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ABSTRACT

Fast and accurate motion estimation is an important tool in biomed-

ical imaging applications such as motion compensation and image

registration. In this paper, we present a novel algorithm to estimate

motion in volumetric images based on the recently developed Lo-

cal All-Pass (LAP) optical flow framework. The framework is built

upon the idea that any motion can be regarded as a local rigid dis-

placement and is hence equivalent to all-pass filtering. Accordingly,

our algorithm aims to relate two images, on a local level, using a 3D

all-pass filter and then extract the local motion flow from the filter.

As this process is based on filtering, it can be efficiently repeated

over the whole image volume allowing fast estimation of a dense 3D

motion. We demonstrate the effectiveness of this algorithm on both

synthetic motion flows and in-vivo MRI data involving respiratory

motion. In particular, the algorithm obtains greater accuracy for sig-

nificantly reduced computation time when compared to competing

approaches.

Index Terms— Motion Estimation, All-Pass Filters, Optical

Flow, Approximation, MR Images

1. INTRODUCTION

The estimation of a 3D velocity field that describes the motion be-

tween two volumetric images is a problem that has many applica-

tions in biological and medical imaging. For example, this motion

field, also known as the optical flow [1], finds application in image

registration [2], cardiac analysis in 3D cine CT images [3] and cell

dynamics in confocal microscopy [4]. In this paper, we approach

this motion estimation problem from an optical flow point of view.

The dominant ideas in optical flow estimation stem from the

seminal works of Horn and Schunck [1], and Lucas and Kanade [5].

Their approaches both start by assuming brightness consistency–the

intensity of a point remains constant as it flows from one image to

another [6]. Thus, in 3D, two volumetric images, I1 and I2, are

related by
I2(~x + ~u(~x)) = I1(~x) (1)

where ~u = (ux(~x), uy(~x), uz(~x))
T

is the 3D motion flow (i.e. op-

tical flow) and ~x = (x, y, z)T
is the voxel coordinates. Then, under

the assumption that the flow’s displacement is small, both sets of

authors linearise (1) using a first order Taylor approximation. The

result is the Optical Flow Equation, which in 3D is:

I2(~x)− I1(~x)− ~uT∇I1(~x) = 0, (2)

where ∇ = (∂/∂x, ∂/∂y, ∂/∂z)T
. Their approaches differ, how-

ever, when faced with the issue that (2) offers only one constraint for

multiple unknowns, i.e. ill-posed.
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To overcome this issue, Horn and Schunck [1] proposed a global

L2 regularization; they minimised the Euclidean norm of the optical

flow equation under a quadratic constraint that favoured smoothly

varying flows. In contrast, Lucas and Kanade [5] opted to assume

the flow is constant over a local region and solved the optical flow

equation within that region. Since their publication, these competing

approaches have been subject to constant developments, for a com-

plete review of the state-of-the-art in 2D optical flow estimation see

[6]. In the case of 3D imaging, 3D versions of Horn-Schunck and

Lucas-Kanade were proposed in [7] and the amount of smoothing

required for estimation was studied in [8]. Odille et al [9] applied

optical flow techniques to motion compensation in MRI data. Along

side optical flow algorithms, motion estimation can also be achieved

using diffusion based/parametric image registration techniques, such

as Demons [10] and fast elastic registration [11]. For a review of the

state-of-the-art in deformable image registration see [2].

In this paper, we present a novel algorithm for 3D motion flow

estimation using local all-pass filters. Instead of assuming small dis-

placement and using (2), we adapt the 2D optical flow estimation

framework outlined recently in [12]. This framework assumes the

flow is locally constant and relating local changes in one image to an-

other image using all-pass filters. The optical flow is then extracted

from the filters. In contrast to [5], this approach was shown in [12] to

produce consistent and accurate 2D flows whilst requiring low com-

putation time. Accordingly, we present a fast filter-based method for

estimating smoothly varying motion in 3D images, which we term

the 3D Local All-Pass (LAP) algorithm. We then evaluate this algo-

rithm on synthetic data, which exactly satisfies (1), and show that it

outperforms two standard non-rigid image registration algorithms in

terms of accuracy and speed. Finally, we present initial results for

respiratory motion estimation in MR images.

