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FRI Sensing: Retrieving the Trajectory of a Mobile
Sensor From Its Temporal Samples

Ruiming Guo and Thierry Blu , Fellow, IEEE

Abstract—In this article, contrary to current research trend
which consists of fusing (big) data from many different sensors,
we focus on one-dimensional samples collected by a unique mobile
sensor (e.g., temperature, pressure, magnetic field, etc.), without
explicit positioning information (such as GPS). We demonstrate
that this stream of 1D data contains valuable 2D geometric in-
formation that can be unveiled by adequate processing—using a
high-accuracy Finite Rate of Innovation (FRI) algorithm: “FRI
Sensing”. Our key finding is that, despite the absence of any position
information, the basic sequence of 1D sensor samples makes it
possible to reconstruct the sampling trajectory (up to an affine
transformation), and then the image that represents the physical
field that has been sampled. We state the FRI Sensing sampling
theorem and the hypotheses needed for this trajectory and image
reconstruction to be successful. The proof of our theorem is con-
structive and leads to a very efficient and robust algorithm, which
we validate in various conditions. Moreover, although we essentially
model the images as finite sums of 2D sinusoids, we also observe
that our algorithm works accurately for real textured images.

Index Terms—Mobile sensing, finite rate of innovation, sampling
theory, curve estimation.

I. INTRODUCTION

THE wide availability of cheap sensors of various kinds
(inertia, magnetic field, light, temperature, pressure, chem-

icals etc.) makes it possible to develop new applications. An
important problem is sensor data fusion. For example, it is nec-
essary to combine temperature, humidity, atmospheric pressure
and wind velocity information together to predict future weather
trends [1], [2], [3].

In practical applications, people usually obtain the position in-
formation through GPS (Global Position System) using multilat-
eration techniques. However, GPS positioning is not feasible and
available in many scenarios due to environmental limitations.
For example, in outdoor applications, complex terrains like
hills, trees, or caves may block the GPS signal and weaken the
positioning signal strength [4] as shown in Figs. 1(b) and 1(d). In
submarine detection, people often choose sound waves instead
of radio waves because they are significantly less attenuated
underwater [5] as shown in Fig. 1(c). Besides, installing a GPS
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receiver on each sensor device is cost and energy prohibitive
in many applications. For example, people often need to install
bulky tags onto the marked animals [6] which run out of energy
quickly in wild animal tracking in Fig. 1(a). Moreover, the patch
sensors mounted on the insects and birds are of small size in order
to reduce the influence on their normal activities which further
limits the battery capability of GPS devices.

The field of mobile sensor localization has been studied in
many research communities. Triangulation methods [7], [8] are
one of the most popular. These methods estimate the mobile
sensor positions by measuring angles or distances to a number
of beacon nodes, utilizing models that characterize how acoustic
or or radio signals propagate in space. However, these methods
require dense deployment of sensor nodes, which is unavailable
in many applications, such as undersea detection in Fig. 1(c) and
remote monitoring in Fig. 2(f). An alternative solution is trajec-
tory mapping/matching which requires prior measurement of a
signal-strength map of the coverage area [9], [10], [11]. Then,
by matching the signal-strength signature/fingerprints within
this map, the position of the mobile sensor can be retrieved.
However, the prior knowledge of the 2D physical field is required
which is infeasible in a number of scenarios. For example, in
SLAM (Simultaneous Localization And Mapping) applications,
like planetary navigation [12] and mine exploration [13], the
unknown physical environment makes it impossible to pre-
construct this signal-strength map.

In this article, we demonstrate that the temporal samples
of a (non-positioning) sensor can be processed to reveal 2D
positioning information. This processing is based on the local
approximation of these data as sums of sinusoids, which can
be very accurately estimated using a Finite Rate of Innovation
algorithm (FRI)—“FRI Sensing” [14]. The methods that we use
(typ., FRI) are reminiscent of the ones used for room shape
identification [15], [16] or more generally source localization
from physical fields that satisfy potential/diffusion/propagation
equations [17]. An essential difference in the current article is
that our data do not contain any obvious geometric clues.1

For simplicity, we will limit ourselves to the 2D case in the ar-
ticle. Specifically, our setting is as follows: A (non-positioning)
mobile sensor samples a 2D physical field along some (un-
known) trajectory. After the sampling process, we obtain the
1D temporal sensor data and what we want to achieve is the
reconstruction of the sampling curve (trajectory) and then, the

1All figures in Fig. 1 and Fig. 2 are randomly selected on Google Image:
https://www.google.com/imghp?hl=en
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Fig. 1. Examples when GPS is not available. (a) Electrical power limitation (animal tracking). (b) Underground positioning. (c) Underwater positioning.
(d) Indoor positioning.

Fig. 2. A wide range of potential applications. (a) Space exploration car on Mars. (b) Fixed track indoor logistics robots. (c) Underwater detection robots in
deep sea exploration. (d) Underground detection car in geological exploration. (e) Positioning and mapping in self-driving. (f) Remote environmental monitoring
in deep forest.

2D physical field. At first glance, this program seems impossible
because of the absence of multidimensional information (e.g. 2D
location, velocity, etc.). However, we show that there is valuable
and adequate spatial information (2D) hidden within the 1D
sensor data.

Of course, for our program to be successful, both the trajectory
of the sensor and the field sampled should satisfy hypotheses.
We first start from the simplest case, then relax the constraints to
fit the real applications more accurately. At first, we investigate
the hypotheses when both the trajectory of the sensor and the
sampling physical field satisfy exact sparsity conditions: the
sampling trajectory is piecewise linear and the physical field
is a finite sum of spatial sinusoids (global stationarity). We
then relax the hypotheses on the sampling trajectory to allow
some curvature and explore the corresponding reconstruction
hypotheses. Moreover, even if we essentially model the image
as a sum of 2D sinusoids, we still find out that our algorithm is
working accurately for real textured images (see Section V).

