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Exploring the Geometry of One-Dimensional Signals
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The wide availability of inexpensive sensors of all kinds
(inertia, magnetic field, light, temperature, pressure, chemicals
etc.) makes it possible to empower a host of novel applications.
We have shown in a previous paper that, if the field sensed can
be expressed as a finite sum of 2D sinusoids, it is possible to
reconstruct the sampling curve from the 1D sequence of image
samples alone (up to a linear transformation)—without extra
positioning information.

Here, we explore the validity of this result if, instead, we
assume the image to be directional or, as an extreme case, laminar
and we simplify our previous approach to the single sinusoid
fitting of segments of the 1D samples. We obtain predictive results
that quantify the accuracy with which the frequencies found can
be used to estimate the slope of the sampling trajectory. We also
develop a robust algorithm to retrieve the sampling trajectory
and estimate the laminar image that underlies the 1D samples.
We finally demonstrate the validity of our approach on synthetic
and well-chosen real images.

Index Terms—Mobile sensing, frequency estimation, data vi-
sualization, sampling theory, curve estimation.

I. INTRODUCTION

Sensor localization — With the advent of ubiquitous sen-
sors, supporting mobility of various sensors has become an
important topic in many researches. Localizing mobile sensors
traversing through a physical field is a fundamental problem
in this area. Accurate estimates of mobile sensor trajectories
enable more efficient sensing strategies and more convenient
services in various scenarios [1]. Location-dependent tasks,
with application examples ranging from logistic tracking to
reef monitoring or robot navigation, first and foremost require
reliable positioning techniques [2].

If each mobile sensor could always equip a GPS (Global
Positioning System) device, this problem would be straight-
forward because most of the GPS samples would usually
be accurate enough to within a few meters. For applications
that require positions to be monitored continuously, however,
the GPS has practical limitations. First, GPS chips installed
on today’s mobile devices consume a substantial amount
of energy, leading to a significant constraint in battery life
[3], e.g. patch sensor mounted on insects (often limited to
a small size). Second, in many outdoor tracking/monitoring
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applications, objects often do not have a clear line-of-sight to
GPS satellites [4], e.g. systems that track express delivery [5]
and systems for seabed detection [6].

In order to address this issue, mobile device localization
has been a subject of research studies for decades. Among
the solutions investigated, triangulation methods [7], [8] are
the most common. Basically, these techniques estimate mobile
sensor positions based on a number of distance or angle mea-
surements to beacon/anchor nodes. However, these methods
require relatively accurate models that describe how electro-
magnetic signals propagate in space, and dense deployment
of beacon/anchor nodes, which are unable to adapt to various
real environments. Due to these limitations, people further
developed trajectory mapping/matching to produce the most
likely trajectory traversed by the mobile device [9], [1], [10]. In
general, these methods need to pre-compute the signal-strength
map or learn a signal-position mapping of the coverage area.
Then, positions of the mobile device can be estimated by
comparing the signal signature/fingerprints with the learned
measurement map. However, the prior knowledge of the 2D
physical field is usually unavailable in many situations, e.g. ap-
plications of SLAM (simultaneous localization and mapping)
including planet exploration [11] and augmented reality [12].
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(a) Synthesized Image (b) Earth Layer (c) Skeletal Striated Muscle

Fig. 1: Examples of Laminar Images. (a) Varying fast
along u (red vector) and keeping constant along ũ. (b) Soil
geological stratification. (c) Muscle tissue section.

Our contribution — In previous papers, we were able
to demonstrate that the time samples acquired by a non-
positioning sensor (e.g., temperature, pressure, magnetic, etc.)
that moves within a plane, contain significant geometric in-
formation about the trajectory of the sensor [13], [14]. More
precisely, if the field sensed by the sensor is approximated well
by a small sum of 2D sinusoids (and if the trajectory does not
change too fast) we proved that it is possible to reconstruct its
trajectory (up to an affine transformation) from the 1D samples
of that field along that very trajectory—and even the 2D field
itsef.
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Of course, what makes this result so unexpected is that no
positioning system is used at all: it is only the spatial correla-
tion of the field, or its manifestation through the samples along
the sensor trajectory that makes this reconstruction possible.
Even more surprising, the robust reconstruction algorithm that
we have devised has been exceeding our expectations signifi-
cantly: even when the field sensed (typically, a natural image
taken with a megapixel camera) is violating the hypotheses
that make our proof stand, yet a quite reasonable trajectory
is retrieved (see [14, Fig. 13]). Suspecting that this possibility
results from the directionality of the images considered, we
replaced the sinusoidal assumption by an ideal directional
assumption: the laminar image assumption (see Fig.1). The
current paper reports on our findings.

Roughly speaking, the reason why we can connect 2D
geometry with 1D samples is because sampling a 2D sinusoid
along a straight line results in a 1D sinusoid whose frequency
depends on the slope of the line. We found that, if the image
is made of at least three sinusoids, the slope of the trajectory
can be retrieved by finding the “projected” frequencies onto
the 1D samples (up to an arbitrary affine transformation). Of
course, our method relies on a very accurate high-resolution
frequency estimation algorithm described originally in [15].

In contrast with that method, the current paper proposes
to estimate only one sinusoid from the 1D samples: in fact,
we fit the samples with a complex exponential, in practice,
maximizing the discrete-time Fourier transform of the samples.
This means that we do not expect the (complex-valued)
sinusoidal model to fit even accurately the samples. Yet, we
first observe, then demonstrate on a class of laminar images
(typically, whose generator has the maximum of its frequency
spectrum away from 0) that this unique frequency is a very
robust predictor of the slope of the trajectory. This allows
us to show that, under a constant (or varying, but known)
speed hypothesis, the 2D trajectory of the sensor can be
accurately retrieved up to a rotation plus a shift. We verify
this finding in various conditions (real images, very noisy
laminar images, etc). A decisive advantage of fitting a unique
complex exponential is that this problem has an exact, non-
iterative solution (relying on the roots of some polynomial),
which ensures that our observations are not dependent on
inaccuracies of the fitting process—as may be the case of our
previous method.

This technique of extracting and visualizing 2D geometries
from as little as a stream of 1D non-positioning samples could
be very useful in a wide variety of practical applications.
Actually, the laminar (i.e., directional) model is widespread
in the real world. For instance, the earth geological formation
is typically layered into separations of sediments and rocks as
shown in Fig. 1 (b); muscle tissues are also layered due to their
fiber structure as shown in Fig. 1 (c). A direct application is the
underwater sound source localization and tracking (see Fig. 2
(a)). Due to the fast attenuation of radio waves underwater,
people often choose sound waves for positioning. A very
common localization technique is to identify the acoustic
striation patterns of the ocean bed (at sufficient distance from
the source) as shown in Fig. 2 (b) [16]. Usually, it is then
necessary to deploy dense sensor arrays over a sufficiently

large area so as to acquire reliable acoustic intensity images as
shown in Fig. 2 (b). Taking advantage of the laminar structure
of the acoustic data, our algorithm could allow to identify
the distance between the mobile sensor and the source in a
more economic way. As a benefit, the measured area could
be enlarged significantly and the hardware cost of densely
deployed sensor arrays could be largely reduced. Another
direct application is geophysical imaging that aims to map
the geological structure and formation of the subsurface, a
core procedure in many geo-industrial applications, e.g. oil/gas
prospecting and ocean bottom sensing as shown in Fig. 2
(c). By reinterpreting the retrieved 2D geometry (e.g. image
directionality, slopes, etc.) geologically, our method could
possibly be incorporated into the existing seismic imaging
techniques to provide clearer and cleaner subsurface images.

(a) Sound source localization (b) Sound striation patterns (c) Stratum imaging

Fig. 2: A variety of potential applications. (a) Hydroacoustic
positioning. (b) acoustic striation patterns. (c) Seismic imaging
in oil/gas detection.