Note that the LAP is not related to Fleet and Jepson’s algo-

rithm [13] which relies on the time variation of the spatio-temporal

Fourier phase of a sequence of images: only spatial filters, between

two images, are involved in the LAP.

2. ALL-PASS FILTERING FRAMEWORK

In this section, we introduce and extend the all-pass filtering frame-

work presented in [12] to 3D motion estimation between two volu-

metric images.

2.1. Relating Shifting and All-Pass Filtering

The central concept in this framework is that a constant motion is

equivalent to filtering with an all-pass filter. To observe this equiva-

lence, consider two images, I1 and I2, related by a constant motion

~uc = (ux, uy, uz)
T
. Under the assumption of brightness consis-

tency, (1), the relationship linking the images is a simple shifting



operation, I2(~x) = I1(~x− ~uc), which in frequency is equivalent to:

Î2(~ω) = Î1(~ω) e
−j~uT

c
~ω

(3)

where “ˆ” denotes the Fourier transform of an object and ~ω =
(ωx, ωy, ωz)

T
is the frequency coordinates. Accordingly, if we de-

fine
ĥ(~ω) = e−j~uT

c
~ω,

then I2 is a filtered version of I1 and the filter, h, is all-pass in nature

(i.e. |ĥ(~ω)| = 1). Thus, the procedure for determining the motion

~uc consists of first estimating the all-pass filter h and then extracting

the motion information from the filter.

2.2. The All-Pass Filtering Equation

To estimate the filter h, we use the key algorithmic idea proposed in

[12]: the all-pass filtering relation between the two images can be ex-

pressed linearly in terms of forward and backward filtering. In more

detail, assuming ideal sampling with a sinc kernel, we have a digital

version of the all-pass filter h. Now, importantly, the (2π, 2π, 2π)-
periodic frequency response of any digital all-pass filter can always

be expressed as

ĥ(~ω) =
p̂
(

ej~ω
)

p̂ (e−j~ω)

def
=

p̂
(

ejωx , ejωy , ejωz

)

p̂ (e−jωx , e−jωy , e−jωz )
, (4)

where p̂
(

ej~ω
)

is the forward and p̂
(

e−j~ω
)

the backward version

of a real digital filter p. As a consequence, the filtering operation

performed by h can be expressed linearly as a function of p:

I2[~k] = h[~k] ∗ I1[~k] ⇔ p[−~k] ∗ I2[~k] = p[~k] ∗ I1[~k] (5)

where ~k = [k, l,m]T is the discrete voxel coordinates. Thus, es-

timating the forward filter p is equivalent to estimating an all-pass

filter that approximates h.

2.3. Basis Representation of the All-Pass Filter

The final step to obtaining the all-pass filter h uses a standard signal

processing technique whereby the filter p is expressed as a linear

combination of a few fixed, known real filters pn. In other words,

the filter p is approximated using a filter basis representation:

papp[~k] =

N−1
∑

n=0

cnpn[~k], (6)

where N denotes the number of filters in the basis and cn are coef-

ficients of the filters. The estimation of the all-pass filter h is thus

reduced to determining the coefficients cn using the filtering scheme

in (5). A straightforward solution is a mean square minimisation of

the difference between the left and right handsides of (5) when p sat-

isfies (6), which is equivalent to solving a linear system of equations.

Now, an important question is what type of filters should be used

in equation (6)? A simple choice would be to use the canonical rep-

resentation of a finite impulse response (FIR) filter, supported in a

cube of side 2R + 1. However, as pointed out in [12], R acts as

an upper bound on the displacement of the motion that can be es-

timated. Consequently, such a filter basis would be unsuitable for

motions with larger displacement (i.e. N ≈ 4πR3/3). Instead, the

answer comes from the analysis presented in [14]. Here, the authors

analysed the quality of approximation obtained when using the all-

pass filtering framework in optical flow estimation. They showed

that an approximation order of r can be achieved if the basis spans

the derivatives of an isotropic function up to order r/2. Accordingly,

we opt for a filter basis that span the derivatives of a Gaussian func-

tion and limit the derivative order to 1 (i.e. r = 2). In the discrete

domain, this filter basis is

p0[~k] = exp

(

−
k2 + l2 +m2

2σ2

)

,

p1[~k] = k p0[~k], p2[~k] = l p0[~k], p3[~k] = mp0[~k],

(7)

where σ = (R+ 2)/4 and the size of the filters are (2R+ 1)3 vox-

els. Importantly, these filters are completely scalable thus allowing

estimation of arbitrary sized motion.