Extracting geometric cues from a stream of 1D temporal
samples is likely to be very useful, either by directly provid-
ing positioning information, or by increasing the accuracy of

other positioning methods. A potential application is SLAM
(Simultaneous Localization And Mapping) in robotic naviga-
tion [18], [19], [20], e.g. in Figs. 2(b), 2(d) and 2(f). People
need to construct or update a map of an unknown environment
while simultaneously keeping track of an agent’s location within
it. However, in many application scenarios, like autonomous
underwater vehicles in Fig. 2(c) and planetary rovers Fig. 2(a),
GPS positioning is not available due to lack of penetration
of the GPS signal. Using FRI Sensing, we could tackle the
SLAM problem by collecting sensor data sampled from, e.g. the
magnetic field, and then reconstruct the mobile sensor trajectory.
Moreover, using sensors of different fields is likely to provide a
much more accurate and robust reconstruction under available
resources.

As a completely different application, the proposed method
could possibly be applied to visualize arbitrary 1D signals as
if they were the samples of genuine 2D images along trajecto-
ries [21], [22]; i.e., not only limited to positioning. Speech, text
signals, but also many others could be considered eventually,
allowing to identify visual clues and features (geometry, texture,
etc) in non-visual signals, which do not necessarily have the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on October 09,2020 at 00:54:03 UTC from IEEE Xplore.  Restrictions apply. 



GUO AND BLU: FRI SENSING: RETRIEVING THE TRAJECTORY OF A MOBILE SENSOR FROM ITS TEMPORAL SAMPLES 5535

Fig. 3. “FRI sensing” is about reconstructing the 2D physical field (a) and
the sampling trajectory (b) of the mobile sensor from the measured 1D time
series (e).

corresponding 2D ground truth images. We speculate that this
new visualization tool would reveal meaningful 2D geometries
in non-geometric 1D signals, which could be exploited, e.g., for
signal analysis and classification.

Reconstructing 2D image and trajectory from 1D temporal
samples requires solving a number of problems:
� The first challenge is in identifying the hypotheses under

which it’s possible to retrieve the sampling trajectory
and image. Since the problem is severely ill-posed in
the absence of 2D position information, achieving the
reconstruction from as little as 1D temporal samples re-
quires specific hypotheses on both the sampling image
and trajectory. That is to say, we need a general sampling
theorem to characterize the reconstruction hypotheses on
both the image and trajectory.

� The second challenge is, given certain error tolerance how
to accurately retrieve the trajectory position information
hidden within the 1D temporal samples.

� The third difficulty falls on the image reconstruction from
1D samples. We may convert this problem into image
restoration once we retrieve the sample position through
the reconstructed sampling trajectory.

II. FRI SENSING PRINCIPLES

The problem: given a 1D signal sampled from a 2D physical
field along some unknown trajectory, the goal is to retrieve the
2D trajectory and the 2D physical field. Fig. 3 gives a visual
depiction of this problem.

Fig. 4. Key observation: Sampling a 2D sinusoidal image along a straight line
gives rise to a 1D sinusoidal signal. (a) Sampling a 2D sinusoidal image (K = 1)
along three different straight lines; (b) The resulting 1D temporal signal along
these three straight lines. Obviously, the 1D frequencies of the resulting time
series are closely related to the slopes of the sampling trajectories.

At first glance, it looks like this task is impossible since the
problem is seriously ill-posed due to high-dimensional informa-
tion loss. It seems that there is very little positioning information
contained within the acquired 1D temporal samples. However,
by constructing appropriate hypotheses, we show that there is
rich and valuable high-dimensional information hidden within
the 1D temporal samples which could be utilized to recover the
2D image and trajectory.

A. Sampling a 2D Field Along a Curve

Let I(r), r = [x, y]T denote the image that represents the 2D
physical field and r(t) = [x(t), y(t)]T denote the 2D trajectory,
where t is time.

Observation: sampling a 2D sinusoidal image

I(r) =

K∑
k=1

cke
juT

k r (1)

along a straight line r(t) = at+ b gives rise to a 1D sinusoidal
signal (see Figs. 4(a) and 4(b)):

s(t)
def
= I(r(t)) =

K∑
k=1

c̃ke
jωkt

where c̃k = cke
juT

k b and ωk = uT
k a. Note that the frequencies

of the 1D samples are the projection of the 2D sinusoidal vectors
along the slope of the trajectory.

B. An Exact Sampling Theorem

Suppose the image is sinusoidal with K 2D sinusoids as
defined in (1) and the trajectory is continuous,

altl + bl = al+1tl + bl+1, l = 1, 2, · · ·L
and piecewise-linear consisting of L stitched straight-line seg-
ments

r(t) = alt+ bl, t ∈ [tl−1, tl], l = 1, 2, · · ·L (2)

as shown in Fig. 5. In addition, define the 2D image frequency
matrix U ∈ R2×K, K � 2, and trajectory slope matrix A ∈
R2×L,L � 2, as:U = [u1,u2 · · ·uK ],A = [a1,a2 · · · aL]. We
require that both U and A are of rank 2; i.e., full-rank.
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Fig. 5. Exact sampling theorem: (a) Sampling a 2D sinusoidal image (K = 1)
along a piecewise-linear trajectory; (b) The resulting 1D piecewise sinusoidal
signal along a piecewise linear trajectory. Note that we use K = 1 only for
visualization purposes (K ≥ 2 is necessary in order to retrieve 2D trajectories).

Let ω denote the sampling rate and T = 2π/ω the sampling
step. It is straightforward to see that r′(t) = al, t ∈ [tl−1, tl]
represents the velocity of the mobile sensor. Here, we only
require uniform speed within line segments, but do not require
this speed to be the same between segments. Consequently, the
speed can vary arbitrarily between segments. Assume that each
segment of the piecewise-linear trajectory is long enough so that

Sl ≥ 2K ‖al‖T, ∀l = 1 . . . L (3)

where Sl, l ∈ {1 . . . L} is the length of the l-th segment.

Sl = ‖al‖(tl − tl−1)

Since the number Nl of samples of the l-th segment of the
piecewise-linear trajectory is given by

Nl =
Sl

‖al‖T , Nl ∈ Z

(3) ensures that Nl is larger than 2K. Denoting by ω = 2π/T
the sampling rate, the acquired 1D temporal samples can be
expressed as

sl,n =

K∑
k=1

c̃k,le
j2πn

ωk,l
ω , n = 0 . . . Nl − 1, l = 1 . . . L (4)

where c̃k,l = cke
juT

k bl andωk,l = uT
k al. Again, the frequencies

ωk,l of the 1D samples are a projection of the 2D sinusoidal
vectors along the velocity. Additionally, we assume that the
known sampling rate ω is sufficiently large:

ω � 2 max
l=1,...,L

‖al‖ max
k=1,...,K

‖uk‖ , (5)

a condition that is not very restrictive, given that actual sensors
can easily achieve sampling rates that are much higher than
the equivalent spatial frequencies involved (for mobile sensors
moving at speeds of a few m/s).