Finally, we would like to point out that our method is
more than trajectory retrieval, as it also provides a new
visualization tool to interpret arbitrary (non-geometric) 1D
time-series geometrically. By checking the sample-mismatch
level (see Section IV), we can quantitatively measure the
“laminarity” of the underlying (fictitious) image, using only
the available 1D data. In particular, our method may prove
useful to visualize a host of real 1D signals without explicit
2D origin, such as speech, music, biomedical signals etc.
We believe that the retrieved 2D geometric features (such as
trajectory curvature, crossings, length etc.) could be used for
discrimination, classification and recognition.

Structure of the paper — Section II describes the method-
ology of trajectory retrieval using the unique-sinusoid fitting
strategy: we first provide a visual intuition of how the fre-
quencies found relate to the slope of a linear trajectory, and
give examples ranging from synthetic laminar images to real
images, that demonstrate the determinism and consistency of
these frequencies; then we provide a mathematical explanation
to validate the visual observation, which gives rise to the
laminar sampling theorem. We develop the reconstruction
hypotheses and detail the complete method that leads to
an efficient algorithm in Section III. Experimental results
including simulations on synthetic laminar images, and tests
on real images are presented in Section IV. We conclude the
paper by summarizing our main results and evoking possible
extensions of this work (Section V).
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II. THE GEOMETRY IN THE SAMPLES OF A LAMINAR
IMAGE

A. Sampling a Laminar Image Along a Curve

We are given a sequence of 1D (non-positioning) sensor
measurements sn = I

(
r(n/Fs)

)
sampled uniformly (sampling

frequency = Fs) from a 2D laminar image defined by

I(r) = g(uTr), where ‖u‖ = 1 (1)

along some unknown 2D trajectory r(t). The goal is then to
retrieve that trajectory. Fig. 3 provides a visual depiction of
this problem.

At first glance, this objective seems unreasonable because
the problem is seriously ill-posed due to the loss of bidimen-
sional information. However, we know from [14], [17] that the
geometry of the trajectory can be retrieved from these samples
when the image is made of a sum of 2D sinusoids. We will
show that, by just fitting the samples with a single 1D sinusoid,
we can readily retrieve valuable geometric features as well,
when the image is laminar. Moreover, we will demonstrate
that these features are quite consistent along the trajectory, and
very robust in noisy/model mismatch conditions. Our purpose
is to utilize them to achieve trajectory retrieval (up to a rotation
plus a shift).

(a): Laminar image (b): Sampling trajectory
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Fig. 3: Our goal is to retrieve the sampling trajectory (b) of
the mobile sensor and the image (a) from the measured 1D
samples (d) (framed in red box).

B. Visual Intuition

First, we observe that sampling a laminar image along
straight lines of different orientations results in roughly scaled
versions of the same 1D signal (see Fig. 4 (a)). This obser-
vation still holds for real images with clear directionality as
shown in Figs. 4 (b) and (c).

We propose to identify this scale change by computing
the frequency ω of the complex exponential that best fits the
samples of the image I(r) along a straight line parametrized

(a) (b) (c)

Fig. 4: Scaling feature of the 1D laminar samples. (a)
From top to bottom: sampling the synthetic laminar along
different directions gives rise to a precise scaling relationship.
Moreover, this scaling relationship still holds approximately
for many natural images, like (b) and (c).

as r(t) = at + b. Ideally, we want to find ω̂ that minimizes
the power spectrum density-like criterion

J(ω) = inf
A∈C

lim
T→∞

1

T

∫ T/2

−T/2

∣∣I(r(t)
)
−Aejωt

∣∣2 dt. (2)

In practice, though, we will minimize a windowed version
of (2)

J(ω) = inf
A∈C

∫
wT (t)

∣∣I(r(t)
)
−Aejωt

∣∣2 dt, (3)

where wT (t) is a positive function of integral one, that we
will typically choose to be Gaussian

wT (t) =
1√

4πT 2
exp
(
− t2

4T 2

)
. (4)

In practice, we work with discrete samples, that we assume
to be obtained at a frequency Fs that is large enough for the
integrals involved in (2) and (3) to be well approximated by
Riemann summations.

As is well-known, this type of optimization amounts to max-
imizing the absolute value of the windowed Fourier transform
of the samples. Note that both ω̂ and −ω̂ are solutions of the
minimization of (2) and (3) because the 1D samples are real-
valued. We give an algorithm in the supplementary materials,
that finds the solutions of the minimization of a discretization
of (3) exactly.

Of course, we do not pretend that the samples I
(
r(t)

)
can be accurately fitted by a complex exponential. Yet, we
will show that the frequency obtained as a result of this
minimization changes linearly with the scale change; i.e.,
with uTa since I

(
r(t)

)
= g

(
uTat + uTb

)
. This means that,

eventually, the orientation of the line, a, can be retrieved from
this scale change.

Rotational continuity — We design a rotation experiment
to further visualize the relation between the angle of the line
and the frequency retrieved: for every angle of the straight
line segment, we compute the optimal frequency (2) and plot
the relation between these two variables (see Fig. 5). The
estimated 1D frequencies show a very consistent pattern, as
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can be checked by following their visual continuity.
Interestingly, we observe that the frequency pattern obtained

is also very robust to noise. We add strong white noise
(PSNR = 0 dB, see Fig. 6(a)) to the laminar image in
Fig. 5(a): the comparison of the frequency patterns in Fig. 6(b)
vs Fig. 5(b) for the two images shows that they are very
similar.

Moreover, we observe that continuous frequency patterns

(a) (b)

Fig. 5: Rotation test. (a) Laminar image. (b) Graph showing
the frequency of the sinusoid that best fits the samples along
a straight line (“segment”) with varying orientation angles.
Notice that two symmetric solutions ω̂ and −ω̂ are the optimal
solutions to the fitting problem 2 (real-valued samples).

(a) (b)

Fig. 6: Robustness of the designed rotation pattern against
noise. (a) Noisy Laminar image (PSNR = 0 dB). (b) Rotation
pattern of the signal scaling feature. Observe that, the rotation
pattern is very robust to noise.
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(a) (b) (c)

Fig. 7: Examples of success. From top to bottom: test images;
estimated 1D scaling features; denoised 1D scaling features.
From left to right: (a) Wood grain; (b) Needle Leaves; (c)
Building. We can observe that there are deterministic patterns
in the raw 1D scaling features (second row).

are surprisingly widespread in many “less-laminar” real im-
ages. The continuity of the patterns are made even more
obvious if we include the “second best” frequency obtained
in the minimization of (3) (see Fig. 7 and also Fig. 2 of the
supplementary materials).

These visual observations suggest that the “best fitting”
frequency of the samples of an image along a straight line
is related to the slope of this line. Eventually, this indicates
that, by estimating the local frequency of 1D samples, it
is possible to reconstruct the 2D trajectory along which the
(“laminar-like”) image has been sampled. However, frequency
continuity is not sufficient for that purpose. It is also necessary
for the angle-to-frequency pattern to reflect directly the scale
change that results from an orientation change; i.e., that
frequency ∝ sin(angle + const) — Rotational continuity, see
Section II-C for details.

On the other hand, images that are less directional are less
likely to exhibit the rotational continuity that characterizes
“laminar-like” images or even mere continuity of the frequency
pattern (see Fig. 2 in the supplementary materials).

C. Theory

How can the consistency of the patterns observed in the
previous subsection be explained mathematically? We first ex-
plore the theory under the ideal situation where the observation
window is of infinite length, and then extend it to the practical
case of windows of finite length.

