

representation is affine-invariant; an affine transformation

of the curve is achieved simply by transforming the

coefficient vector bk; k � 0; 1; . . . ;M ÿ 1. This is because of

the linearity of the representation and the partition of unity

condition:

X1
k�ÿ1

'�tÿ k� � 1; �8�

which is satisfied by all valid scaling functions in wavelet

theory. Among the scaling functions, a case of special

interest is ' � �n, where �n is the causal B-spline of degree n

[18] defined by its Fourier transform

�̂s�!� � 1ÿ eÿj!
j!

� �s�1

: �9�

This yields spline curves which are frequently used in

computer graphics [19] and computer vision [6], [20], [21].
We now consider a simple example to illustrate this kind

of curve representation. Given in Fig. 1 is a polygon and its

parametric representation. The dotted lines show the linear
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B-spline basis functions, �1�tÿ k� (tent function), multiplied
by the corresponding coefficients.

The description of C in the scaling function basis is

equivalent to a periodized wavelet representation [9]. This

implies that, if we have a wavelet description of the curve,

the scaling function coefficients at any scale can be obtained

from the wavelet coefficients using the fast reconstruction

equation described in [22]. Hence, the theory is sufficiently

general to include the wavelet curve descriptors as well.
The representation of the curves in a sinc basis also falls

in this class, as sinc is a valid scaling function. The
description of the curve in the sinc basis as (5) is not
efficient, as sinc has an infinite mask unlike most of the
widely used scaling functions. It is well known (c.f. [23])
that the sinc interpolation of a periodic signal can be
formulated into a numerically stable and efficient expres-
sion as

r�t� �
XL
k�ÿL

bk exp
j2�kt

M

� �
; �10�

where 2L� 1 �M, assuming M to be odd. A similar
expression is obtained for even M as well. Here, bk is the
discrete Fourier transform of the vector sequence r�k�. Note
that (10) provides the Fourier series description of the
curve, which is frequently used for the representation of
closed curves [24], [25].

2.3 Differentiation of Scaling Functions

We will use the property that the kth derivative of a scaling
function ' can be expressed as [26]

'�k��x� � �k'fkg�x�; �11�
where 'fkg�x� denotes the scaling function whose mask is
given by

Hfkg�z� � 2

1� zÿ1

� �k
H�z�;

H�z� is the mask of '. � denotes the backward difference
operator, defined as � ��x� � ��x� ÿ ��xÿ 1�.

The relation (11) follows from the fact that any mth order
scaling function can be written as

'̂�!� � 1ÿ ej!
j!

� �m
|��������{z��������}

�̂mÿ1�!�

̂�!�;

where  is a refinable distribution which does not satisfy the

partition of unity. The mask of ' is H�z� � 1�zÿ1

2

� �m
H�z�.

Note that 1�zÿ1

2

� �m
is the mask of �mÿ1 and H the mask of .

Differentiating ' with respect to x, k number of times

(k � m) yields

'�k��x� ÿ!F j!� �k'̂�!�

� 1ÿ ej!ÿ �k 1ÿ ej!
j!

� �mÿk
̂�!�|���������������{z���������������}

'̂fkg�!�

ÿ!F
ÿ1

�k'fkg�x�: �12�

Thus, the mask of 'fkg�x� is

Hfkg�z� � 1� zÿ1

2

� �mÿk
H�z� � 2

1� zÿ1

� �k
H�z�:

3 COMPUTATION OF THE MOMENTS OF AN AREA

BOUNDED BY A PARAMETRIZED CURVE

To facilitate the understanding of our method, we first give

a detailed derivation of the formula for the area of the

region bounded by the curve. We then extend our

formulation to the general case.

3.1 Computation of the Area

For the parametric representation of the curve, the area of

the region is given by

I0;0 �
Z M

0

y�t� dx�t�
dt

dt: �13�

When the curve is described in a scaling function basis as in

(5), we have

I0;0 �
XMÿ1

i;j�0

dicj

Z M

0

'p�tÿ i�'0p�tÿ j�dt; �14�

where

'0p�t� �
d'p�t�
dt

:

Substituting for '0p�t� from (6), we get

I0;0 �
XMÿ1

i;j�0

dicj

Z 1
ÿ1

'p�tÿ i�'0�tÿ j�dt; �15�

which is equivalent to

I0;0 �
XMÿ1

i;j�0

dicj

Z 1
ÿ1

'p�tÿ i� j�'0�t�dt|���������������������{z���������������������}
gp

0
�iÿj�

: �16�

Again, substituting for 'p from (6), we get the kernel gp0�l� as

the M periodized version of

g0�l� �
Z 1
ÿ1

'0�t�'�tÿ l�dt �17�

as gp0�l� �
P1

k�ÿ1 g0�l� k:M�. With the simplification (11),

the above equation becomes

g0�l� � �f0�l�; �18�
and

f0�x� �
Z 1
ÿ1

'f1g�t�'�tÿ x�dt: �19�

Note that, if '�t� � '�� ÿ t�, then f0�x� can be written as the

convolution 'f1g � 'ÿ ��� � x�. We prefer to represent the

kernel gp in terms of f due to its nice properties, discussed

later.
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For the example given in Fig. 1, we have

g0�l� � � �0 � �1
ÿ ��l� 2� � ���2��l� 2�

g0 : �0:5; 0;ÿ0:5�; l 2 fÿ1; 0; 1g;
where �n is the causal B-spline function of degree n.