Under these hypotheses, we have the following sampling
theorem:

Theorem 1 (Exact FRI Sensing): Given uniform 1D temporal
samples along an unknown piecewise-linear trajectory, the 2D
image and trajectory can be exactly reconstructed up to a 2D
affine transformation (shift plus linear distortion).

Proof: We present the proof of this theorem by constructing
the solution to the problem.

Assume at first that the number of samples per straight-lineNl

and the number of sinusoids K are known. Then, the portion of
1D temporal signal in each segment is a sum of K 1D sinusoids,
as shown in (4). Notice that, the frequenciesωk,l of the 1D signal
involve the 2D frequencies uk and the slopes of the piecewise-
linear trajectory al.

Given the 1D temporal samples sl,n, we can exactly retrieve
the frequencies {ωk,l/ω}k=1...K of each segment using Prony’s
method [23], provided that

−1

2
≤ ωk,l

ω
<

1

2
,

which results from (5).
Given the frequencies ωl,k, we can then retrieve the ampli-

tudes c̃l,k by solving the linear system of equations (4).
Then, we order the estimated 1D segment frequencies as a

K × L matrix Ω.

Ω =

⎡
⎢⎢⎢⎢⎣

ω1,1 ω1,2 · · · ω1,L

ω2,1 ω2,2 · · · ω2,L

...
...

. . .
...

ωK,1 ωK,2 · · · ωK,L

⎤
⎥⎥⎥⎥⎦

=
[
u1,u2 · · ·uK

]
︸ ︷︷ ︸

2×K matrix U

T ·
[
a1,a2 · · · aL

]
︸ ︷︷ ︸

2×L matrix A

(6)

Obviously, the matrix Ω is at most of rank 2, as the product
of two rank-2 matrices. Moreover, it cannot be of lower rank
because, otherwise, A = (UUT )−1UΩ would not be rank-2
(note that, by hypothesis, both A and U are rank-2).

This rank property captures precisely the nature of the redun-
dancy that exists in the stream of estimated 1D frequencies, and
suggests a simple way, through matrix factorization, to retrieve
the trajectory slopes and image frequencies. Using, e.g., singular
value decomposition, it is possible to expressΩ asUT

0 A0 where
A0 and the unitary2 matrix U0 are of dimension 2× L and
2×K, respectively. This factorization is not unique, however it
can easily be shown that all its possible solutions are given by

U
′
= Q−TU0, A

′
= QA0

where Q is an arbitrary invertible matrix. To see this, it suffices
to equate the factorization U′TA′ with U0

TA0. Multiplying
left by U0 leads to A0 = U0U

′TA′, where the 2× 2 matrix
U0U

′T is invertible (since A0 is rank-2). Denoting by Q its
inverse, we find A

′
= QA0, and then U

′
= Q−TU0.

We have shown that, once the 1D frequencies identified
in each segment are correctly paired between segments, the
piecewise-linear trajectory solution to our problem is unique,
up to an affine transformation. What if different pairings were
valid? This is indeed possible, but we claim that this “almost”
never happens, when considering all sets of {uk,ak}k=1...K .
More specifically, consider an arbitrary rank-2 matrix with

2i.e., U0U
T
0 = Id.
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columns [ω1,ω2, . . . ,ωL], where ωj = [ωi,j ]1≤i≤K , and de-

note by
πj

ωj = [ωπj(i),j ]1≤i≤K the vector ωj with πj-permuted
coordinates. We claim that, unless the permutations (“pairings”)

πj are all identity, the matrix [
π1
ωj ,

π2
ωj , . . . ,

πL−1
ωL−1,ωL] is “al-

most” always of rank ≥ 3. Sketch of a proof:
1) it is sufficient to consider the case of three vectors only;
2) all possible rank-2 matrices are of the form

[ω1,ω2, a1ω1 + a2ω2], where (ω1,ω2, a1, a2) ∈
R2K+2;

3) for any two permutations π1 and π2 that are not
both identity, the set of elements of R2K+2 for which
[ω1,

π1
ω1,ω2,

π2
ω2] is of rank-2 has zero Lebesgue measure;

4) as a consequence, the set of coefficients a1, a2 for which
a1ω1 + a2ω2 = a′1

π1
ω1 + a′2

π2
ω2 is “almost” always of di-

mension equal to one or zero; this dimension is strictly
smaller than the dimension two of span{ω1,ω2}, which

shows that [
π1
ω1,

π2
ω2, a1ω1 + a2ω2] is “almost” always of

rank-3;
5) cycling over the finite number of all (non-both identity)

permutations shows that, even if [ω1,ω2,ω3] is of rank-2,

[
π1
ω1,

π2
ω2,ω3] is “almost” never of rank-2.

Hence, we can retrieve the 2D frequencies, {uk}k=1...K , of
the image and the direction vectors, {al}l=1...L, of the trajec-
tory, up to a linear transformation Q. Since the trajectory is
continuous, the parameters bl in (2) can be retrieved up to a
unique shift; i.e., the trajectory can be retrieved up to an affine
transformation. Eventually, the coefficients ck of the individual
2D frequency components result from ck = c̃k,le

−juT
k bl , which

allows to reconstruct the image.
Now, how to determine the number K of sinusoids, the

signal segmentation {Nl}l=1...L and the pairing of frequen-
cies {ωk,l}l=1...,L

k=1...K
? Our solution builds upon the property that

2K + 1 uniform samples of a sum of K exponentials can be
used to build a (K + 1)× (K + 1) Toeplitz matrix whose rank
is exactly K [23]:
� For each K, we can scan all consecutive groups of 2K + 1

samples and check whether some of them build a rank-K
matrix: the smallest value of K for which this happens is
going to be our solution.

� When a group of 2K + 1 consecutive samples does not
result in a rank-K matrix, we know that this is because
these samples belong to two distinct line segments: this
allows to determine both the number of segments, and their
start/end samples.

� Pairing correctly the 1D frequencies {ωk,l}l=1...,L
k=1...K

can be

achieved by trying all possible orderings of the columns of
the matrix Ω in (6) and retaining only the one for which Ω
is of rank 2.