Infinite window — Let us denote s(t) = I
(
r(t)

)
and assume

that the limits

Ps = lim
T→∞

1

T

∫ T/2

−T/2

∣∣s(t)∣∣2 dt,

As(ω) = lim
T→∞

1

T

∫ T/2

−T/2
s(t)e−jωtdt

are well-defined: this is in particular the case when s(t) is a
finite sum of complex exponentials. A useful result is that,
when s(t) = cejω0t then Ps = |c|2 and

As(ω) = c1(ω − ω0) =

{
c, if ω = ω0;

0, otherwise.
(5)

which is readily obtained by replacing s(t) = cejω0t in the
expression that defines As(ω).

Theorem 1. Assume that the image I(r) is made of a finite
sum of complex exponentials

I(r) =

K∑
k=1

ck exp(jωT
kr)

where K is finite, ck are complex-valued coefficients and ωk
are real-valued 2D vectors. Denote by s(t) the samples of this
image along the straight line defined by r(t) = ta+b, where
we assume that all the ωT

ka are distinct. Then the minimum
of (2) over all ω is attained by ωT

k0
a where the index k0 is

such that |ck0
| = maxk |ck| (several solutions possible).
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Proof. Minimizing the ideal criterion (2) is equivalent to
maximizing |As(ω)|2 over all values of ω because

lim
T→∞

1

T

∫ T/2

−T/2

∣∣s(t)−Aejωt∣∣2 dt

= S2 − 2Re
{
A∗As(ω)

}
+ |A|2

≥ S2 − |As(ω)|2

for all A ∈ C, with equality if and only if A = As(ω).
Now, when

s(t) = I(r) =

K∑
k=1

ck exp(jωT
kb) exp(jtωT

ka)

As(ω) can be expressed as

As(ω) =

K∑
k=1

lim
T→∞

ck exp(jωT
kb)

T

∫ T/2

−T/2
exp
(
jt(ωT

ka− ω)
)
dt,

=

K∑
k=1

ck exp(jωT
kb)1(ω − ωT

ka).

Since, by assumption, all the ωT
ka are distinct, the above

expression is non-zero only when ω = ωT
ka and, in that case,

|As(ω)| = |ck|. Hence, the maximum of |As(ω)| is attained
when the amplitude |ck| is maximal.

It is important to stress that the minimization of (2) results in
the maximization of a function, |As(ω)|, whose local maxima
arise exactly at the frequencies ωT

ka. This shows that, not only
the global maximum, but also the local maxima follow the
same pattern: the scalar product between an image dependent
feature (2D frequency), and the slope of the sampling line.

Corollary 1. Assume that the image I(r) is laminar; i.e.,
I(r) = g

(
uTr

)
where the g is a univariate “generator”, for

which we assume that |Ag(ω)| has a unique maximum at ω =
ωg , the generator frequency. Denote by s(t) the samples of
this image along the straight line defined by r(t) = ta + b,
then the minimum of (2) over all ω is attained by ω = ωg u

Ta.

Proof. Using that s(t) = g
(
tuTa + uTb

)
, we find

As(ω) = lim
T→∞

1

T

∫ T/2

−T/2
g
(
tuTa + uTb

)
e−jωtdt

= lim
T→∞

ejωu
Tb/uTa

T |uTa|

∫ T |uTa|/2+uTb

−T |uTa|/2+uTb

g(t)e−jωt/u
Tadt

= ejωu
Tb/uTaAg

(
ω/uTa

)
.

Hence, the maximum of |As(ω)| is attained by ω = ±ωg uTa,
where ±ωg is the frequency for which |Ag(ω)| is maximum.

This demonstrates that, if the generator frequency is differ-
ent from 0, then the frequency obtained through the minimiza-
tion of the ideal criterion (2) provides one component, uTa,
of the slope a of the sampling line, up to a multiplicative
constant, which is what was observed in Figs 5, 6 and
real image examples (also see Fig. 1 in the supplementary
materials).

Cor. 1 is actually more useful than Thm. 1 when K is large
because, in that case, the condition on the distinctness of the
frequencies along the slope a is prohibitive: if the 2D frequen-
cies ωk are not pairwise parallel, there are

(
K
2

)
= K(K−1)/2

possible values of a that make ωT
ka = ωT

k′a for some k, k′.
Obviously, this would result in too many “forbidden” slope
directions for the statement of Thm. 1 to be useful.

Instead, when all the frequencies are parallel (laminar
image), the condition reduces to avoiding that a and ωk are
perpendicular, in which case the optimal frequency retrieved
is zero. For all the other frequencies, the conversion to a slope
orientation is feasible.

Finite window — In practice, we have only a finite number of
samples and we have to optimize the criterion (3) instead. In
order to be able to use the optimization results of Thm 1 and
Cor 1, we have to show that the frequency obtained is not “too
different” from the ideal one—which provides the orientation
of the sampling line.

Notation. Assume that the image I(r) is the real part of a
sum of complex exponentials

I(r) = Re
{
c0 exp(jωT

0r)
}

+

+∞∑
k=1

ck exp(jωT
kr) (6)

where ck are complex-valued coefficients (|c0| > |ck|, k ≥ 1)
and ωk are real-valued 2D vectors. Then, for ωT

0a 6= 0, we
denote 

γ0 = 1− sup
k≥1

|ck|
|c0|
≥ 0

∆0 = inf
k≥1

(∣∣∣ωT
ka

ωT
0a
− 1
∣∣∣, ∣∣∣ωT

ka

ωT
0a

+ 1
∣∣∣)

∆1 = inf
k 6=k′≥1

|(ωk − ωk′)
Ta|

|ωT
0a|

which allows us to define the positive function (which may
assume infinite values)

Q(λ) = (1−γ0)

(
1+

e−λ
2∆2

1/4

1− e−3λ2∆2
1/4

+
2e−λ

2∆2
0

1− e−3λ2∆2
0

)
+2e−λ

2

.

Theorem 2. Denote by s(t) the samples of the image (6) along
the straight line r(t) = ta + b. Then, if Q(TωT

0a) < 1, the
minimization of (3) over ω ∈ R results in a frequency ω̂ which
is such that∣∣|ωT

0a| − |ω̂|
∣∣ ≤ √− log(1−Q(TωT

0a))

T
.

Please see Appendix C for the proof. When T is sufficiently
large, this uncertainty reduces to

√
− log γ0/T . This uncer-

tainty is small when, either γ0 is closer to 1 (i.e., the laminar
image is essentially made of a single sinusoid), or when T is
large, which can compensate for small values of γ0 (i.e., when
the laminar image has a richer frequency contents). Also note
that the condition Q(TωT

0a) < 1 automatically rules out the
possibility that γ0 = 0—in which case Q(λ) > 1 for all λ ≥ 0.

Applying this theorem to a laminar image (1), we have
the following results on the sinusoid fitting accuracy (see
Appendix D for the proof):
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Corollary 2. Assume the 2D image frequencies are all along
the direction u, i.e.

ω0 = ωgu,ωk = ωku, k ≥ 1.

We denote by λ̂ the unique value of λ for which Q(λ) = 1.
Then, if |uTa| > λ̂/(ωgT ), minimizing (3) over ω ∈ R results
in a frequency ω̂ that provides the geometric information |uTa|
up to an uncertainty∣∣|uTa| − |ω̂/ωg|

∣∣ ≤ √− log(1−Q(ωgTuTa))

ωgT
. (7)

When |uTa| is not very close to λ̂/(ωgT ), this uncertainty
reduces to

√
− log γ0/(ωgT ).

Although an exact expression of λ̂ mixes in an intricate way
∆0, ∆1 and γ0, a close lower bound is given by:

λ̂ > max
(√
− log γ0,

2
√
− log γ1

∆1
,

√
− log γ2

∆0

)
where

γ1 =
3

√√√√1

2
+

√
1

4
+

(1− γ0)3

27γ3
0

+
3

√√√√1

2
−

√
1

4
+

(1− γ0)3

27γ3
0

,

γ2 =
3

√√√√1

2
+

√
1

4
+

8(1− γ0)3

27γ3
0

+
3

√√√√1

2
−

√
1

4
+

8(1− γ0)3

27γ3
0

.

