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ABSTRACT

Estimation of conduction velocity (CV) is an important task in the

analysis of surface electromyography (sEMG). The problem can be

framed as estimation of a time-varying delay (TVD) between elec-

trode recordings. In this paper we present an algorithm which in-

corporates information from multiple electrodes into a single TVD

estimation. The algorithm uses a common all-pass filter to relate two

groups of signals at a local level. We also address a current limitation

of CV estimators by providing an automated way of identifying the

innervation zone from a set of electrode recordings, thus allowing

incorporation of the entire array into the estimation. We validate the

algorithm on both synthetic and real sEMG data with results show-

ing the proposed algorithm is both robust and accurate.

Index Terms— All-Pass Filters, Surface EMG, Muscle Conduc-

tance Velocity, Time-Varying Delay Estimation

1. INTRODUCTION

Time dependent delay estimation is a problem that occurs in many

areas involving time of flight or speed based measurements. One

such problem is the estimation of conduction velocity (CV) from

surface electromyography (sEMG). CV describes the speed of prop-

agation of motor unit action potentials (MUAPs) along the muscle

fibre and as such is an important factor in the study of muscle ac-

tivity revealing information regarding pathology, fatigue or pain in

the muscle [1]. The estimation of time-varying CV between two or

more sEMG signals allows for application to a wider range of condi-

tions and tasks than estimation of a constant CV [2]. The problem of

estimating CV from sEMG can be considered in terms of estimating

the time-varying delay (TVD) between signals received at spatially

separated recording electrodes such that

g1(t) = f(t) + e1(t)

g2(t) = f
(

t− τ(t)
)

+ e2(t)
...

gN (t) = f
(

t−Nτ(t)
)

+ eN (t), (1)

where gn(t) is the signal recorded at the nth electrode at time t, N
is the number of electrodes, f(t) is the signal of interest and τ(t)
is the TVD common to all electrodes. The additive noises en(t) are

assumed to be i.i.d Gaussian processes.

Delay estimation techniques are classically based upon general-

ized cross correlation [3] or coherence [4]. A number of approaches

to TVD estimation have been proposed [5, 6, 7], however, the is-

sue of estimating TVDs for the purpose of CV estimation is not

straightforward. Not all methods perform well in the presence of
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noise [8] - which can be expected in sEMG and if we want to avoid

the need for motor unit decomposition we require a technique which

can estimate TVDs with unknown waveforms. There are also a num-

ber of factors which can affect the calculation of CV [1] one of the

most fundamental of which is the selection of appropriate signals.

Currently algorithms require the selection of signals based on ei-

ther locating the electrode array to avoid the innervation zone (IZ)

– MUAPs propagate outwards from the IZ causing a change in sign

of the delay (see Section 3.3 for more details) – or selecting a subset

of the recorded signals. Many of the existing approaches to the es-

timation of CV have been based upon the Newton method for align-

ing waveforms proposed in [9] including extensions to TVD esti-

mation [10]. More recently the use of adaptive filtering [11] and

phase based approaches [12] to TVD estimation for CV calculation

have been proposed. In [13] a parametric approach was shown to

outperform non-parametric approaches. However, this requires ap-

propriate selection of the underlying model and the use of maximum

likelihood estimation can be computationally intensive. Therefore,

in this paper we present a non-parametric method for the estimation

of CV, which is both fast and accurate, and capable of automatically

dealing with the change in sign of the delay around the IZ.

The proposed approach is based upon estimating the TVD us-

ing local all-pass (LAP) filters. The LAP framework originates in

image registration [14] and has previously been used in biomedi-

cal [15] and biological [16] imaging. The novelty of our approach

is in the adaptation of the framework to allow estimation of a single

delay signal that is common to a group of signals as described in (1).