A global view of the entire solution is shown in Fig. 6. �
As shown before, the trajectory reconstruction problem can

be solved only up to an affine transformation (6 parameters).
One possible way to eliminate this indeterminacy is to use extra
information that would allow to retrieve these 6 parameters. For
example, the ground-truth positions of three points (e.g., the

Fig. 6. Flowchart of the solution construction in the FRI Sensing theorem: the
2D sinusoidal image and piecewise linear trajectory can be exactly reconstructed
(up to an affine transformation).

Fig. 7. Linear approximation of non-straight line sampling: (a) Piecewise
linear approximation (blue) of the curved trajectory (red). (b) The resulting
approximate 1D time series (red: ground truth, blue: approximate).

starting and end points, and an intermediate one) of the trajectory
would be sufficient.

C. Generalization to Real Trajectories

Our exact sampling theorem only applies to piecewise-linear
trajectories, while the actual situation is richer and more diverse.
Hence, we need to limit the diversity by imposing hypotheses on
the trajectory and the 2D physical field represented as an image.

We will see that under specific hypotheses, it is still possible
to apply the exact sampling framework and achieve trajectory
reconstruction with a reasonable accuracy. A typical assump-
tion is that the trajectory is twice differentiable but sufficiently
straight locally (see Fig. 7) so that we can approximate it as a
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piecewise-linear trajectory, so as to be able to apply Thm. 1 and
the associated algorithm.

Obviously, the hypotheses on the trajectory and the image
should be closely interrelated: for example, if the trajectory
is more rugged, then the image should change faster in space
(because the line segments should be shorter). Developing this
observation, we list the following main ingredients that are likely
to influence the reconstruction accuracy:

1) Trajectory-related:
a) Acceleration of the mobile sensor: maxt ‖r′′(t)‖ ≤

γ0.
At fixed sensor speed (‖r′(t)‖ = constant), the larger
the acceleration, the smaller the radius of curvature
of the trajectory as a result of the equality κ(t) =
‖r′′(t)‖/‖r′(t)‖2 (see Appendix A). As a result, the
image should change faster due to shortened trajectory
segments.

b) Velocity of the mobile sensor: mint ‖r′(t)‖ ≥ v0.
At fixed sampling rate, the slower the mobile sen-
sor, the smaller the trajectory segment. Then, the 2D
image sinusoids should change faster within shorter
trajectory segments, in order for their frequencies to
be sufficiently different.

2) Image-related
a) Spatial variations of the image

At fixed trajectory, faster image variations allow
shorter line segments, hence closer curve approxima-
tion.

b) Spatial frequency contents
If the 2D image sinusoids are close to each other, then
they behave essentially like only one sinusoid which
is insufficient to retrieve the trajectory geometries (we
require K ≥ 2). Besides, the 2D sinusoids to retrieve
should have large amplitude to guarantee the estima-
tion robustness and accuracy. To quantify this concept,
we define the “conditioning” of the image as

cond{I} def
= min

k1,k2

1

λk1,k2

√
1

|ck1
|2 +

1

|ck2
|2 , (7)

whereλk1,k2
is the smallest singular value of the square

matrix [uk1
,uk2

], k1, k2 ∈ {1 . . .K} (see Appendix B
for a justification).

3) Mobile sensor-related
a) Measurement accuracy σnoise.

The noise level that corrupts the samples of the mo-
bile sensor, which should be easily obtained from the
sensor hardware configuration.

b) Sampling step T .
If the sampling step is too large, we may not have
enough samples within a trajectory segment. As a
result, we may have to increase the length of every
trajectory segment and, as a consequence, the recon-
struction error will increase.

Now, it is necessary to quantify the interplay between all
these ingredients, and how much each of them influences the

final measure that we are interested in: the approximation error
between our trajectory estimate and the ground-truth trajectory.
Here, for simplification purposes, we are going to deal with the
trajectory estimation as if the errors were caused by random fluc-
tuations, despite the fact that the most significant contribution
to the error is caused by the inaccuracy of the piecewise-linear
approximation (which is deterministic). This is the reason why,
the following theorem is stated as a statistical result.

Theorem 2 (Aproximate FRI Sensing): Given a sequence of
uniform 1D time samples (sampling step T ) of a 2D sinusoidal
image (1) along an unknown curved trajectory r(t), a piecewise
linear approximation of the trajectory (L segments, with N
samples per segment) can be reconstructed up to an an affine
transformation with an error of standard deviation

std{r(t)} ≤ 2
√
3Lσ√
N

cond{I}+ γ0N
2T 2

8
,

σ
def
=

√
E {|I|2} ‖U‖2F N4T 4γ2

0/64 + σ2
noise (8)

Here E {|I|2} = ∑
k |ck|2 is the average power of the image

I(r), σ2
noise is the variance of the measurement noise, ‖U‖2F =∑K

k=1 ‖uk‖2, cond{I} is defined by (7), and γ0 is an upper
bound on the second order derivative of r(t).

The proof (see Appendix B) relies on the use of an efficient
frequency estimation algorithm (able to reach Cramér-Rao lower
bounds [24]) in the algorithmic framework of Fig. 6.

One of the hidden conditions for this result to hold is that
the 1D frequencies identified in each segment are sufficiently
distinct, a condition which is favored by ensuring that v0 =
mint ‖r′(t)‖ is not too small.

Obviously, in a practical setting, this standard deviation be-
comes a quantitative predictor of the error between the ground-
truth curve and the piecewise-linear approximation found by
our algorithm. There is a difference, however, between the
hypotheses involved in Thm. 2, which assume the knowledge
of the spatial frequencies uk of the image, and the conditions
of the algorithm that we are developing in this article, which
do not: as we have pointed out, finding both the trajectory and
the parameters of the image can be done only up to an affine
transformation, which is the reason why we define a specific
affine-invariant approximation error (10) in the validation part of
this article (Section IV)—different from the standard deviation
above. Yet, as we will see in Section IV, (8) is a reasonably fair
predictor of the accuracy of our algorithm.