It should be noted that, our requirement |uTa| > λ̂/(ωgT )
automatically ensures that the generator frequency is different
from 0. Several useful observations can be deduced from
Corollary 2, for the frequency estimation technique to yield
reliable geometric information:
• first, since Q(λ) > 1 − γ0, the sampling line seg-

ment should be long enough so that the uncertainty√
− log γ0/(ωgT ) is controlled (see Section III-B): T can

be short if the laminar image is essentially made of one
sinusoid, but in more complex cases (sinusoids of close
amplitudes), it has to be larger;

• second, even when the segment is long enough, line
directions that are too close to the laminar direction
(perpendicular to u) cannot be retrieved accurately: given
the lower bounds on λ̂, the scalar product |uTa| has to
be larger than

√
− log γ0/(ωgT ), and this lower bound

deteriorates when the image changes too slowly. Simi-
larly, assuming that ∆1 ≈ ∆0, the scalar product |uTa|
has also to be larger than 2

√
− log γ2/(∆1ωgT ), which

shows that the direction estimation deteriorates when the
frequencies of the laminar image are too close to each
other—irrespective of their amplitudes.

Corollary 2 is able to explain the pattern seen in Fig. 5:
assuming that a =

(
cos θ, sin θ

)T
(‖a‖ = 1 for simplicity

here) where θ is the “segment angle”, Corollary 2 predicts
that, when |uTa| > λ̂/(ωgT )—i.e., when θ is away from the
intervals π/2 + nπ + [− arccos(λ̂/(ωgT )), arccos(λ̂/(ωgT ))]
(n integer)—the graph of the optimal frequency in func-
tion of θ is essentially the graph of ωgu

Ta = ωg cos θ;
wheras, when θ is in the intervals π/2 + nπ +
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Fig. 8: Visualization of the results of Corollary 2, in relation
to the rotation experiments of Section II-B.

[− arccos(λ̂/(ωgT )), arccos(λ̂/(ωgT ))] (n integer), the error
is not controlled and, in practice, the optimization algorithm
returns 0 as the best-fit frequency (see Fig. 8).

Clearly, λ̂ is a critical value which characterizes the “con-
ditioning” of a laminar image, independently of the segment
length T and of the main laminar frequency ωg . In practice,
given a laminar image, ωg and λ̂ can be figured out directly
from a rotation experiment: choosing a value of T for which
the sinusoidal pattern is readily observed, ωg is obtained
from the maximum amplitude of that sinusoid, whereas λ̂
is obtained from the discontinuity jump (see zoomed area in
Fig. 8) that characterizes the loss of accuracy of the frequency
estimation when the laminar image is sampled along the
laminar direction.

III. RECONSTRUCTION OF SAMPLING TRAJECTORIES

We have seen (Sections II-B and II-C) that estimating a
single frequency from the samples of a laminar image provides
the slope of the sampling line, up to a multiplicative constant,
ωg , defined in Cor. 1. In order to generalize this result to
arbitrary curves, we need to be able to approximate them
accurately by piecewise-linear segments of fixed length T , and
to calculate this constant. To this end, we essentially need the
trajectory of the sensor to have a small curvature, and that
one of its slopes, at least, corresponds to the largest frequency
achieved when considering all orientation angles.

A. Hypotheses

In details, however, we need more specific hypotheses on
the kinematics of sensor:

1) Velocity-related:
a) the speed of the sensor ‖r′(t)‖ is a constant, which

we practically set to 1 in the rest of the paper;
b) there exist sampling points where the trajectory is

perpendicular to the laminar direction; and these
points are not inflection points (visualization: see
Fig. 5a and 5b in the supplementary materials).

2) Acceleration-related: continuous differentiability of the
curvature at most points on the trajectory or, more accu-
rately, quadratic predictibility of the first order derivative
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r′(t), which provides a rule to choose between several
frequency estimates;

In addition, we also need prior knowledge of κmax (i.e.
the maximum curvature of the trajectory) and of λ̂ for which
Q(λ̂) = 1.

B. Parameter determination

Trajectory retrieval relies on specifying a segment length,
T , and on identifying the proportionality constant ωg involved
in Corollary 2.

Estimation of the generator frequency — The generator
frequency ωg can be estimated by exploiting Hypothesis 1b
which states that there exists a point on the trajectory where the
mobile sensor moves perpendicular to the laminar direction—
hence, parallel to u. As a consequence, this constant can be
obtained according to

ωg = max
t

|ω(t)|
‖r′(t)‖

= max
t
|ω(t)| (8)

since ‖r′(t)‖ = 1 according to Hypothesis 1a.

Determination of the segment length — Considering the
curvature of the trajectory: in a [t0 − T/2, t0 + T/2] neigh-
borhood, the parabolic approximation (second-order Taylor) of
the curve parametrization takes the form

r(t) = r(t0) + (t− t0)r′(t0) +
κ(t0)(t− t0)2

2
r̃′(t0) (9)

where r̃′(t0) is the unit vector perpendicular (counterclock-
wise) to r′(t0), and κ(t0) is the curvature at t0 (from Frenet-
Serret’s formulas). Hence, κmax = maxt0 |κ(t0)| (of which
we have prior knowledge) should be small, to ensure the
closeness between the curve and its closest piecewise-linear
approximation, yet not too small, to prevent the curve direction
from staying parallel to the laminar direction over more than
one segment. More precisely:
• given that the best approximation of (9) by a straight

line r(t) = (t − t0)a + b leads to a = r′(t0) and a
minimal error of |κ(t0)|T 2/16, we typically require that
this error is smaller than 3% of the segment length; i.e.,
κmaxT ≤ 1/2;

• from Corollary 2, in order to guarantee that |uTr′(t0)| and
|uTr′(t0 ± T )| are not altogether ≤ λ̂/(ωgT ), we need
that |uTr′(t0±T )−uTr′(t0)| ≥ λ̂/(ωgT ) when uTr′(t0)
is close to zero; i.e., |κ(t0 ± T/2)| ≥ λ̂/(ωgT

2), which
implies that κmax ≥ λ̂/(ωgT 2).

As a consequence, the segment length T is constrained by√
λ̂

ωgκmax
≤ T ≤ 1

2κmax
. (10)

In principle, any value of T within this “safe” range is
acceptable for our method.

C. Frequency tracking

We find the minimum of (3) for every segment of samples
acquired by the sensor, which provides a sequence of frequen-

cies, indexed by the segment index. However, there are two
issues to consider:

1) both ω and −ω are the optimal solutions of the mini-
mization of (3), since the sensor samples are real-valued;

2) the fitting frequency is less reliable when its absolute
value is small; i.e., when the sampling curve is parallel
to the laminar direction—perpendicular to u.

Hence, finding the frequency of each segment amounts to
selecting correctly either +ω or −ω.

The key idea that makes it possible to track the fitting
frequency of each segment is based on the continuity of the
trajectory slopes (Hypothesis 2). As a result, the scalar product
uTr′(t) is continuous which guarantees that, as long as the
values found are significantly different from zero, we can
unambiguously identify which of ±ω is the correct result.

When the values found get closer to zero, we have to use a
more quantitative prediction principle. Thanks to Hypothesis 2,
we know that the first order derivative r′(t) can be approxi-
mated locally by a quadratic function of t. In other words, the
frequency of a trajectory segment can be predicted by fitting a
quadratic model to its adjacent frequencies (typically six). The
decision between +ω and −ω can then be made by choosing
the sign that results in the smallest prediction error. A further
refinement of this strategy consists in testing the quadratic
prediction with the “second best” fitting frequencies as well,
then choosing the best one of the four frequency candidates.