Now, for the polygon, c�k� : �1; 1; 6; 8; 7; 4� and d�k� :

�1; 6; 8; 5; 1; 0�. Hence, by (16), we have

I0;0 � 1

2
h�6; 8; 5; 1; 0; 1�; �5; 7; 1;ÿ4;ÿ6;ÿ3�i

� 42 units:

Here, hx1; x2i stands for the `2 inner product given byP
k x1�k�x2�k�.

3.2 General Formula

Having shown how to compute the area, we proceed on to

the general case. The formula for the computation of the

general moments are given by the following theorem:

Theorem 1. Let C be a closed curve in the x-y plane represented

in the parametric form in a periodized scaling function basis as

(4). Then, the �m;n�th order area moment of the region S,

bounded by the curve C, given by

Im;n �
Z
S
xmyn dxdy for m; n � 0 �20�

can be computed as

Im;n � 1

n� 1

X
k2R

X
i2Rm�1

j2Rn

ck ci
�m�dj

�n�1�gpm�n�iÿ k; jÿ k�; �21�

where R is the integer range �0 . . .M ÿ 1�. The kernel gpm�n in

(21) is

gpm�n�k� �
Z 1
ÿ1

'0�t�'p�tÿ k1� . . .'p�tÿ km�n�1� dt: �22�

Here, c�m� stands for the m-times tensor product1 c

c . . .
 c and iÿ k denotes the sequence

�i1 ÿ k; i2 ÿ k; . . . im�1 ÿ k�:

Proof. For a parametric curve, the evaluation of the �m;n�th
order moment given by (20) can be reduced to

Im;n � 1

n� 1

Z M

0

xm�t�yn�1�t� dx�t�
dt

dt �23�

by (3). When the curve is described in a scaling function

basis, we have

Im;n � 1

n� 1

X
k2R

X
i2Rm�1

j2Rn

ck ci
�m�dj

�n�1�
Z M

0

'p�tÿ i1� . . .

'p�tÿ im�'p�tÿ j1� . . .'p�tÿ jn�1�'0p�tÿ k�dt:
�24�

Substituting for '0p�t� from (6), we get

Im;n � 1

n� 1

X
k2R

X
i2Rm�1

j2Rn

ck ci
�m�dj

�n�1�
Z 1
ÿ1

'p�tÿ i1� . . .

'p�tÿ im�'p�tÿ j1� . . .'p�tÿ jn�1�'0�tÿ k�dt:
�25�

The integral in the above equation is equivalent toR1
ÿ1 '

0�t�'p�t�kÿi1�...'p�t�kÿim�'p�t�kÿj1�...'p�t�kÿjn�1�dt|�������������������������������������������{z�������������������������������������������}
gpm�n�iÿk;jÿk�

: �26�

Hence, the �m;n�th order moment is

Im;n � 1

n� 1

X
k2R

X
i2Rm�1

j2Rn

ckci
�m�dj

�n�1� gpm�n�iÿ k; jÿ k�: �27�

tu
As in the case of the area, the kernel gp is obtained by the

M-periodization of

gm�n�k� �
Z 1
ÿ1

'0�t�'�tÿ k1�::'�tÿ km�n�1�:dt; �28�

where k 2 ZZm�n�1. Expressing '0 in terms of 'f1g, we get

gm�n�k� � fm�n�k� ÿ fm�n�kÿ 1�; �29�
where

fm�n�x� �
Z 1
ÿ1

'f1g�t�'�tÿ x1�::'�tÿ xm�n�1�dt; �30�

where x � �x1; x2 . . . ; xm�n�1� 2 RRm�n�1. The kernel f has

many interesting properties, which are discussed next.

3.3 Properties of the KernelÐf

1. Finite Support. As the kernel is an integral of
products of the translates of finitely supported
functions, it has a finite support as well. If the
scaling function is continuous and has a support
�0; N �, then the kernel will be supported on the
integer points in the interval

I � �ÿN � 1; N ÿ 2� � . . .