A few observations: first, the smaller the sampling step T , the
more accurate the final trajectory reconstruction; second, keep-
ing the same image power, the “better conditioned” the image is
(i.e., the more “different” its frequencies are), the more accurate
the reconstruction; next, we can clearly see that a smaller accel-
eration gives rise to a lower reconstruction uncertainty, which is
consistent with the previous analysis; last, possible outliers in
the estimated 1D frequencies (frequent in natural images) may
be ruled out based on the frequency continuity implied by our
bounded acceleration assumption.
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III. ALGORITHMIC SETTING

Throughout the process, frequency estimation and frequency
pairing are the two most important parts which highly influence
the final reconstruction quality and take up most of the runtime.
Therefore, accurate, robust and fast algorithms for estimating
and pairing frequencies are essential to the accurate reconstruc-
tion of the 2D trajectory and the 2D sinusoidal image. Here, we
refer to frequency estimation as FRI approximation [23] because
of the relation between this problem and that of estimating the
“innovations” (i.e., sparse activation times) of 1D signals.

A. FRI Approximation

Approximating a 1D signal as a sum of K sinusoids is what
enables the entire FRI sensing framework. It directly determines
the performance of the reconstruction algorithm and requires
high precision and strong robustness.

High-resolution frequency estimation is a classical signal
processing problem that has been thoroughly studied in the
1970–1990s [25], [26], [27], [28]. The algorithms developed to
that purpose can, in principle, be used in our context. However,
even if they are sufficiently accurate to retrieve frequencies of
sinusoids in noise, they are not robust enough to approximate
non-sinusoidal signals as a sum of sinusoids. Fortunately, we
have recently developed a very accurate, fast and robust algo-
rithm for doing just that [29], [30].

1) Estimation of Sinusoids: We introduce our frequency es-
timation algorithm which is based on model fitting [29]. The key
idea is to consider that any K-sinusoidal approximation that is
close enough (within a “noise” margin) to the measured samples
is a valid solution to our problem. More specifically, we consider
the FRI recovery to be successful as soon as the criterion

MSErec ≤ σ2
noise (9)

is satisfied, where MSErec is the mean square error (MSE)
between the reconstructed samples and the 1D mobile sensor
samples, sl,n. In consistence with Section II-C, σ2

noise denotes
the input MSE that represents the “noise” (or, more generally,
“mismatch”) level.

The second idea is that the DFT of a sum of K sinusoids
can be expressed as fraction of two polynomials in e−j2πn/N

(N = number of samples, n = frequency index): a numerator
polynomial PK−1 of degree K − 1 and a denominator QK of
degree K. Due to the unitarity of the DFT (Parseval’s identity),
we can use this ratio structure as a model and perform model-
fitting on the DFT of the signal samples.

min
QK−1,PK

N−1∑
n=0

∣∣∣∣ŝl,n − PK−1(e−j2πn/N )

QK(e−j2πn/N )

∣∣∣∣2

where ŝl,n denotes the Discrete Fourier Transform of the signal
sl,n. In fact, the polynomial QK is the annihilation filter in [23]
whose zeros uniquely define the frequencies ωk,l of the 1D
signal.

Solving the following quadratic minimization problem for
Qi

K

min
Q

(i)
K ,P

(i)
K−1

N−1∑
n=0

∣∣∣∣Q(i)
K (e−j2πn/N )ŝl,n − P

(i)
K−1(e

−j2πn/N )

Q
(i−1)
K (e−j2πn/N )

∣∣∣∣2
provides a collection of candidates forQK , when i = 1 . . . imax,
out of which we choose the one for which the MSE is the
smallest. Changing initialization of these iterations provides
even more candidates. Typically, two random initializations and
imax = 20 are sufficient to obtain a solution that is within the
expected noise margin. Please refer to [29], [31] for more details.

2) Model Order: Our postulate is that any sum of K sinu-
soids that fits our samples within a given noise margin is a valid
solution. Hence, applying a parsimony principle, it is possible to
determine that the “best” model order is the smallest value of K
for which this sum of sinusoids is a valid solution. An efficient
implementation of this principle uses a dichotomous approach
that is described in [31].

3) Consistency of the Frequency Estimation Results: Plots
(see Fig. 8) of the 1D frequencies estimated from the 1D samples
of an image along the trajectory of a mobile sensor show the
intrinsic consistency of the 2D frequencies uk of the physical
field.

As expected, when the image is a sum of pure 2D sinusoids,
the associated 1D frequencies are “consistent” across all the
segments of the trajectory, as can be seen in Fig. 8 (a): visually,
each individual frequency can be followed by continuity across
trajectory segments. But even if the image is not so simple,
there is still some consistency between consecutive segments:
see Figs. 8 (b) and (c). This correlation detected by our algorithm
provides the possibility for the final 2D trajectory and image
reconstruction, when enough distinct frequencies can be paired
between segments (i.e., in Fig. 8 (b), but not in Fig. 8 (c)).

B. Frequency Pairing

1) Amplitude Criterion: Although we did not mention it
earlier, pairing the frequencies found in different segments is not
straightforward. There are several clues that could help identify
which frequency {ωk,l}k=1...K in segment l corresponds to
which frequency {ωk,l′ }k=1...K in segment l′. One available
clue is that, since the amplitude c̃k,l of the sinusoid ωl,k is
attached to the frequency uk, its modulus should be invariant
across segments. This provides a simple criterion for frequency
pairing: find all the frequencies across segments with the same
amplitude modulus.

However, due to the approximation error, the amplitude es-
timation is not robust enough under noise effects and hence,
cannot be used alone for pairing purposes. This is an intrinsic
limitation that can be predicted by computing the Cramér-Rao
bounds of the parametric estimation problem: the uncertainty
over the amplitudes is significantly larger than the uncertainty
over the frequencies [23].

2) Rank Criterion: Another clue is that, when the 1D fre-
quencies have been paired accurately, the frequency matrix Ω
should be of rank-2—or in the situation of inaccuracies, can
be approximated accurately by a rank-2 matrix. This provides
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Fig. 8. Estimated 1D frequencies (bottom plot, normalized to [−0.5, 0.5]) from an image made of (top): (a) a sum of ten 2D sinusoids; (b) high-frequency natural
textures; and (c) low-frequency natural textures. In these figures, we can follow some of the frequencies individually by visual continuity across segments.