2.4. Obtaining the Motion Estimate

Once the all-pass filter has been obtained, we expect its frequency

response to be close to e−j~uT
c
~ω . Consequently, the following formula

can be used to retrieve the estimate of the motion

ũx,y,z = j
∂ log

(

hest

(

ejωx , ejωy , ejωz

))

∂ωx,y,z

∣

∣

∣

∣

∣

ωx=ωy=ωz=0

,

where hest is the estimate of the all-pass filter. Using the all-pass

structure defined in (4), this formula can be expressed in terms of

the impulse response of the filter papp as follows:

~uest = 2

(

∑

~k
k papp[~k]

∑

~k
papp[~k]

,

∑

~k
l papp[~k]

∑

~k
papp[~k]

,

∑

~k
mpapp[~k]

∑

~k
papp[~k]

)T

. (8)

3. ESTIMATING SMOOTHLY VARYING MOTION

We now relax the assumption that the motion is globally constant

and consider the estimation of a smoothly varying 3D motion flow.

3.1. 3D Local All-Pass Algorithm

To estimate such a motion, the framework defined in the previous

section is adapted to a local level; assuming the motion is locally

constant, a region in image I1 can be related to the same correspond-

ing region in I2 using a local all-pass filter. This relationship is de-

fined by the local all-pass equation:

papp[~k] ∗ I1[~k]− papp[−~k] ∗ I2[~k] = 0, where ~k ∈ W, (9)

and W is a cubic window with 2R + 1 sides. Accordingly, the

method for determining the motion flow consists of solving the

above equation to obtain the local filter–corresponding to the central

voxel in W–then shifting the window and estimating a new all-pass

filter. In other words, we have a 3D version of the Local All-Pass

(LAP) algorithm proposed in [12].

The central aspect of the 3D LAP algorithm is the following

minimisation to obtain the local filter papp[~k]:

min
{cn}

∑

~k∈W

∣

∣

∣
papp[~k] ∗ I1[~k]− papp[−~k] ∗ I2[~k]

∣

∣

∣

2

(10)

where papp[~k] = p0[~k] +
3
∑

n=1

cnpn[~k].

Now, as we set c0 = 1, this minimisation is equivalent to solving

a linear system of equations with 3 unknowns, which can be imple-

mented efficiently using convolutions and pointwise multiplication.

Note that, in practise, this linear system of equations could be sin-

gular for certain voxels. However, as in [12], we shall assume these

cases are rare and deal with any erroneous estimates in the frame-

work outlined in Section 3.2. Finally, once a local all-pass filter has

been obtained for all the voxel in the image, we then use the formula

in (8) to retrieve a dense estimate of the 3D motion flow.

Importantly, although similar to the formulation of the 3D Lucas

and Kanade algorithm [7], the 3D LAP is not restricted to estimating

small displacement motion flows, and has been shown in 2D optical

flow estimation to be much more consistent [12] and achieve greater

accuracy in terms of approximation order [14].



LAP Algorithm

Post-Processing
Flow

+u

Warp

i

∆u

R

Moving Image, Fixed Image,

u

Image
Pre-Processing

Image
Pre-Processing

+1

I2 I1

i

Fig. 1. Diagram illustrating the poly-filter framework for the 3D

Local All-Pass (LAP) algorithm. Note that R is the half-support of

the LAP filters, ~ui is the estimate of the motion at the ith iteration

and ∆~u is the motion increment obtained from the LAP.