�ÿN � 1; N ÿ 2� � �ÿN � 1; N ÿ 2�: �31�

2. Symmetry. The fact that the kernel is obtained from
the integration of similar translated scaling functions
introduces a lot of symmetry. As (30) is symmetric
with respect to the parameters k1; k2; ::, interchan-
ging them will not affect the value of the kernel. This
implies

f�k� � f���i�k��; �32�
where ��i indicates all possible �m� n� 1�! permu-

tation operators. In addition, if the scaling functions

are symmetric as in the case of splines, we have

f�k� � f�ÿk�: �33�
Both these properties together imply 2��m� n� 1�!�
relations, which are used to accelerate the computa-

tion of the kernel as well as the moments.
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3. Two-Scale Relation. We now show that the kernel
satisfies a two-scale relation, which is the key to our
computational approach. This property follows from
the fact that the scaling functions '�t� and 'f1g�t�,
from which the kernel is derived, satisfy two-scale
relations. If we consider (30) and rewrite the ' and
'f1g in terms of the corresponding two-scale rela-
tions (cf. (7)), we get

fm�n�k� �
X

l2ZZm�1

Hm�n�l�:fm�n�2kÿ l�; �34�

where k 2 ZZm�1. The mask H in the above equation
is

Hm�l1; l2; ::; lm� � 1

2

X
k

h1�k�:h�kÿ l1�::h�kÿ lm�:

�35�
The z-transform of the mask is given by

Hm�z1; z2; ::; zm� � 1

2
H1�

Qm
k�1zk�

Ym
k�1

H�zÿ1
k �: �36�

It is this property that enables us to compute the
kernels exactly, by solving a linear system of
equations. This technique, which is discussed later,
is analogous to the computation of the integer (or
dyadic rational) samples of a scaling function from
the transition operator [14].

Note that a scaling relation similar to (34) was
also considered by mathematicians in the context of
the wavelet-Galerkin method for the computation of
integrals involving products of scaling functions and
their derivatives [27], [28]. The work of Dahmen and
Miccheli is essentially theoritical; Restrepo and Leaf
concentrated on numerical issues and proposed a
solution which is equivalent to the computation of
our kernel gm instead of fm. This slightly complicates
the approach and also increases the dimensionality
of the problem; this issue is discussed further in
Section 5.1.

The above mentioned properties imply that the kernel
can be computed exactly for any finitely supported scaling
function, as discussed in Section 5. In the next section, we
will give some examples for the kernels when the scaling
functions are B-splines.

3.4 Examples with Splines

Splines possess nice approximation properties. The B-splines
have the maximum approximation order among the class of
functions that satisfy a two-scale relation with a given
support. Hence, they give better local control of the contour.
Moreover, they are symmetric, which facilitates the compu-
tation of the kernel and moments as discussed before. So, it is
worthwhile to analyze the properties of the kernels for a
spline representation of the curve. For the results used in this
section, refer to [18].

We consider causal B-splines, as they satisfy a two-scale
relation for all orders. The refinement filter for a B-spline of
degree n is the binomial filter

h�k� � 1

2n
n� 1

k

� �
: �37�

If we choose �s, a B-spline of degree s, as ', then

'f1g � �sÿ1; that is a spline of degree sÿ 1. Hence, the

kernel f as given by (30) is a box spline [29] sampled at the

integers. In particular,

f0�k� � �2s�k� s� 1�: �38�
The spline functions have a closed-form representation in

the Fourier domain, which the kernels also inherit. By

taking the continuous Fourier transform of (30), when the

scaling function is a B-spline, we get

f̂ sn�!�; ! 2 ZZn � �̂sÿ1�j!j�
Yn
i�1

�̂s�!i�; �39�

where j!j stands for
Pn

j�1 !j. By using Poisson's formulaX
k

f̂sn�!� 2k�� � 1

2�

X
k

fsn�k�eÿ2j�!k; �40�

we get the discrete Fourier transform of the kernel as the
2�-periodized version of (39).

We give some examples of kernels for the computation of

the first three moments when we have a linear spline

representation. For linear splines, the kernel fmÿ1

�k1; k2; . . . ; km� is supported in the interval �ÿ1; 0� �
�ÿ1; 0� . . . �ÿ1; 0�. The kernels are

f0�k1�; k1 2 fÿ1; 0g :
1

2
� � 1 1 �; �41�

f1�k1; k2�; k1; k2 2 fÿ1; 0g :
1

6
� 1 2

2 1

� �
; �42�

f2�ÿ1; k2; k3�; k2; k3 2 fÿ1; 0g : 1
12 �

1 1
3 1

� �
f2�0; k2; k3�; k2; k3 2 fÿ1; 0g : 1

12 �
1 3
1 1

� � :
8>><>>: �43�

It is interesting to see that the computation of the moments

using the linear spline kernel is the same as when the

polygon is triangulated in a specified way and the moments

of individual triangles added up as in [11].
We also give the kernel f0 for the cubic spline

representation.

f0�k1�; k1 � ÿ3; . . . 2 :
1

720
:�1; 57; 302; 302; 57; 1�: �44�

The higher order kernels are omitted due to space
constraints. They can be downloaded from http://
bigwww.epfl.ch/jacob.