Fig. 9. FRI Sensing Pairing Algorithm: (a) the matrices Ω′l are built with the frequencies ordered according to their amplitude; then, the group of 3 consecutive
segments for which Ω′l is closest to rank 2� Ωstart. (b) Starting from the initial frequency matrix Ωstart, the frequencies found in each new leftward segment,
l, are appended to Ωl−1 and ordered so as to minimize the rank of Ωl. (c) Similar extension of the frequency matrix Ωl by processing segments to the right.

another criterion for frequency pairing: find the pairing that
maximises the ratio between the second and third largest singular
value of the matrix Ω.

In order to reduce the computational cost of this strategy, we
choose to pair only a smaller subset K0 of the K sinusoids that
have the largest absolute amplitudes. A value ofK0 = 5 is a good
compromise between accuracy (larger K0 increases accuracy)
and computational cost.

Fig. 9 intuitively describes the process of the proposed pairing
algorithm. Notice that, after the initialization, the processing
order does not matter. In other words, whether starting with the
left (or right) propagation or alternate left and right processing
will not affect the final paired results. Here, for convenience we
first process segments to the left and then extend to the right
propagation after the initialization of Ωstart.

C. Reconstruction of the Trajectory

After the construction of Ω based on the pairing algorithm,
we can obtain the estimated trajectory slopes by approximating
Ω with a rank-2 matrix using the SVD algorithm, and keeping
only the two largest singular values and the related vectors. This
rank-2 approximation is equivalent to the factorization (6) which
provides two matrices, U and A, where the 2× L matrix A
contains the information on the slopes of the piecewise segments
that approximate the curved trajectory.

With the retrieved curve slopes, the sampling trajectory can
be reconstructed as:

r(t) = alt+ bl, t ∈ [tl−1, tl], l = 1 . . . L,

where b1 is arbitrary and the other vectors bl are obtained by
induction: bl+1 = NTal + bl.
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Algorithm 1: Pairing Algorithm for FRI Sensing.

1D sinusoids {ωk,l}l=1...L
k=1...K , paired sinusoid number K0

1: for l = 1 to number of segments do
2: Select K0 the 1D sinusoids with the largest

amplitude� {ωk,l}k=1...K0

3: end for
Initialization Select and pair 3 consecutive segments
based on the amplitude pairing as the initial frequency
matrix Ωstart, denote the corresponding segment
index as lstart.

4: Left Pairing Propagation
5: for l = 1 to lstart − 1 do
6: Pair the l-th segment frequencies based on the rank

criterion.
7: Attach the paired segment frequencies as a new

column to the frequency matrix:
Ωl ← [{ωk,l}k=1...K0

,Ωl−1]
8: end for
9: Right Pairing Propagation
10: for l = lstart to number of segments do
11: Pair the l-th segment frequencies based on the rank

criterion.
12: Attach the paired segment frequencies as a new

column to the frequency matrix:
Ωl ← [Ωl−1, {ωk,l}k=1...K0

].
13: end for
Output: The paired frequency matrix Ω.

Together with the estimated trajectory slopes, we can obtain
the estimated 2D image sinusoids U at the same time. Through
least squares, the amplitudes associated to the frequencies can
be found accurately and efficiently. Combining them together,
the 2D sinusoidal physical field can be recovered effectively
according to equation (1).

IV. ALGORITHM VALIDATION

In this section, we demonstrate that the proposed algorithm
is effectively able to retrieve the 2D geometry of the trajectory
of a mobile sensor from the mere sequence of samples of the
image/field along that trajectory, and under various conditions.
To perform these tests, we have implemented our algorithm in
python on a MacBook Pro 2015 with a 4-core CPU and 16 GB
of RAM. In all the cases, we have used the 2D sinusoidal image
made of 10 different frequencies sampled on a 330× 280 grid
as shown in Fig. 8(a).

A. Evaluation Metrics

In order to characterise the accuracy of our algorithm, we need
to quantify the error between the reconstructed trajectory r(t)
and the ground-truth trajectory r0(t). Given the affine invariance
of our problem, we should in principle use a distance of the form

min
Q∈R2×2,q∈R2

(∫
inf
t′
‖r0(t)−Qr(t′)− q‖2dt

)1/2

‖r0(t)‖2

but for the sake of simplicity, we choose the same parameter for
the two trajectories. Hence, we define the curve reconstruction
error as follows:

err{r, r0} = min
Q∈R2×2,q∈R2

‖r0(t)−Qr(t)− q‖2
‖r0(t)‖2 . (10)

B. FRI Sensing

1) FRI Sensing With Noiseless Image: As expected, when the
image is a sum of 2D sinusoids and the trajectory is piecewise
linear, the proposed algorithm can achieve a reconstruction close
to machine precision (err{r, r0} ≈ 10−12), with a computation
time of approximately 0.2 seconds. Visually we cannot tell
the difference between the reconstruction and the ground truth.
This experiment validates the exact sampling theorem and the
accurate implementation of our algorithm.

C. Sampling Theorem Validation

Then, we validate Thm. 2 by conducting the following simu-
lations:

1) Dependence of the reconstruction error on the radius of
curvature of the trajectory.

2) Dependence of the reconstruction error on the variance
σ2
noise of the noise.

3) Dependence of the reconstruction error on the length of
the trajectory.

In each experiment, we only manipulate one variable while
keeping the others unchanged.

1) Effect of the Curvature Radius: In this experiment, the
sampling trajectory is parametrised according to:

r0(t) =
1

κ

[
cos(t)− cos(βt)

sin(t)− sin(βt)

]

where β � 1 is a small number, so that the actual curvature of
this parametric curve is close to the value of κ that we choose.
Fig. 10 shows how the trajectory reconstruction error changes
with the curvature. We have averaged the approximation error
obtained over 10 different shifts of the trajectory, so as to have a
value that is more representative of the intrinsic error expected
with our algorithm. As can be seen, in all cases the trajectory
is recovered quite accurately. In addition, the 2D sinusoidal
image can also be reconstructed, and the resulting PSNR varies
from 17.02 dB (smallest curvature radius) to 32.58 dB (larger
curvature radius).

Obviously, as the curvature of the trajectory gets smaller, the
final reconstruction gets more accurate. Notice that, when κ ≤
1/2, the obtained reconstruction error err{r, r0} is parallel and
reasonably close to the upper bound (8), after normalization by
‖r0‖.