A causal (towards increasing values of t) implementation of
our frequency tracking approach requires initialization, which
can be performed by trying all choice options (i.e., four
different frequencies) for all the samples used at once in the
prediction formula (typically six samples), and retaining the
choice that minimizes the prediction error.

D. Slope and trajectory

Once the proportionality constant ωg is known, the scalar
product uTr′(t0) of the trajectory segment centered at t = t0
can be retrieved from the frequencies that are tracked in each
curve segment according to the formula uTr′(t) = ω(t)/ωg .
From such scalar products, the complete slope of the trajectory
can be calculated at every point since ‖u‖ = 1, although it
will be necessary to remove a sign ambiguity in this process.
Finally, integrating the slope provides the trajectory of the
sensor.

More precisely, denoting by ũ the unit vector perpendicular
to u in the counterclockwise orientation (i.e., det(u, ũ) = 1),
from uTr′(t) we get ũTr′(t) = ±

√
‖r′(t)‖2 − (uTr′(t))2,

where ‖r′(t)‖ is a known constant. How can the sign of
this expression be determined without ambiguity? For this,
we apply two principles:

1) predictability of the slope (Hypothesis 2), which guar-
antees that, for values of t where the adjacent values of
uTr′(t) are not close to the maximum, ‖r′(t)‖, then the
calculated ũTr′(t) should have the same sign;

2) no inflection points have a slope parallel to u (Hypoth-
esis 1b) which guarantees that when uTr′(t) reaches
its maximum, then the signum of ũTr′(t) changes as
it crosses 0.
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Once uTr′(t) and ũTr′(t) have been calculated, we obtain
r′(t) as

r′(t) = uTr′(t) · u + ũTr′(t) · ũ, (11)

which can then be integrated to yield r(t), up to a shift. Of
course, since u is unknown, this also means that the trajectory
is retrieved up to an arbitrary rotation.

(a): Laminar image (b): Sampling trajectory

Extraction of the two
main frequencies

Tracking of
a single frequency

Calculation of trajectory
slopes and integration

Image reconstruction
by backprojection (c): 2D Sampled Data

(d): 1D Temporal Samples
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Fig. 9: Flowchart of the retrieval algorithm: the 2D trajectory
(b) can be accurately reconstructed (up to a rotation plus a
shift) from the 1D samples (d), whereas the image is retrieved
by “backprojecting” the samples along the laminar direction.

E. Image reconstruction

Together with the sampling trajectory r(t), the 2D laminar
image can also be reconstructed using the 1D samples as
shown in Fig. 10. Mathematically, for every location r on the

median
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Fig. 10: Illustration of the image reconstruction scheme.

curve, we have that

I
(
r + αũ

)
= I
(
r
)
, α ∈ R. (12)

This suggests a simple algorithm whereby, we reconstruct the
pixel values of the image based on the their “backprojection”
onto the trajectory (along the laminar direction ũ). More
precisely, if the backprojection intersects the curve at multiple
points, we choose the median of the values at these points
(more robustness to outliers). Moreover, this process provides
a criterion for quantifying the quality of the trajectory retrieval:
the 1D samples of the laminar image reconstructed using the
above algorithm, along the trajectory retrieved in the previous
subsection should match the 1D samples acquired by the
mobile sensor. This matching accuracy is particularly useful
in the practical cases where the ground-truth trajectory and
image are unknown. A global view of the entire solution is
shown in Fig. 9 and Algorithm. 1.

Algorithm 1: 2D Geometry Retrieval Algorithm

Input: 1D sample sn, prior knowledge of curvature κmax

1: Determine segment length T (10)
2: for l = 1 to number of segments do
3: Fit segment samples with a unique complex exponential

(3)
4: end for
5: Track single frequency via the quadratic predictibility (See

Sec. III-C)
6: Estimate generator frequency ωg (8)
7: Calculate trajectory slopes based on its continuity (See

Sec. III-D)
8: Reconstruct sampling trajectory (11)
9: Reconstruct image based on pixel backprojection onto the

trajectory (12)
Output: Sampling trajectory and image.

IV. EXPERIMENTS

In this section, we demonstrate that the proposed algorithm
is able to retrieve the 2D trajectory and the laminar image only
from a sequence of 1D non-positioning samples of the image
along that trajectory. We first validate the sampling theorem
(i.e. Thm. 2) by simulations on synthetic laminar images
in various conditions. Then, we demonstrate the robustness
and accuracy of our algorithm by applying it to a number
of real directional images. To perform these tests, we have
implemented our algorithm in python on a MacBook Pro
2015 with a 4-core CPU and 16 GB of RAM. The whole
computation time of each individual experiment is within 2
seconds.

A. Evaluation Metrics

In order to quantify the accuracy of our algorithm, we define
two types of metrics:

1) trajectory accuracy: ideally, we would like to evaluate
the smallest possible distance between the ground-truth
curve, parametrized by r0(t), and the reconstructed one,
parametrized by r(t), up to a possible 2D perpendicular
transformation Q (i.e., QQT = Identity) and a 2D
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shift q; more specifically, we would like to evaluate the
absolute error (in pixels)

inf
q∈R2

Q perpendicular

(∫
inft′ ‖r0(t)−Q · r(t′)− q‖2 dt

length of curve

)1/2

However, for the sake of simplicity, we avoid performing
the inft′ by assuming that the two curves have the same
parametrization, which leads to

errtrajectory
def
= inf

q∈R2

Q perpendicular

‖r0(t)−Qr(t)− q‖2√
length of curve

(in pixels)

(13)
which is larger than the “ideal” error expression, but can
be calculated exactly by solving an eigenvalue problem.

2) image accuracy: the matching accuracy between the
samples s(t) = I

(
r(t)

)
of the reconstructed image

I(r) along the reconstructed trajectory and the known
samples s0(t) is quantified by the SNR

errsamples
def
= 20 log10

(
‖s0(t)‖2

‖s(t)− s0(t)‖2

)
(in dB)

(14)

B. Tests with synthetic laminar images

We validate our theoretical results and the trajectory re-
trieval algorithm by conducting the following simulations.
Varying parameters of the laminar image:

1) Dependence of the sinusoid fitting error on the dominant
frequency;

2) Dependence of the sinusoid fitting error on the relative
amplitude separation;

Varying parameters of the sampling trajectory:
1) Dependence of the curve reconstruction error on the

trajectory curvature κmax;
2) Dependence of the curve reconstruction error on the

trajectory length.
Robustness tests in the presence of noise are presented in the
supplementary materials.

In all the experiments in this part, the univariate function g
of the laminar image is made up of 20 sinusoids, an instance
of which is shown in Fig. 1 (a) (1400 × 1400). The other
quantitities involved in Corollary 2 are left unchanged: ∆0 =
0.7, T = 41, ∆1 = 1.2.

Direction estimation — In this series of experiments, we
vary the orientation of a single straight line along which we
sample the laminar image, evaluate empirically the accuracy
of the retrieved slope, which we compare to the prediction
of Corollary 2. We manipulate one parameter of the laminar
image at a time to assess its influence.

1) Main laminar frequency (ωg)
Fig. 11 shows how the sinusoid-fitting error

∣∣|ω̂|−|ωguTa|
∣∣

changes with the scalar product |uTa| (with ‖a‖2 = 1) under
two different values of ωg . To better visualize the spread of
this error, as well as its overall amplitude, 10 realizations (by
randomly shifting the laminar image) are processed for each
value of |uTa|. The corresponding image conditioning λ̂ is:

1.312 (ωg = 0.2) and 6.888 (ωg = 1.2). The other quantities
involved in Corollary 2 are left unchanged: T = 41, ∆0 = 0.7,
∆1 = 1.2 and γ0 = 0.5.