More precisely, we propose an algorithm that simultaneously relates

local changes across one set of 1D signals to another set using all-

pass filters. The algorithm then extracts a per sample estimate of the

common TVD from the filters. We term this technique the Common

Local All-Pass (CLAP) algorithm. The advantages of this technique

are three-fold: first the algorithm can easily and efficiently scale to

handle multiple signals. Secondly, due to the nature of CLAP, the

IZ can be automatically identified. Finally, once the IZ has been

detected, a simple reversal of the order in which some of the sig-

nals are processed allows the CLAP to estimate the delay using the

whole electrode array. Thus improving the accuracy of the delay

estimation by reducing issues surrounding electrode location [17]

whilst also avoiding the need for identification of an appropriate sig-

nal subset. We demonstrate the accuracy of the proposed approach

on both synthetic data and real high density sEMG (HD-sEMG).

2. LOCAL ALL-PASS FILTER FRAMEWORK

In this section, we introduce and extend the LAP framework pre-

sented in [14, 18] to TVD estimation.



2.1. Concept 1 - A constant delay is all-pass filtering

The first element of the framework is the concept that a constant

delay, τ , is equivalent to all-pass filtering. This concept follows from

the Fourier shift theorem

x2(t+ τ) = x1(t) ⇐⇒ X2(ω) = X1(ω) e
−jτω, (2)

where x is a generic signal, X represents its Fourier transform and ω
denotes the frequency coordinate. Thus, if we define a filter h with

a frequency response H(ω) = e−jτω then x2 is a filtered version of

x1 and the filter, h, is all-pass in nature. Accordingly, estimating the

filter h is a proxy for determining the delay in (2).

2.2. Concept 2 - Linearising the all-pass constraint

The next concept is that the 2π-periodic frequency response H(ω)
of any digital all-pass filter can always be expressed as

H(ω) =
P
(

ejω
)

P (e−jω)
, (3)

where P
(

ejω
)

is the forward and P
(

e−jω
)

the backward version

of a real digital filter p. Using the above expression, the all-pass

filtering operation performed by h can be expressed linearly as a

function of p

x2[k] = h[k] ∗ x1[k] ⇐⇒ p[−k] ∗ x2[k] = p[k] ∗ x1[k], (4)

where ∗ is the convolution operator and k denotes discrete time.

Thus, estimating p is equivalent to determining the all-pass filter h.

2.3. Concept 3 - Basis representation of the all-pass filter

The final concept is to approximate p using a linear combination of

a few fixed, known, real filters pn, i.e.

papp[k] =

L−1
∑

l=0

clpl[k], (5)

where L denotes the number of filters and cl are the coefficients.

The advantage of such an approximation is that the estimation of h
is further reduced to determining the L coefficients cl.

A simple choice of filter basis would be the canonical repre-

sentation of an finite impulse response (FIR) filter with a support

k ∈ [−R,R], thus L = 2R + 1. However, limiting the support of

the filter papp will limit the size of the delay to a maximum of R sam-

ples. Therefore, the canonical basis quickly becomes too expensive

when estimating large delays as N ∝ R. Instead, [14, 18] proposed

a compact, scalable, basis that spans the derivatives of a Gaussian

function. For this paper, we use the Gaussian function and its first

derivative as the filter basis thus L = 2. These filters are defined as

p0[k] = e−k2/2σ2

and p1[k] = kp1[k], (6)

where σ = R/2−0.2 and R is the integer half support of the filters.

For a theoretical foundation for such a basis we refer readers to the

analysis presented in [19].
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Fig. 1. Diagram illustrating the principle of the CLAP algorithm.

Local regions on the left-hand side are related to corresponding lo-

cations on the right-hand side via a common all-pass filter.

2.4. Local All-Pass (LAP) Algorithm

Using the above concepts, the LAP algorithm functions by assuming

the TVD, τ(t), is approximately constant within a local window W

and estimating an all-pass filter for that window using (4) and (5).