Notice that, the reconstruction error increases sharply when
κ > 1/2; i.e., when the wavelengths of the 2D image sinusoids
are comparable to the individual trajectory segment length,
resulting in insufficient image variation within each trajectory
segment. This effect is cumulated with the increase of the
piecewise-linear model inaccuracy that results from a smaller
curvature radius.
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Fig. 10. Center: reconstruction error err{r, r0} vs curvature radius 1/κ of the
trajectory. Top: sensor time samples. Bottom: ground truth trajectory shown in
red, reconstructed trajectory shown in blue (start point: blue triangle, end point:
red star). Each data point is the average of 10 independent tests with random
spatial shifts. β = 1/π2.

Fig. 11. Center: reconstruction error err{r, r0} vs noise level. Top: Noisy
sensor time samples (black) overlayed with the noise signal (green). Bottom:
ground truth trajectory shown in red, reconstructed trajectory shown in blue
(start point: blue triangle, end point: red star). Each data point is the average of

10 independent tests with random spatial shifts. β =
√

π/5.

2) Effect of Noise: In this part, we add noise to the sampled
1D time series at different levels (SNR from 5 dB to 30 dB).
Fig. 11 reveals how the trajectory reconstruction error changes
over different noise levels. Again, the image can also be recon-
structed with PSNR values ranging from 10.87 dB to 27.13 dB
depending on the noise level.

Notice that, although the resulting 1D time series is quite
noisy (SNR: 5 dB), the proposed algorithm can still reveal the
geometric shape of the trajectory. This shows that the proposed
algorithm is robust and accurate against noise interference.
Moreover, after a certain threshold (around 9 dB), even though
the resulting 1D time series is still quite noisy, the reconstruction
error falls below the error bound calculated in Thm. 2. The

Fig. 12. Center: reconstruction error err{r, r0} vs length of the trajectory
(total number of segments L). Top: sensor time samples. Bottom: ground truth
trajectory shown in red, reconstructed trajectory shown in blue (start point: blue
triangle, end point: red star). Each data point is the average of 10 independent
tests with random spatial shifts. β = 1/π2.

“phase transition” between 5 and 9 dB essentially results from
the increasing number of frequency pairing mismatch cases
between consecutive segments.

3) Effect of the Length of the Trajectory: Error accumulation
is expected in our algorithm since what is estimated is essentially
the derivative r′(t) of the trajectory, and Thm. 2 predicts this drift
to be affine with respect to the number L of segments.

Fig. 12 shows that the shape of the calculated upper bound
is parallel to the experimental error. The image can be recon-
structed with PSNR value varying from 19.79 dB to 20.29 dB.
Notice that the error accumulation rate is really small as the
error only increases by half while the length of the trajectory
increases 7 times. The reconstruction error is so small that it is
not possible to distinguish between the ground truth (red) and
the reconstructed (blue) trajectories.

V. DISCUSSION

Interestingly, although we developed the theory for sums of
2D sinusoids, we observe that our algorithm is working accu-
rately for real textured images as well (see Fig. 13). Obviously,
the low-order sinusoidal model that justifies our theory does
not apply here. Yet, it would not be adequate to consider the
natural image model as a high-order sinusoidal representation,
since the same could be claimed of many other dense models
like spline/wavelet/RBF representations or simply, cosine rep-
resentations. More likely, natural images exhibit some (slowly
changing) local scale and directional footprints that can still be
accurately captured by our FRI algorithm, although the exact
properties at stake here are still elusive. The test image (bamboo
trees, 3159× 2504 pixels) shown in Fig. 13(a) is taken by us
with the camera of an iPhone-7, and the whole computation
time is about 24 seconds.

Our finding is that when the resolution of the natural texture
images is large enough (empirically≥ 106 pixels), the proposed
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Fig. 13. Recovering a trajectory from the 1D samples of a natural image. (a) Bamboo tree image (3159× 2504 pixels). (b) Ground truth sampling trajectory. (c)
Image samples along the trajectory in (b). (d) Reconstructed trajectory (error err{r, r0} = 0.059).

method can work to some extent. For lower resolution images
(e.g., 512× 512 pixels), the algorithm is less accurate because
there are not enough samples along local trajectory segments.
However, what we aim at is physical sampling of a real 2D
physical field by a real mobile sensor which usually has such
a fine sampling density: this is actually what we simulated in
Section IV and we could then use images of size 330× 280.
Therefore, the sample number limitation is likely an artificial
issue in practical sensor applications.

When the image is 2D sinusoidal, the physical field/image
can be accurately reconstructed although we did not emphasize
this aspect so much in this article. Yet, despite a relatively
accurate trajectory reconstruction, natural images cannot yet be
accurately reconstructed, a problem on which we are actively
working, but is beyond the scope of this article.

VI. CONCLUSION

In this article we have shown that it is possible to unveil
the multidimensional information hidden within a 1D signal
obtained by sampling a 2D field/image along some trajectory.
Solving this problem would not be possible without strong spar-
sity hypotheses (typically, on the frequencies of the image and
the representation of the trajectory) for which we have developed
earlier a very accurate and efficient “Finite Rate of Innovation”
(FRI) algorithm—hence, our “FRI sensing” terminology. We
have shown how to combine this algorithm with a very accurate
frequency pairing strategy so as to solve exactly the FRI sensing
problem when the trajectory is piecewise-linear. We have also
shown that this limited setting can be generalized to other
trajectories and demonstrated the accuracy and robustness of
our algorithm in various experiments. Even more interesting,
we observed that this algorithm is still accurate on images that
are not sums of sinusoids.

APPENDIX A
LINK BETWEEN CURVATURE, ACCELERATION, AND VELOCITY

Let κ denote the curvature (i.e., the inverse of the radius of
curvature) of the trajectory:

κ(t) =
|x′(t)y′′(t)− x′′(t)y′(t)|

(x′(t)2 + y′(t)2)
3
2

(11)

Using the identity(
x′(t)2 + y′(t)2

)︸ ︷︷ ︸
‖r′(t)‖2

(
x′′(t)2 + y′′(t)2

)︸ ︷︷ ︸
‖r′′(t)‖2

=

(
x′(t)y′′(t)− x′′(t)y′(t)

)2
+

2(
x′(t)x′′(t) + y′(t)y′′(t)

)︸ ︷︷ ︸
1
2

d
dt {‖r′(t)‖2}

we find that the curvature defined by (11) satisfies the inequality
κ(t) ≤ ‖r′′(t)‖/‖r′(t)‖2, with equality as soon as the velocity
‖r′(t)‖ is constant.