4 IMPLEMENTATION

In this section, we analyze equation (21) and simplify it for

faster computation. We start with the simplest case: the area

of the region.
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The area bounded by the curve (cf. (15)) is computed as

I0;0 �
XMÿ1

k�0

cpk
XNÿ2

l�ÿN�1

dpk�lg0�l�; �45�

where g0 is given by (17). The sequences cpk and dpk are
M-periodized versions of the coefficients ck and dk with
respect to the period M. This is simply because convolving
a nonperiodized sequence with a periodized kernel is
equivalent to convolving a periodized sequence with a
nonperiodized kernel. We have also reduced the range of
summation of the inner sum to ÿN � 1 to N ÿ 2, which is
typically much less than the range 0 to M ÿ 1. Similarly, for
the higher order moments all the summations, except the
outer one, are in the range ÿN � 1 to N ÿ 2.

From (45), we see that the computation of the area
involves just a filtering operation by g�ÿl� � gT �l�, followed
by an inner product. This can be written as,

I0;0 � hcp; gT0 � dpi; �46�
where h:; :i stands for the inner product hc; di �PMÿ1

k�0 c�k�d�k�. With a similar notation, the computation
of the other moments are given as

Im;n �
hcp; gTm�n � �cp�m� 
 dp �n�1��i

n� 1
�47�

� ÿ hd
p; gTm�n � �cp�m�1� 
 dp�n��i

m� 1
: �48�

As the �m� n� 1�-D sequence is separable, the filtering
operation is much simpler than the usual �m� n�
1�-dimensional filtering.

The complexity in the computation of the moment Im;n is

M:�2N ÿ 2��m�n�2�, without taking the symmetries into

account. Thus, for basis functions with small support and

reasonable m and n, the complexity is quite managable.

5 COMPUTATION OF THE KERNEL

In this section, we propose two schemes for computing the
kernel. An exact space domain scheme and an approximate
one in the Fourier domain.

5.1 Exact Method

In this scheme, we compute the kernels in space domain
making use of the properties of kernels discussed before.
We start with the computation of f0 and later extend it to
the general case. Making use of the finite support property,
the two-scale relation (34) can be rewritten in the matrix
form as,

A0:f0 � f0; �49�
where A0 is the square matrix with coefficients �A0�k;l �
H0�2kÿ l� and f0 is the vector whose elements are f0�n�. As
the support of f0 is �ÿN � 1; N ÿ 2�, the indices of A0 run
from ÿN � 1 to N ÿ 2.

It can be seen from (49) that f0 is an eigen-vector of the
matrix A0, with eigen-value 1. Solving for f0 is equivalent to
solving for a vector which falls in the nullspace of �A0 ÿ I�,
where I is the identity matrix. Since f0 6� 0, A0 must have

the eigen-value 1, which is in general single. This provides
f0 up to a constant which is further set by the normalization
identity X

k

f0�k� � 1; �50�

which can be seen from (19). This is because the function'�x�
has at least an approximation order of one [14], which impliesP

k '�x� k� � 1. One of the equations in �A0 ÿ I�:f0 � 0 can
be substituted for by the (50) to yield the system of equations
given by

B:f0 � y; �51�
B is the matrix obtained by substituting one of the rows of
�A0 ÿ I� with the row vector �1; 1; . . . ; 1� and y is given by
�0; 0; 0 . . . ; 0; 0; 1�T c.f [30]. Now, B is a full rank matrix and,
hence, the eigen-vector f0 can be solved by matrix inversion.

To represent the two-scale relations of the higher order
kernels in the matrix form, we introduce a one-to-one
function � : �ÿN � 1; N ÿ 2�m 7!�0; �2N ÿ 2�m ÿ 1�. Using
this function, (34) can be rewritten as

fm��ÿ1�k�� �
X�2Nÿ2�m�1ÿ1

l�0

Hm 2�ÿ1�k� ÿ �ÿ1�l�ÿ �
fm �ÿ1�l�ÿ �

;

which is a linear system of equations. This can be written in
the matrix form as

Amfm � fm; �52�
where �Am�i;j � Hm 2�ÿ1�i� ÿ �ÿ1�j�� � and fm�i� � f �ÿ1�i�� �.
This equation is of the same form as (49) and can be solved
in the same way, with the normalization constraintP

i fm�i� � 1.
Let us now compare our computational solution with the

method developed for computing gm in the context of
wavelet-Galerkin approach [27]. For a scaling function of
support N , the kernel gm is zero outside the interval

I 0 � �ÿN � 1; N ÿ 1� � . . .

�ÿN � 1; N ÿ 1� � �ÿN � 1; N ÿ 1�: �53�

as compared to fm whose support is given by (31). Thus, the
direct computation of gm involves a linear system with
�2N ÿ 1�m variables as compared to �2N ÿ 2�m for fm in our
case. For 3-dimensional kernels involving cubic splines, we
achieve a 40 percent reduction in the number of equations.
As the computational complexity in inverting a linear
system is proportional to the third power of the number of
equations, this implies a performance improvement of
around 5 times. The approach becomes even more reward-
ing for higher order kernels. Moreover, the normalization
constraint (50) that we use to make the system full rank is
much more straightforward than the corresponding relation
for the derivative functions.