This process is then repeated by shifting the window W and esti-

mating a new all-pass filter. The final result is that the LAP estimates

a local all-pass filter per sample (a filter corresponds to the central

sample in W). A filter is estimated by solving

min
c1

∑

k∈W

∣

∣

∣
papp[k] ∗ x1[k]− papp[−k] ∗ x2[k]

∣

∣

∣

2

, (7)

where papp[k] = p0[k]+c1p1[k]. Importantly, as we set c0 = 1, this

minimisation is equivalent to solving a linear system of equations

with 1 unknown, which can be implemented very efficiently using

convolution and pointwise multiplication [14, 18].

The final stage of the LAP is to extract the estimate of the TVD

from the local all-pass filters. Using the all-pass structure, the delay

estimate from a single all-pass filter can be expressed in term of the

the impulse response of papp

τ̂ = 2

∑

k kpapp[k]
∑

k papp[k]
. (8)

3. ESTIMATING A COMMON TIME-VARYING DELAY

We now consider the estimation of a TVD that is common across

a set of signals and present the Common Local All-Pass (CLAP)

algorithm.

3.1. Common Local All-Pass Filters

The ensemble of signals described in (1) are characterised by the

same TVD τ(t). Thus, rather than running the LAP on each adjacent

pair of signals, we propose estimating one common delay from the

whole ensemble of signals. Specifically, our goal is to relate a local

region across a subset of the ensemble to the corresponding region

across another subset of signals using a common all-pass filter. An

illustration of this common all-pass filter is shown in Fig. 1. Given

an ensemble of signals xn(t), n = 1, 2, . . . , N , we adapt the local

minimisation in (7) as follows

min
c1

N−1
∑

n=1

∑

k∈W

∣

∣

∣
papp[k] ∗ xn[k]− papp[−k] ∗ xn+1[k]

∣

∣

∣

2

, (9)

where papp[k] = p0[k]+c1p1[k]. The estimate of the common delay

is then obtained using (8).
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Fig. 2. Diagram illustrating the multi-scale framework for the CLAP.

Note that R is the half-support of the CLAP filters, τ̂i is the estimate

of the delay at the ith iteration and ∆τ̂ is the delay increment ob-

tained from the CLAP.

3.2. Multi-Scale Framework

Although the CLAP is capable of estimating large delays, it requires

a filter basis with a large support to do so - the half support of the

filters, R, is the upper bound on the size of the delay that can be

estimated. This is equivalent to assuming large regions of the delay

signal are slowly varying. Accordingly, we use an iterative multi-

scale framework to estimate both fast and slow varying delays. In

brief, large values of R are used to estimate the large slowly vary-

ing parts of the delay, then smaller values of R are used for smaller

faster variation in the delay. A diagram of this multi-scale frame-

work is shown in Fig. 2. The framework also includes the following

processing steps: i) Alignment - a procedure whereby the second set

of signals is warped closer to the first set using the current estimate

of the TVD. This alignment is achieved using high quality interpo-

lation [20, 21]. ii) Delay Post-Processing - this step comprises two

elements: Firstly, an inpainting procedure [22] to replace erroneous

delay estimates caused if (9) is singular. These estimates are iden-

tified if their size is larger than the current value of R. Secondly,

Gaussian filtering is performed to smooth any errors not previously

identified.

3.3. Application to sEMG

For application to sEMG signals we require two further processing

steps. The first step is to use the single differential of the signals

rather than the raw recordings, i.e. xn(t) = gn+1(t) − gn(t), as

sEMG recordings are likely to suffer a common source of corrup-

tion across all of the channels. The second step is to identify the IZ.

The IZ occurs at the point where motor neurons innervate the mus-

cle fibres, at this point the MUAPs propagate outwards towards the

tendons. Typically, to allow calculation of the CV, either the location

of the IZ is identified prior to the recording and the electrode array

placed to one side - which is not always practical - or the signals are

visually inspected to identify the IZ - which due to the small size of

the delay is not always clear - and a subset of the signals selected.