Moreover, whenever ‖r′′(t)‖ ≤ γ0 and ‖r′(t)‖ ≥ v0, we have

κ(t) ≤ ‖r
′′(t)‖

‖r′(t)‖2 ≤
γ0
v20

.

APPENDIX B
PROOF OF THEOREM 2

Proof: We first evaluate the error between our model (samples
along a piecewise linear trajectory) and the actual mobile sensor
samples, within each segment. Then, we compute the Cramér-
Rao lower bounds of the estimated 1D frequencies, in relation to
this error, and assume that we are using a frequency estimation
algorithm that reaches these bounds. Finally, relating the uncer-
tainty on the trajectory to the uncertainty on the 1D frequencies
through the condition number of a matrix that characterizes how
distinct the spatial frequencies of the image are, we obtain the
final expression.

1) Model inaccuracy
The uncertainty on the mobile sensor samples results
from the error σlin caused by approximating a curve by
line segments, and from the random error that corrupts
the sensor measurements which we modelise as additive,
white, Gaussian, with variance σ2

noise. More specifically,
since ‖r′′(t)‖ ≤ γ0, after double integration we find that
the largest Euclidian distance between a curve r(t) and
its best piecewise-linear approximation rlin(t) is upper
bounded as

‖r(t)− rlin(t)‖ ≤ ‖r(t)− r(t0)− (t− t0)r
′(t0)‖

≤ γ0
(t− t0)

2

2
≤ γ0N

2T 2

8
, (12)
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where t0 is the curve parameter corresponding to the
middle point of a line segment and t is the parameter of any
point within the same segment (hence, |t− t0| ≤ NT/2).
Here, T denotes the sampling step and N the number of
samples within each segment.
Then, the noise-averaged mean-square difference between
the actual samples, I(r(t)) + noise, and the modeled sam-
ples, I(rlin(t)), can be upper bounded as follows:

σ2
lin

def
= σ2

noise+
1

NT

∫
|t−t0|≤NT/2

|I(r(t))−I(rlin(t))|2dt

≤ σ2
noise + max

|t−t0|≤NT/2
‖r(t)− rlin(t)‖2

×max
r
‖∇I(r)‖2

≤ σ2
noise +

γ2
0N

4T 4

64
max

r
‖∇I(r)‖2

≤ σ2
noise +

γ2
0N

4T 4

64
[b]
∑
k

|ck|2︸ ︷︷ ︸
E {|I|2}

[b]
∑
k

‖uk‖2︸ ︷︷ ︸
1.2em‖U‖2F

,

where we have used that ∇I(r) = ∑
k jckuke

juT
k r and

Cauchy-Schwarz inequality. The above result is summa-
rized by σlin ≤ σ if we denote

σ
def
=

√
E {|I|2} ‖U‖2F N4T 4γ2

0/64 + σ2
noise, (13)

In what follows, we reinterpret σlin as the standard devi-
ation of an additive Gaussian noise describing the uncer-
tainty caused by the noise and the piecewise-linear model
inaccuracy.

2) Cramér-Rao lower bounds of the 1D frequencies
We consider the uncertainties on the estimated 1D fre-
quencies and amplitudes resulting from the uncertainty
on the samples. To this end, we compute the Cramér-Rao
lower bound of a frequency estimation problem, under
additive white Gaussian noise of variance σ2

lin. We have
observed in [23] (see also [24], [32], [33]) that it is
sufficient to consider the Cramér-Rao bound for indi-
vidual frequencies since the other frequencies influence
only mildly this calculation when they are sufficiently far
apart. If std{ω} designates the standard deviation of the
error of estimating a 1D frequency ω, associated with an
amplitude c, the Cramér-Rao lower bound reads std{ω} ≥
2
√
3N−3/2T−1σlin/|c|. It is known that the accuracy of

algorithms like the maximum likelihood estimator (MLE)
reach Cramér-Rao lower-bound empirically for a large
range of noise variances and asymptotically, when the
number of samples, N , tends to infinity [24]. This means
that, if such efficient algorithms are used and N is large
enough, this inequality is, for all practical purposes, an
equality:

std{ωk} = 2
√
3σlin

TN3/2|ck| , (14)

for all frequency indices k, denoting by |ck| the modulus of
the amplitude of the sinusoid of 1D frequency ωk, which
is also that of the 2D sinusoid of spatial frequency uk

according to (4).
3) Trajectory uncertainty

The information conveyed by the frequency ωk is the
scalar product between the slope of the piecewise-linear
trajectory, r′lin(t), which is constant within the chosen
segment and the 2D spatial frequency, uk, of the image:
ωk = uT

k r
′
lin(t). In order to estimate r′lin(t), we only need

two independent scalar products uT
k r
′
lin(t) = ωk, for in-

stance ωk1
and ωk2

. In that case, the error Δr′lin(t) on the
slope satisfies the equation[

uT
k1

uT
k2

]
︸ ︷︷ ︸
Uk1,k2

Δr′lin(t) =

[
Δωk1

Δωk2

]
︸ ︷︷ ︸
Δωk1,k2

,

which shows that std{r′lin(t)} ≤ std{Δωk1,k2
}/λk1,k2

whereλk1,k2
is the smallest singular value ofUk1,k2

. Now,
using (14) we get that, for all k1, k2 ∈ {1 . . .K},

std{r′lin(t)}

≤ 2
√
3σlin

TN3/2
· 1

λk1,k2

√
1

|ck1
|2 +

1

|ck2
|2 ,

≤ 2
√
3σlin

TN3/2
· min
k1,k2

{
1

λk1,k2

√
1

|ck1
|2 +

1

|ck2
|2
}

︸ ︷︷ ︸
def
= cond{I}

Then, integrating the uncertainties over all the samples
(using the triangular inequality), the uncertainty on the re-
construction of the piecewise linear trajectory (L segments
with N samples each) is upper bounded as

std{rlin(t)} ≤ 2
√
3Lσlin√
N

cond{I}

Finally, adding the inaccuracy of the piecewise linear
model (12), and taking into account the inequality σlin ≤
σ, the total uncertainty on the ground-truth trajectory
becomes

std{r(t)} ≤ 2
√
3Lσ√
N

cond{I}+ γ0N
2T 2

8
,

where σ is given by (13). �
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