ωg = 0.2 ωg = 1.2

λ̂

ω
g
T

=
0
.1
6

λ̂

ω
g
T

=
0
.1
4

Fig. 11: Validation of Corollary 2: frequency estimation error
in function of the slope of the line (i.e., |uTa|). Left: small
laminar frequency ωg (approximate λ̂/(ωgT ) value is 0.12);
right: large laminar frequency ωg (approximate λ̂/(ωgT ) value
is 0.12).

As can be seen from Fig. 11, within the validity region
specified by Corollary 2 (i.e., |uTa| > λ̂/(ωgT )), the predicted
value is effectively an upper bound of the estimation error, and
this prediction is reasonably close to the actual (worse case)
errors. We also see that the approximate value of λ̂/(ωgT )
that we are proposing is reasonably close to the actual one.

2) Relative amplitude separation (γ0)

γ0 = 0.25 γ0 = 0.67
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Fig. 12: Validation of Corollary 2: frequency estimation error
in function of the slope of the line (i.e., |uTa|). Left: small
relative amplitude difference γ0 (approximate λ̂/(ωgT ) value
is 0.15); right: large relative amplitude difference γ0 (approx-
imate λ̂/(ωgT ) value is 0.08).

Fig. 12 shows how the sinusoid-fitting error
∣∣|ω̂|−|ωguTa|

∣∣
changes with the scalar product |uTa| (with ‖a‖2 = 1) under
two different values of γ0, which controls how dominant
the main laminar frequency ωg is, relative to the others.
To better visualize the spread of this error, as well as its
overall amplitude, 10 realizations (by randomly shifting the
laminar image) are processed for each value of |uTa|. The
corresponding image conditioning λ̂ is: 1.476 (γ0 = 0.25)
and 1.148 (γ0 = 0.67). The other quantitities involved in
Corollary 2 are left unchanged: ωg = 0.2, T = 41, ∆0 = 0.7,
and ∆1 = 1.2.

Again, within the validity region specified by Corollary 2
(i.e., |uTa| > λ̂/(ωgT )), the predicted value is clearly an
upper bound of the estimation error, and this prediction is
reasonably close to the actual (worse case) errors. We also see



10

that the approximate value of λ̂/(ωgT ) that we are proposing
is reasonably close to the actual one.

Trajectory estimation — In this part, we investigate the
accuracy of the trajectory estimation, depending on some of its
characteristics (curvature, length). The laminar image, on the
other hand, is kept unchanged from the previous experiments:
ωg = 0.2, T = 41, ∆0 = 0.7, ∆1 = 1.2, and γ0 = 0.5, which
leads to λ̂ = 0.902.

Here, the sampling trajectory of the mobile sensor is
parametrized by

r0(t) =

(∫ T

0

cos
(
θ(τ)

)
dτ,

∫ T

0

sin
(
θ(τ)

)
dτ

)T

.

where, by construction, θ′(t) is the curvature κ(t) of the
trajectory, given that t is its arclength. We express θ(t) as
an M -periodic Fourier series

θ(t) = Re

{K−1∑
k=0

αk exp
(
j

2πkt

M

)}
where αk are generated randomly. This function changes all
the more slowly as the curve length, M , is larger.

We use both the curve distance errtrajectory and sample-
mismatch level errsamples to evaluate the trajectory reconstruc-
tion accuracy.

3) Effect of the curvature

Fitting Frequency Fitting frequency

recovered trajectory recovered trajectory

Fig. 13: Center row: reconstruction error errtrajectory and
errsamples vs κmax, the maximal curvature of the trajectory.
For each value of κmax, ten realizations with random shifts of
the trajectory are performed. Top row: ground-truth frequency
(red), retrieved frequency (blue). Bottom row: ground-truth
trajectory shown (red), reconstructed trajectory (blue).

By manipulating κmax = maxt |θ′(t)|, we can adjust the
curvature of the sampling trajectory continuously. Fig. 13
shows how the two metrics that we have defined in (13)
and (14) change, when the (maximal) curvature changes. As
can be seen, in all cases the trajectory is recovered accurately
(compared to the size of the image). In addition, the laminar
image can also be reconstructed, and the resulting SNR varies
from 8.42 dB (smallest curvature radius) to 31.24 dB (largest
curvature radius). The relatively low SNR values may be

explained by an accumulation of inaccuracies on both the
image and the trajectory.

Here, the range of “safe” curvature values (see Sec-
tion III-B) is κ ∈ [0.005, 0.009]. Although smaller values
also lead to high accuracy, it should be pointed out that for
curvature smaller than 0.0025, we observe a loss of accuracy,
as predicted in Hypothesis III-B.

4) Effect of the length of the trajectory

Fitting frequency Fitting frequency

recovered trajectory recovered trajectory

Fig. 14: Center row: reconstruction error errtrajectory and
errsamples vs trajectory length. For each curve length, ten
realizations with random shifts of the trajectory are performed.
Top row: ground-truth frequency (red), retrieved frequency
(blue). Bottom row: ground-truth trajectory shown (red), re-
constructed trajectory (blue).

Error accumulation is expected in our problem since what
is estimated directly is essentially the derivative r′(t) of
the trajectory. Intuitively, this drift is very likely to increase
with the trajectory length, in line with our former results
results [14, Theorem 2]). Yet, we observe that, in reality, the
error accumulation rate is small.

Fig. 14 shows how the trajectory reconstruction error
changes with the trajectory length. In all cases, the laminar
image can be reconstructed accurately with a PSNR between
30 dB and 33 dB. In all cases, it is impossible to visually
distinguish between the ground-truth (red) and the retrieved
trajectories (blue).

C. Tests with real images

In this subsection, we show that it is possible to retrieve
trajectories sampled on real images that happen to be approx-
imately laminar. To understand which real images are suitable
for trajectory retrieval, we apply the following procedure

1) Using a rotation experiment with a segment length T that
is as large as possible (e.g., the smallest dimension of the
image), estimate the value of λ̂ and ωg (see Fig. 8), then
check that, according to Hypothesis III-B, λ̂ ≤ 0.5ωgT ;

2) On the same rotation experiment, estimate γ0 from the
uncertainty of the best-fit frequency (7);

3) Choose T according to (10), which sets an upper limit
of 1/(2T ) to the maximal curvature κmax (see Sec-
tion III-B).
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Larger values of T trade a lower trajectory slope uncertainty
(hence, a higher accuracy of the trajectory itself) for a smaller
curvature. In practice, when real images fail to be sufficiently
laminar it is because the only trajectories that they allow to
retrieve with acceptable accuracy, have a curvature that is so
small that the value of T needed is larger than the size of the
image.

ground-truth reconstructed trajectory frequency tracking
+ estimated laminar image

Fig. 15: Reconstruction of trajectories from samples of two
wood images, with maximum curvature κmax = 0.009 (top
row) and κmax = 0.018 (bottom row). The reconstruction
accuracy is: errtrajectory = 8.65 pixels, errsamples = 12.87 dB
(top); errtrajectory = 10.46 pixels, errsamples = 16.27 dB
(bottom). Image size: 768× 1152.

There are important differences between the synthetic, per-
fectly laminar images that we have shown so far, and real,
imperfectly laminar images:

• real images have a strong DC component (mean value)
which means that the best-fit frequency is always zero.
To mitigate this issue, we high-pass filter the 1D samples
above an empirical low cutoff frequency value (typ. 0.01),
hence preventing to estimate lower frequencies;

• real images frequently have too few pattern repetitions,
making it impossible to improve accuracy by increasing
the segment length T .

Typically, for imperfectly laminar real images, the link be-
tween best-fit frequency and the geometry |uTa| is still valid
locally, but the multiplication factor, ωg , may vary (albeit
slowly) along the samples, making it difficult to retrieve a
complete trajectory with high accuracy without this informa-
tion.