Instead, we run the normal LAP algorithm across each pair of

adjacent signals and calculate the mean value of the delay between

the signals. Using these values, the IZ is identified as the point where

the sign of the mean delays switches. Given this switching point,

the order in which we process the signals above the zone is reversed.

This switches the sign of the corresponding delays so they are consis-

tent with the signals below the IZ and can be processed all together

using the CLAP algorithm.

4. DATA

4.1. Synthetic Data Model

The synthetic data was simulated based on a model which has pre-

viously been used to test CV estimation algorithms [2, 13]. The
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(b) SNR=10dB

Fig. 3. Example delay estimates obtained from 6 signals.

first channel is obtained by filtering white Gaussian noise through a

FIR from a known spectrum with EMG like properties [23]. Sub-

sequent channels are then obtained by interpolating the previous

channel with the delay τ(t). The delay can be related to the CV

by τ(t) = Fs
∆e

CV (t)
, where the sampling frequency Fs = 2048Hz

and the inter electrode distance ∆e = 5mm. The CV is defined

as CV = 4 + 2 sin(2π0.2t/Fs) resulting in biologically plausible

ranges from 2m/s to 6m/s with maximum acceleration of 2.51m/s2.

To further simulate experimental data, the synthetic signals are cor-

rupted by additive white Gaussian noise and then low-pass filtered

to simulate the response of the sEMG acquisition device.

4.2. Experimental Data

HD-sEMG was recorded from 3 male participants, all participants

provided informed consent and the experimental protocol was ap-

proved by the Human Research Ethics Committee, RMIT Univer-

sity. The HD-sEMG electrodes were arranged in a 4× 16 array with

5mm inter electrode distance and sampling rate of 2441Hz. The ar-

ray was placed such that the columns were oriented close to parallel

with the muscle fibres of the biceps brachii with reference electrodes

placed on the elbow. Participants were seated on a chair with their

dominate arm resting on an table. In this position the participants

were asked to pull on a fixed cable attached to a force sensor. Prior

to the experiment the participant’s maximum voluntary contraction

(MVC) was recorded. The participant was then asked to maintain a

contraction at 40% of their MVC until they had reached task failure

or they felt pain. The real time output of the force sensor and the re-

quired force were displayed to the participant. After completing the

40% MVC contraction the participant waited 30 minutes to reduce

any effects of muscle fatigue and then repeated the experiment for

80% MVC.

4.3. Surrogate Data

As the true CV of the experimental data is unknown, we use a sur-

rogate data method [24, 25] to validate the legitimacy of the results

obtained from the CLAP. The surrogate data was generated using an



0 5 10 15 20

Number of Signals

0.02

0.04

0.06

0.08

0.1

0.12

E
s
ti
m

a
ti
o
n
 E

rr
o
r 

(s
a
m

p
le

s
) CLAP

cohF

(a) Noiseless Data

0 5 10 15 20

Number of Signals

0.02

0.04

0.06

0.08

0.1

0.12

E
s
ti
m

a
ti
o
n
 E

rr
o
r 

(s
a
m

p
le

s
) CLAP

cohF

(b) SNR=30dB

0 5 10 15 20

Number of Signals

0

0.05

0.1

0.15

0.2

E
s
ti
m

a
ti
o
n
 E

rr
o
r 

(s
a
m

p
le

s
) CLAP

cohF

(c) SNR=20dB

0 5 10 15 20

Number of Signals

0

0.1

0.2

0.3

0.4

0.5

E
s
ti
m

a
ti
o
n
 E

rr
o
r 

(s
a
m

p
le

s
) CLAP

cohF

(d) SNR=10dB

Fig. 4. Average errors in delay estimates for increasing signal numbers. Error bars indicate 5th and 95th quantiles.
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Fig. 5. Example single differential signals with location of the in-

nervation zone indicated.

iterative amplitude adjusted FFT to preserve both the amplitude and

frequency distributions of the data whilst destroying any time depen-

dencies [26]. For each pair of signals used to estimate the delay one

was left unaltered and surrogates of the other created. This process

was repeated 100 times to obtain a statistical average.