Note that this simplification is covered by Dahmen and
Michelli's general theory for integrals of multidimensional
scaling functions [28]. This is because the mask of any
mth order 1ÿD scaling function can be always factored as
proposed in [28, Corollary 3.3]. In the case of wavelet-
Galerikin integrals, the performance improvement can even
more substantial depending on the number of derivatives.
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5.2 Approximate Method for Splines

Because the spline kernel has a closed-form expression in
the frequency domain, the kernel can be obtained by taking
the inverse DFT of the above mentioned Fourier transform
(40) sampled at an appropriate rate; we make use of the
finite support property of the kernel. As sinc is a decaying
function, the periodization of the Fourier transform may be
approximated with an appropriately truncated sum to
achieve any desired accuracy. This is because we can have
an upper bound for the error that is a decreasing function of
the summation range. Moreover, the symmetries of the
kernel discussed before may be used for the efficient
computation of the box spline kernels as in [31].

However, this technique, besides being approximate, can
be used only for scaling functions that have a closed form
expression in the frequency domain, i.e., splines in practice.
This scheme may be useful to precompute the spline kernels
for very high order moments, where the exact scheme can
be computationally expensive.

6 COMPUTATION OF THE AREA MOMENTS USING

RIEMANN SUMS

An alternate approach to compute the moments is to
approximate the integral (3) by a Riemann sum:

Im;n � 1

�n� 1�P :
XMPÿ1

l�0

�xint�l=P ��m:�yint�l=P ��n�1:�x0int�l=P ��;

�54�
where P is an appropriate oversampling factor. We show in
this section that this quadrature formula is exact when the
curves are described in a sinc basis. For other representa-
tions, it can be used for the approximate computation of
higher order moments.

6.1 Sinc Representation of the Curve

A curve represented in a sinc basis also falls into the
framework of Theorem 1 because sinc�x� is a valid scaling
function. However, computing the moments as described in
Section 4 is expensive as the mask of the sinc function is not
finitely supported. We remind the reader that the repre-
sentation of a periodic signal in the sinc basis is equivalent
to the Fourier representation as seen in (10).

In this particular case, the moments can be computed
exactly and more efficiently using (54), where the over-
sampling factor, P , is any integer greater than m�n�2

2 .

Proposition 1. The quadrature formula (54) is exact for the sinc
representation provided that P � dm�n�2

2 e.

The continuously defined functions xint�t� and yint�t� are
obtained by interpolating the sample values of the curve at
the integers, using the periodized sinc function. The
computation is exact because we implicitly assume that
the functions x�t� and y�t� are bandlimited functions, with
bandwidth B � 2�.

Proof. The integral (3) can be considered as an L2 �0;M� inner
product of two functions, which are dm�n�2

2 e and bm�n�2
2 c

fold2 products of the corresponding band-limited

functions. Hence, they are bandlimited by B0 �
Bdm�n�2

2 e and B00 � Bbm�n�2
2 c, respectively. So, these

functions are exactly represented in the basis fsinc�Px
ÿk�; 8k 2 ZZg, where 2�P � B0. Because the sinc basis is
orthogonal, the L2 �0;M� inner product is equivalent to the
`2 �0;MPÿ1� inner product. Hence, it is sufficient to
compute the discrete summation instead of the integral.
Finally, the sinc function is interpolating, so that the
coefficients of the basis functions are the resampled
curve values and, hence, the result (54). tu

Using the equivalence of the sinc and the Fourier
representations, we can compute the interpolated samples
efficiently with a MP point inverse FFT of the Fourier
coefficients ck and dk.

We will compare the sinc moment estimator with the
scaling-function-based moment estimator in the next sec-
tion. One disadvantage of the Fourier(sinc) representation
of curves is the loss of local control property that we were
having with the finitely supported scaling functions.

The complexity in the computation of the moments
in this scheme is MP �3 log�MP � � �m� n� 2��. Here,
3MP log�MP � is the cost of the inverse FFT of the
sequences ck, dk, and k:ck, and �m� n� 2�MP corre-
sponds to the multiplications.

6.2 Spline Representation of the Curve

The quadrature formula (54) is also applicable to the spline
representation, provided that the functions xint�t� and yint�t�
are obtained by interpolating the integer sample values,
using the corresponding B-spline functions. This scheme is
no longer exact, but it may be a viable alternative for
computing the higher order moments. The necessary
condition for the computation to be reliable is that the
Fourier transform of the B-spline function is essentially
bandlimited to 2�P , where P is the oversampling factor.
The error in the moments computed with the approximate
method is, thus, proportional to the residual energy of the
B-spline function in the corresponding outband. As the
Fourier transform of the B-spline is a decaying function of
the frequency, the error will be a decaying function of P as
well. Thus, any desirable accuracy may be achieved by
choosing P sufficiently large.