We first apply our algorithm to real wood textured images.
As shown in Fig 15, trajectories with small curvature can be
nicely retrieved with a good accuracy, demonstrating the fea-
sibility of inferring geometry from one-dimensional samples.
We use T = 28 so that the “safe” maximum trajectory curva-
ture is κmax = 0.018. We also obtain ωg = 0.243, γ0 = 0.37
and λ̂ = 1.44 < 0.5ωgT = 3.4 through the rotation pattern as
described in Sec. II-C. As expected, a trajectory with smaller
curvature κmax = 0.009 in Fig. 15 (top row), leads to a smaller
reconstruction error than a larger curvature κmax = 0.015
(bottom row).

ground-truth reconstructed trajectory frequency tracking
+ estimated laminar image

Fig. 16: Reconstruction of trajectories from samples of two
parts of wood boarding, with maximum curvature κmax =
0.013 (top row) and κmax = 0.026 (bottom row). The recon-
struction accuracy is: errtrajectory = 9.49 pixels, errsamples =
11.05 dB (top); errtrajectory = 12.79 pixels, errsamples =
12.00 dB (bottom). Image size: 683× 1024.

Real directional images with denser repetitions (i.e. larger
ωg) give rise to trajectory retrievals of more complex geometry
(i.e., larger κmax), as seen in Fig. 16. Here, we use less
samples (T = 18) in each trajectory segment, allowing a larger
curvature κmax = 0.028. From a rotation experiment, we find
ωg = 0.612, γ0 = 0.06 and λ̂ = 3.23 < 0.5ωgT = 5.51. As
expected, a trajectory with smaller curvature κmax = 0.013
(top row), leads to a smaller reconstruction error than a larger
curvature κmax = 0.026 (bottom row), which is slightly above
the “safe” curvature limit.

ground-truth reconstructed trajectory frequency tracking
+ estimated laminar image

Fig. 17: Reconstruction of a trajectory from samples of a
rainbow building, with maximum curvature κmax = 0.008.
The reconstruction accuracy is: errtrajectory = 17.37 pixels,
errsamples = 12.90 dB. Image size: 2688× 2160.

For less laminar images as shown in Figs. 17, and 18, a
smaller ωg implies a smaller curvature for a given segment
length. In Fig. 17 where T = 25, the “safe” maximum
trajectory curvature is 0.02, larger than the one shown here
(κmax = 0.008). From a rotation experiment, we find ωg =
0.368, γ0 = 0.15 and λ̂ = 4.30 < 0.5ωgT = 4.60. In Fig. 18
where T = 20, the “safe” maximum trajectory curvature is
0.025, larger than the one shown here (κmax = 0.009). From
a rotation experiment, we find ωg = 0.502, γ0 = 0.10 and
λ̂ = 4.73 < 0.5ωgT = 5.02. It can be seen that the trajectories
can all be accurately retrieved despite the fact that these images
are not truly laminar.
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Finally, we apply the algorithm to a grass image which is
only approximately laminar (see Fig. 19)—a more challenging
example. We sample this image along the same trajectory at
two different locations: the first one (red curve) significantly
more directional than the second one (blue curve). The differ-
ence in the accuracy of the frequency estimation leads to an
obvious failure in the least directional case.

Notice that the laminar approximation of the image is less
accurate compared to the trajectory reconstruction. This is
mainly because these real images are not strictly laminar:
there are actual pixel variations along the laminar direction
in Figs. 15, 16, 17, and 18, although the hidden directionality
contained within the 1D samples still makes it possible to
retrieve the geometry of both the image and trajectory.

ground-truth reconstructed trajectory frequency tracking
+ estimated laminar image

Fig. 18: Reconstruction of a trajectory from samples of another
rainbow building, with maximum curvature κmax = 0.009.
The reconstruction accuracy is: errtrajectory = 8.47 pixels,
errsamples = 9.14 dB. Image size: 2850× 2960.

Local Rotation Test Local Rotation Test

recovered trajectory recovered trajectory

Fig. 19: Reconstruction of the same trajectory at two locations
in a grass image. In contrast to the reasonably accurate curve
reconstruction on the left, a less directional image patch (right)
results in a less reliable frequency estimation as exemplified
by a local rotation test, hence a failed trajectory reconstruction.

V. DISCUSSION AND FUTURE WORK

The goal of this paper was to demonstrate that the geometry
of the sampling scheme is, at least partially, embedded within

0The figure in Fig. 17 is selected from the photo gallery of photographer
chakmkit: https://www.instagram.com/ chakmkit/; The building in Fig. 18 is
the SLS Brickell Hotel & Residences in Miami (selected on Google Image:
https://www.google.com/imghp?hl=en)

the 1D samples of an image that has some directionality.
Simplifying our earlier approach [14], we have shown how
to access this geometric information by fitting the samples
locally with a single sinusoid, whose frequency is identified
as the “slope” of the sampling trajectory. The visualization
of this identification is made easy by rotation experiments
that demonstrate this rotational continuity, when the image
is sufficiently directional.

Unfortunately, using digital images with a fixed resolution
inherently limits the reach of our demonstration. Yet, we want
to outline that, in real-world applications, a mobile sensor
moves and samples the analog field directly: no interpolation
of gridded data is needed and so, no (grid-dependent) inter-
polation error is corrupting the samples, despite the very high
2D equivalent sampling resolution. Hence, our next focus will
be to design a mobile sensing experiment and demontrate that
the geometry of the trajectory can be inferred from the 1D
samples acquired.

Although the accuracy of the reconstructed trajectories is
good, the sample matching metrics indicates that, even in
controlled (synthetic) cases, the laminar image approximation
is not very accurate. This clearly calls for a higher quality
algorithm than the simple approach proposed in Section III-E,
which would also provide an accurate way to check the
“laminarity” of the 1D samples.

It may seem that the laminar image hypothesis is very
restrictive. However, it is possible to relax it by fitting the
samples with more than one sinusoid (see [14]), or by look-
ing for several local maxima of the single sinusoid fitting
algorithm. These approaches can be made more robust by
acquiring samples from more than one sensor, attached to the
same mobile device.

One of our most speculative goals, is to apply this new type
of 1D to 2D reconstruction as a visualization tool for non-
geometric 1D signals like speech, music, EEG, seismograms
etc. Although these signals are not known to be obtained from
the samples of an image, making as if they were provides a
new geometric representation, in which geometric clues could
be exploited in applications like classification or recognition.

APPENDIX

A. Windowed sinusoidal fitting

Consider a signal s(t) that can be expressed as s(t) =
Re
{
c0ejω0t

}
+s1(t) where s1(t) =

∑K
k=1 ckejωkt, c0 ∈ C and

ω0 > 0. Given a window wT (t) which we choose according
to (4), minimizing the fitting criterion

J(ω) = inf
A∈C

∫
wT (t)

∣∣s(t)−Aejωt
∣∣2dt

over ω ∈ R is equivalent to maximizing |As(ω)|, where

As(ω) =

∫
wT (t)s(t)e−jωtdt.

Lemma 1. Assume that we have found two constants C and
ε that satisfy the inequalities

C ≥ sup
ω∈R

∣∣As1(ω)
∣∣ and ε ≥

∣∣As1(±ω0)
∣∣,
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from which we define

Q =
C + ε

|c0|
+ 2e−T

2ω2
0 .

If Q < 1, then the minimization of J(ω) over ω ∈ R results
in a frequency ω̂ which is such that∣∣|ω̂| − |ω0|

∣∣ ≤ √− log(1−Q)

T︸ ︷︷ ︸
=δω

.

Proof. Without loss of generality, assume that ω0 ≥ 0. The
choice of wT (t) is equivalent to ŵT (ω) = e−T

2ω2

, which
leads to

As(ω) = c0ŵT (ω − ω0) + c∗0ŵT (ω + ω0) +As1(ω).