5. RESULTS

5.1. Synthetic Data Results

To test the accuracy of the proposed approach 100 different reali-

sations were produced for noiseless and SNR = 30, 20 and 10dB

scenarios with varying number of simulated signals. The results ob-

tained were compared against the Fourier phase coherency (CohF)

as it has previously been shown to have better performance in the

presence of noise than alternative algorithms [2]. Figure 3 shows il-

lustrative examples of the estimates of the true delay obtained with

the CLAP and CohF algorithms for 6 signals in both the noiseless

and SNR=10dB cases. The window size of the algorithms were set

to 512 samples (equivalent to 0.25s). As can be seen even in the

noiseless case the CohF algorithm does not perform well when the

acceleration is larger, whereas the CLAP due to its multi-scale na-

ture can accurately estimate both slow and fast changing delays. The

average errors in the delay estimates for both algorithms are shown

in Fig. 4. The figure highlights that the CLAP outperforms CohF in

terms of both accuracy and robustness for all scenarios.

5.2. Experimental Data Results

Initially for each column of the electrode array the method from Sec-

tion 3.3 was used to estimate the location of the IZ. Figure 5 shows

example single differential signals and the estimated location of the

IZ. Based upon this location the order of the pairs of signals with

negative delay estimates were switched allowing estimation of a sin-

gle common delay from all signals.

Table 1 provides a summary of the estimates of the TVDs ob-

tained from both the real data and the average of 100 surrogates.

Table 1. Comparison of the delays estimated from the experimental

and surrogate data. τ̄ is the time averaged delay and β the slope of

the regression.

Subject MVC

Data Surrogates

τ̄
β

Avg τ̄ Var τ̄
Avg β

(

×10
−3

) (

×10
−3

)

1
40% 2.503 0.7 -0.001 0.000 -0.0

80% 2.363 13.5 -0.003 0.000 0.1

2
40% 2.320 2.2 -0.001 0.000 -0.1

80% 2.399 8.3 0.000 0.002 0.5

3
40% 1.690 0.2 0.001 0.000 -0.0

80% 1.726 4.0 -0.002 0.001 0.1

The table shows there is a clear distinction between the two sets of

results; without any time structure the average of the mean delay

is close to zero with a variance in the estimates of the mean delay

also close to zero. This is not the case with the real data indicating

the delays originate in the data rather than from bias in the estima-

tor. Furthermore the time average of the delays from the real data

relate to mean CVs of 4.89m/s, 5.20m/s, 5.28m/s, 5.11m/s, 7.26m/s

and 7.13m/s all of which fall within recommended constraints of 2-

8m/s [13].

To compare the time-varying properties of the data linear regres-

sion of the delay estimates was performed, the slope of the regres-

sions are presented in Table 1. From these results it can be seen that

for all three subjects the 80% MVC delay estimates have slopes that

indicate an increase in delay corresponding to decreasing CVs of

−0.0287, −0.0174 and −0.0168 which are in line with previously

observed results which indicate a decrease in CV with fatigue [10].

6. CONCLUSIONS

In this paper, we have presented an algorithm for estimating a com-

mon TVD from an ensemble of signals and applied it to the problem

of determining CV from sEMG. Our algorithm is based on using a

common all-pass filter to relate local changes in one group of sig-

nals to changes in another group. We demonstrated that this algo-

rithm is more accurate and robust than standard approaches used in

CV estimation under synthetic conditions. Finally, we presented ini-

tial results for CV estimation on real datasets. The estimated TVDs

provided biologically plausible CV values while at the same time

validation via surrogate testing indicated that the delays obtained

occurred due to structure in the data. Currently, we are investigating

combining our approach with the parametric iterative fitting outlined

in [27].
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