The complexity of the spline quadrature formula is O�M
�m� n� 2��m� n� 2� 3N�P �, where M�m� n� 2�P is
the total number of resampled points. The evaluation of the
spline representation requires N multiplications to obtain
one resampled point from the corresponding B-spline
representation. Then, the computation of the discrete sum
costs m� n� 2 multiplications per resampled point. Inter-
estingly, the approximate scheme will give better results for
higher order splines as these functions will become
bandlimited as the order tends to infinity [32].

7 EXPERIMENTS AND RESULTS

In this section, we compare the new technique with the
existing ones: approximation using polygons and raster-
izing. We first consider the exact scheme proposed in
Section 4. We try to estimate the parameters of a known
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ellipse and choose the relative error in the parameters as the
criterion of comparison.

Our preferred choice is to represent the curve in a cubic
B-spline basis due to its nice approximation properties and
minimum curvature properties. To compare it with the
approximation of the region as a polygon, the ellipse is
sampled uniformly and the samples are interpolated using
the two techniques (linear and cubic splines). The average
relative error in the three centered second order moments
versus the number or samples are plotted in Fig. 2. It can be
seen that the relative error is much smaller for the cubic
spline interpolation even at low sampling rates and that it
exhibits a faster decay.

In the traditional scanning approach, the ellipse is
scanned along the x and y axes with a step size � and the
monomials are computed at the grid points assigned to the
interior of the curve. Fig. 3 shows the decay of the average
relative error for an ellipse versus

�������
Area
p

� for three different

orientations. The plot clearly shows the dependence of the

accuracy on the orientation of the ellipse.
It can be seen that to achieve a relative error of

0:1 percent the interior of the ellipse has to be sampled at

about 3,600 points, whereas to achieve the same error using

the cubic spline interpolation we need only around nine

points on the curve. In comparison, the polygon method

(linear spline) requires more than 40 samples to have a

similar error. More interesting is the case when the interior

of the ellipse has to be sampled at about 2:5� 105 points to

achieve an error of 0:002 percent while the cubic splines

require only 25 samples to achieve the same accuracy. In

Fig. 4, we show the ellipse corresponding to the second

order moments of the central structure in the image. The

contour of the object was estimated using a snake where

the curve was represented parametrically in terms of cubic

B-splines; the moments are computed using our algorithm.

Note that the fit is astonishingly good.
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Fig. 2. Comparison of moment estimators.

Fig. 3. Variation of error versus 1
� in a raster scan moment estimator.

Fig. 4. Estimated ellipse for a real image.

Fig. 5. Shape of corpus callosum represented using a cubic B-spline

curve with 20 knot points.



Having observed that the cubic spline estimator per-
forms better than the polygon method, we now compare it
with the Fourier (sinc) technique proposed in Section 6. It is
not fair to use the ellipse as we did before because it can be
represented exactly in a Fourier series representation with
L � 2. So, we choose the real shape of corpus callosum
shown in Fig. 5, represented in a linear spline basis with
39 knot points as the reference shape. This shape was
resampled at different rates and these points were inter-
polated using cubic B-spline and Fourier representations,
respectively. The moments of the corresponding curves
were calculated using the respective algorithms discussed
before. Fig. 6 shows the decay of the relative error with the
resampling rate for both representations. We observe that
the spline estimator is better than the Fourier estimator for
small sampling rates, while the Fourier estimator performs
better at very high sampling rates (typically more than eight
times the number of points used for the description of C). In
the example considered, the Fourier method performs
better when the shape of corpus callosum is represented
with around 312 samples.

To evaluate the performance of the approximate scheme
introduced in Section 6.2, we now consider the case where
the corpus callosum is represented by a cubic B-spline curve
with 20 knot points. The relative error in the computation of
the second order moments by the quadrature formula as a
function of its relative computational complexity (propor-
tional to P ) is shown in Fig. 7; here, the reference method is
the kernel-based computation, which is exact. Our results
indicate that, for the second order moments, the error of the
quadrature formula is quite substantial (e.g., 9.4 percent).
Thus, it is not advantageous for computing the lower order
moments. However, the quadrature formula will eventually
start to pay off for higher order moments, because its cost
increases only quadratically with the degree as compared to
exponentially for the kernel-based method.

8 CONCLUSION

In this paper, we have presented a new approach for the
computation of the moments of a curve described in a
wavelet or scaling function basis. It is especially useful
for objects detected using parametric snakes. The main

advantages of the proposed scheme over the conventional

methods are:

. the exactness of the computation,

. its independence of the orientation of the shape, and

. the consistency with the snake model and the fact
that it is the most direct method available.

In addition, the method is reasonably fast and easy to

implement.
We recommend using our exact kernel-based approach

for computing the lower order moments (typically

m� n � 2) for which the kernels are available. For higher

order moments, we have proposed a quadrature formula

that approximates the continuous integrals with Riemann

sums. The latter method is exact for the sinc basis functions;

otherwise, it can be made as accurate as desirable by

resampling the model at a finer rate (P sufficiently large).

ACKNOWLEDGMENTS

The authors would like to thank the anonymous

reviewer for pointing us to references [28] and [27] on

the wavelet-Galerkin method which deal with the

computation of wavelet related integrals. This work

was supported by the Swiss National Science Foundation

under grant 2100-053540.