Obviously, we have that |As(±ω0)| ≤ |As(ω̂)|. Hence,
given a positive number h, if we can prove that, for all ω
that satisfy

∣∣|ω| − ω0

∣∣ > h we have |As(ω)| < |As(±ω0)|,
then this also proves that

∣∣|ω̂| − ω0

∣∣ ≤ h. To this end, we
need the following inequalities that are valid for all ω such
that

∣∣|ω| − ω0

∣∣ > h

• Lower bound of the maximum:
|As(±ω0)| ≥ |c0ŵT (0) + c∗0ŵT (2ω0)| − |As1(±ω0)|

≥ |c0|
(
ŵT (0)− ŵT (2ω0)

)
− ε

≥ |c0|
(
1− ŵT (ω0)

)
− ε

• Upper bound of the non-maximum:
|As(ω)| ≤ |c0|

(
ŵT (ω − ω0) + ŵT (ω + ω0)

)
+ |As1(ω)|

≤ |c0|
(
ŵT (|ω| − ω0) + ŵT (|ω|+ ω0)

)
+ C

≤ |c0|
(
ŵT
(∣∣|ω| − ω0

∣∣)+ ŵT (ω0)
)

+ C
< |c0|

(
ŵT (h) + ŵT (ω0)

)
+ C

Both inequalities are proven using the triangular inequality and
the monotonous decrease of ŵT (ω) when ω ≥ 0. We can thus
state that, if h is chosen such that

|c0|
(
ŵT (h) + ŵT (ω0)

)
+ C = |c0|

(
1− ŵT (ω0)

)
− ε

then, for all ω such that
∣∣|ω| − ω0

∣∣ > h, we have |As(ω)| <
|As(±ω0)|. As argued previously, this ensures that

∣∣|ω̂|−ω0

∣∣ ≤
h, a result that it is straightforward to generalize to ω0 < 0. Of
course, the value of h that satisfies this equation is identical
to δω, given the expression of ŵT (ω).

B. Upper bound of a sum of Gaussians

Lemma 2. We are given an increasing real sequence xk, k ∈
Z. Denoting by ∆ = infk |xk+1−xk| their minimal separation,
we have ∑

k∈Z
e−(x−xk)2

≤ 1 +
e−∆2/4

1− e−3∆2/4
, (15)

for all x ∈ R.

Proof. Denote by f(x) the function on the lhs of (15). Assume
that its maximum is attained at x ∈ [x0, (x0 + x1)/2] then

• when k ≥ 1, we find that xk −x ≥ ∆/2 + (k− 1)∆ and
so, exp

(
−(x− xk)2

)
≤ exp

(
−(k − 1/2)2∆2

)
;

• when k ≤ −1, we find that x − xk ≥ |k|∆ and so,
exp
(
−(x− xk)2

)
≤ exp

(
−k2∆2

)
.

Hence, if the maximum of f(x) is attained at x ∈ [x0, (x0 +
x1)/2] we can bound this maximum by

f(x) ≤ 1+
∑
k≤−1

e−k
2∆2

+
∑
k≥1

e−(k−1/2)2∆2

=
∑
k≥0

e−k
2∆2/4.

For symmetry reasons (consider f(−x)), this bound is also
valid if the maximum of f(x) is attained at x ∈ [(x0 +
x−1)/2, x0] instead. Of course, we would also find the same
bound if the maximum of f(x) were attained in the interval
[(xk + xk−1)/2, (xk + xk+1)/2], which shows its generality.

Using the inequality k2 ≥ 3k − 2 for k ≥ 1 allows to
simplify this infinite summation:∑

k≥0

e−k
2∆2/4 ≤ 1 +

∑
k≥1

e−(3k−2)∆2/4

≤ 1 + e−∆2/4
∑
k≥0

e−3k∆2/4

≤ 1 +
e−∆2/4

1− e−3∆2/4
.

C. Proof of Theorem 2

Proof. Along the straight line defined by r(t) = ta + b, the
samples s(t) = I

(
r(t)

)
take the form

s(t) = Re
{
c0 exp(jωT

0b) exp(jωT
0at)

}︸ ︷︷ ︸
Re{c′0ejω0t}

+

K∑
k=1

ck exp(jωT
kb) exp(jωT

kat)︸ ︷︷ ︸
c′kejωkt︸ ︷︷ ︸

=s1(t)

.

The proof is then a direct application of Lemma 1, for which
we have to find the bounds C and ε. Given the expression of
s1(t) as a sum of complex exponentials, we have to majorize∣∣∣∣+∞∑

k=1

c′ke−T
2(ω−ωk)2

∣∣∣∣ ≤ sup
k≥1
|c′k|

+∞∑
k=1

e−T
2(ω−ωk)2

≤ sup
k≥1
|c′k|
(

1 +
e−T

2∆2
1/4

1− e−3T 2∆2
1/4

)
= C (Lemma 2)

and
∣∣∣∣+∞∑
k=1

c′ke−T
2(±ω0−ωk)2

∣∣∣∣ ≤ sup
k≥1
|c′k|

+∞∑
k=1

e−T
2(±ω0−ωk)2

≤ sup
k≥1
|c′k|

+∞∑
k=1

2e−k
2T 2∆2

0

≤ sup
k≥1
|c′k|

2e−T
2∆2

0

1− e−3T 2∆2
0

= ε

where ∆0 = infk≥1

(
|ωk − ω0|, |ωk + ω0|

)
and ∆1 =

infk 6=k′≥1

∣∣ωk − ωk′ ∣∣. Given that supk≥1 |c′k| = supk≥1 |ck|,
the statement of the Theorem follows from Lemma 1.
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D. Proof of Corollary 2

Proof. This is a direct application of Theorem 2, because we
have infk≥1

(
|(ωk−ω0)Ta|, |(ωk+ω0)Ta|

)
= ∆0ωg|uTa| and

infk 6=k′≥1 |(ωk − ωk′)
Ta| = ∆1ωg|uTa|. Then, the factor Q

involved in Theorem 2 is identical to Q(ωgTu
Ta) here.

We need to find for which values of λ ≥ 0 we have
Q(λ) < 1. We notice that Q(λ) is continuous and decreases
monotonously from +∞ to 1 − γ0 when λ increases from 0
to +∞. Given that, by hypothesis, 1− γ0 < 1, there exists a
unique value λ̂ > 0 for which Q(λ̂) = 1.

A lower bound on λ̂ can be found by analyzing the dominant
terms in the expression Q(λ):

1) (1 − γ0) + 2e−λ̂
2

< 1, which directly leads to λ̂ >√
− log γ0.

2) (1 − γ0)(1 + e−∆2
1λ̂

2/4

1−e−3∆2
1λ̂

2/4
) < 1, which shows that

e−∆2
1λ̂

2/4 < γ1, if we denote by γ1 the unique real
solution of the cubic equation

γ3
1 +

1− γ0

γ0
γ1 − 1 = 0.

Equivalently, we have λ̂ > 2∆−1
1

√
− log γ1 where the

root γ1 is found using Cardano-Tartaglia’s formula [18].
3) (1 − γ0)(1 + 2e−∆2

0λ̂
2

1−e−3∆2
0λ̂

2 ) < 1, which shows that

e−∆2
0λ̂

2

< γ2, if we denote by γ2 the unique real solution
of the cubic equation

γ3
2 +

2(1− γ0)

γ0
γ2 − 1 = 0.

Equivalently, we have λ̂ > ∆−1
0

√
− log γ2 where the

root γ2 is found using Cardano-Tartaglia’s formula.
Hence, we find that λ̂ is lower bounded by the maximum of
these three values, as stated in the Corollary Empirically, this
bound is close to the true value when one of the three terms
(typically, the one derived from γ1) is dominant.
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