REFERENCES

[1] S. Rad, K.C. Smith, and B. Benhabib, ªApplication of Moment and
Fourier Descriptors to the Accurate Estimation of Elliptical Shape
Parameters,º Proc. IEEE Int'l Conf. Acoustics, Speech, Signal Process,
vol. 4, pp. 2465±2468, 1991.

[2] R. Desai, R. Cheng, and H.D. Cheng, ªPattern Recognition by
Local Radial Moments,º Proc. 12th IAPR Int'l Conf. Pattern
Recognition, 1994.

[3] K. Tsirikolias and B.G. Mertzios, ªStatistical Pattern Recognition
Using Efficient Two-Dimensional Moments with Applications to
Character Recognition,º Pattern-Recognition, vol. vol. 26, pp. 877±
882, 1993.

[4] L.X. Shen and Y.L. Sheng, ªNoncentral Image Moments for
Invariant Pattern Recognition,º Optical Eng., vol. 34, no. 11,
pp. 3181±3186, 1995.

[5] P. Brigger, J. Hoeg, and M. Unser, ªB-Spline Snakes: A Flexible
Tool for Parametric Contour Detection,º IEEE Trans. Image Process,
vol. 9, pp. 1484±1496, Sept. 2000.

JACOB ET AL.: AN EXACT METHOD FOR COMPUTING THE AREA MOMENTS OF WAVELET AND SPLINE CURVES 641

Fig. 6. Comparison of Fourier Estimator with cubic spline estimator. Fig. 7. Relative error versus relative computational complexity.



[6] J.Y. Wang and F.S. Cohen, ª3D Object Recognition and Shape
Estimation from Image Contours Using B-Splines, Unwarping
Techniques and Neural Network,º Proc. IEEE Int'l Joint Conf.
Neural Networks, 1991.

[7] M. Flickner, H. Sawhney, D. Pryor, and J. Lotspeich, ªIntelligent
Interactive Image Outlining Using Spline Snakes,º Proc. 28th
Asilomar Conf. Signals, Systems, and Computers, 1994.

[8] M. Figueiredo, J. Leitao, and A.K. Jain, ªUnsupervised Contour
Representation and Estimation Using B-Splines and a Minimum
Description Length Criterion,º IEEE Trans. Image Process, vol. 9,
pp. 1075±1087, 2000.

[9] G.C.H. Chuang and J. Kuo, ªWavelet Descriptor of Planar Curves:
Theory and Applications,º IEEE Trans. Image Process, vol. 5, pp. 56±
70, 1996.

[10] Y. Wang, S.L. Lee, and K. Toraichi, ªMultiscale Curvature Based
Shape Representation Using Bspline Wavelets,º IEEE Trans. Image
Process, vol. 8, pp. 1586±1592, 1999.

[11] M. Singer, ªA General Approach to Moment Calculation for
Polygons and Line Segments,º Pattern Recognition, vol. 26,
pp. 1019±1028, Jan. 1993.

[12] S.F. Bockman, ªGeneralising the Formula for Areas of Polygons to
Moments,º Am. Math. Monthly, vol. 96, pp. 131±133, Feb. 1989.

[13] N.J.C. Strachan, P. Nesvadba, and A.R. Allan, ªA Method for
Working Out the Moments of a Polygon Using an Integration
Technique,º Pattern Recognition Letters, vol. 11, pp. 351±354, May
1990.

[14] G. Strang and T.Q. Nguyen, Wavelets and Filter Banks. Wellesley-
Cambridge Press, 1996.

[15] M. Vetterli and J. Kovacevic, Wavelets and Subband Coding. Prentice
Hall, 1995.

[16] C. Fermuller and W. Kropatsch, ªHierarchical Curve Representa-
tion,º Proc. 11th IAPR Int'l Conf. Pattern Recognition, 1992.

[17] J.P. Antoine, D. Barache, R.M. Cesar Jr., and L.da. Fontoura Costa,
ªShape Characterisation with the Wavelet Transform,º Signal
Processing, vol. 62, pp. 265±290, 1997.

[18] M. Unser, ªSplines: A Perfect Fit for Signal and Image Proces-
sing,º IEEE Signal Processing Magazine, vol. 16, pp. 22±38, 1999.

[19] R.H. Bartels, J.C. Beatty, and B.A. Barsky, An Introduction to Splines
for Use in Computer Graphics and Geometric Modeling. Morgan
Kauffmann, 1987.

[20] Z. Huang and F.S. Cohen, ªAffine-Invariant B-Spline Moments for
Curve Matching,º IEEE Trans. Image Process, vol. 5, pp. 1473±1480,
1996.

[21] F.S. Cohen and J.Y. Wang, ªModeling Image Curves Using
Invariant 3-D Object Curve Models, a Path to 3-D Recognition
and Shape Estimation from Image Contours, Part 1,º IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 16, pp. 1±12, 1994.

[22] S. Mallat, ªA Theory for Multiresolution Signal Decomposition:
the Wavelet Representation,º IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 11, pp. 674±693, 1989.

[23] F. Candocia and J.C. Prince, ªComments in Sinc Interpolation of
Discrete Periodic Signals,º IEEE Trans. Signal Process, vol. 46,
pp. 2044±2047, 1998.

[24] A. Chakraborthy, L.H. Staib, and J.S. Duncan, ªDeformable
Boundary Finding in Medical Images by Integrating Gradient
and Region Information,º IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 15, pp. 859±870, 1996.

[25] L.H. Staib and J.S. Duncan, ªBoundary Finding with Parametri-
cally Deformable Models,º IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 14, pp. 1061±1075, 1992.

[26] T. Blu, ªIterated Filter Banks with Rational Rate Changes
Connection with Discrete Wavelet Transforms,º IEEE Trans.
Signal Process, vol. 41, pp. 3232±3244, Dec. 1993.

[27] J.M. Restrepo and G.K. Leaf, ªInner Product Computations Using
Periodized Daubechies Wavelets,º Int'l J. Numerical Method in
Eng., vol. 40, pp. 3557±3578, 1997.

[28] W. Dahmen and C.A. Micchelli, ªUsing the Refinement Equation
for Evaluating Integrals of Wavelets,º SIAM J. Numerical Analysis,
vol. 30, pp. 507±537, 1993.

[29] C. de Boor, K. Hollog, and S. Riemenschneider, Box Splines.
Springer-Verlag, 1998.

[30] T. Blu and M. Unser, ªQuantitative Fourier Analysis of Approx-
Imation Techniques: Part IIÐWavelets,º IEEE Trans. Signal
Processing, vol. 47, pp. 2796±2806, Oct. 1999.

[31] M.D. McCool, ªOptimised Evaluation of Box Splines via the
Inverse fft,º Graphics Interface, 1995.

[32] A. Aldroubi, M. Unser, and M. Eden, ªCardinal Spline Filters:
Stability and Convergence to the Ideal Sinc Interpolator,º Signal
Processing, vol. 28, pp. 127±138, 1992.

Mathews Jacob received the ME degree in
signal processing from the Indian Institute of
Science, Bangalore in 1999. Currently, he is a
research assistant at the Biomedical Imaging
Group at EPFL (Swiss Federal Institute of
Technology), Lausanne, Switzerland. His re-
search interests include image processing,
active contour models, sampling theory, etc.
He is a student member of the IEEE.

Thierry Blu graduated from Ecole Polytechni-
que, France, in 1986 and from Telecom Paris
(ENST), France, in 1988. In 1996, he received
the PhD degree in electrical engineering from
ENST for a study on iterated rational filter banks
applied to wide band audio coding. He is
currently with the Biomedical Imaging Group at
EPFL (Swiss Federal Institute of Technology),
Lausanne, Switzerland, on leave from France
Telecom CNET (National Center for Telecom-
munications Studies), Issy-les-Moulineaux,

France. His research interests include (multi-) wavelets, multiresolution
analysis, multirate filter banks, approximation, and sampling theory,
psychoacoustics. He is a member of the IEEE.

Michael Unser (M'89-SM'94-F'99) received the
MS (summa cum laude) and PhD degrees in
electrical engineering in 1981 and 1984, respec-
tively, from the Swiss Federal Institute of
Technology in Lausanne, Switzerland. From
1985 to 1997, he was with the Biomedical
Engineering and Instrumentation Program, Na-
tional Institutes of Health, Bethesda, where he
was heading the Image Processing Group. He is
now a professor and head of the Biomedical
Imaging Group at the Swiss Federal Institute of

Technology in Lausanne, Switzerland. His main research area is
biomedical image processing. He has a strong interest in sampling
theories, multiresolution algorithms, wavelets, and the use of splines for
image processing. He is the author of more than 80 published journal
papers in these areas. Dr. Unser is an associate editor for the IEEE
Transactions on Medical Imaging; he is on the editorial boards of Signal
Processing, the Journal of Visual Communication and Image Repre-
sentation, and Pattern Recognition. He was a former associate editor for
the IEEE Transactions on Image Processing (1992-1995), the IEEE
Signal Processing Letters (1994-1998), and was a member of the
IMDSP Committee of the IEEE Signal Processing Society (1993-1999).
He serves as regular chair for the SPIE conference on wavelet
applications in signal and image processing, which has been held
annually since 1993. He received the Dommer prize for excellence from
the Swiss Federal Institute of Technology in 1981, the research prize of
the Brown-Boveri Corporation (Switzerland) for his thesis in 1984, and
the IEEE Signal Processing Society's 1995 best paper award. In
January, 1999, he was elected fellow of the IEEE with the citation: ªfor
contributions to the theory and practice of splines in signal processing.º

. For further information on this or any computing topic, please
visit our Digital Library at http://computer.org/publications/dlib.

642 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 6, JUNE 2001