3.2. Poly-Filter Framework

Although the 3D LAP is capable of estimating large motion displace-

ment, it requires a filter basis with a large support to do so–the half-

support of the filters, R, is the upper bound on the displacement that

can be estimated. Thus, to estimate large motion displacements, we

must assume the motion flow is varying very slowly, which may not

be the case. Accordingly, we use a iterative framework to estimate a

broader range of motion flows. However, instead of an iterative re-

finement involving image downsampling, the framework keeps the

full image resolution and changes the support of the filters using the

parameter R; initially, large values of R are used to estimate the

large slowly varying parts of the motion flow, then smaller values of

R are used for the smaller faster variations in the motion. Thus, we

fit the LAP algorithm into a poly-filter framework as shown in Fig. 1.

The framework illustrated in Fig. 1 includes the following pro-

cessing steps: i) Image Pre-Processing–this step consists of pre-

filtering the images with a high pass filter to suppress image noise. ii)

Warp–a procedure whereby the moving image, I2, is warped closer

to the fixed image, I1, using the current estimate of the motion

flow. This warping is achieved using high quality interpolation,

in particular, fast shifted linear interpolation [15]. iii) Flow Post-

Processing–this step comprises two elements: Firstly, an inpainting

procedure [16] to replace erroneous motion estimates caused when

(10) is singular. These estimates are identified if their displacement

is greater than the current value of R. Secondly, 3D Gaussian filter-

ing is performed to smooth any errors not previously identified. The

filter parameters are σ = 2R and a (4R)3 window size.

4. RESULTS

We now compare the performance of the 3D LAP against two types

of image registration algorithms: Elastix [17] using a parametric

multiresolution cubic B-Spline model - often used in respiratory MR

motion estimation [18] - and the non-parametric Demons [19] algo-

rithm, which is comparable to optical flow methods. For the LAP,

we use 5 iteration with R = 16, 8, 4, 2, 1. All algorithms are run on

an Intel Core i7-3770 3.4 GHz with 16 GB RAM.

4.1. Synthetic Evaluation

We start by evaluating the algorithms on synthetic data where the

brightness consistency (1) is exactly satisfied – image 1 is gener-

ated by warping the image 2 using a known ground truth motion.

Under these conditions, we estimate two types of motion flows: a

constant flow and a smoothly varying flow. In both cases, the maxi-

mum displacement is 8 voxels and we apply these flows to two types

of images: Gaussian noise image (i.e. arbitrary image variation) and

a coronal whole-body 3D MR image. For reference, given the orig-

inal motion flow ~u and its estimate ~uest, performance is measured

in terms of the computation time in seconds, the End-point Error,

EE = ‖~u− ~uest‖2, in voxels and the Angular Error (AE), see [6]

for more details, in degrees. These errors are then averaged over the

whole motion flow (excluding boundaries).

The results of this synthetic evaluation are shown in the Table

1. From the table, we observe that the 3D LAP consistently outper-

forms the other algorithms when estimating the motion flow in these

synthetic conditions; it is roughly 10 times more accurate. More-

over, the table demonstrates that the LAP is significantly faster than

the other two; about 2 times faster than Elastix and about 7 times

faster than Demons. Importantly, unlike the others, this computation

time is achieved using only a Matlab implementation (no C++ code).

4.2. Respiratory Motion Estimation in MRI

Now, we present an initial evaluation of the 3D LAP on real data:

respiratory motion estimation on three in-vivo MRI datasets. The

evaluation is based on the accuracy of registering I2 to I1 using

the motion estimate obtained from each algorithm. This accuracy

is measured in terms of 1) lung segmentation – we perform auto-

matic lung segmentation, using a modified version of method [21],

on both I1 and the registered image Ir , and then measure the overlap

between the two segmentations using Dice coefficients [20]. 2) Peak

Signal-to-Noise-Ratio (PSNR), in dB, between I1 and the registered

image Ir .

The results of this evaluation, averaged over the three datasets,

are shown in the far right handside of Table 1. An example of the

estimated respiratory motion and registered image produced by the

LAP are shown in Fig. 2. From the table, we observe that the

LAP outperforms the other algorithms; it achieves a gain of 0.03,

or greater, in lung segmentation accuracy and a PSNR gain of over

1dB. Also, similar to the synthetic case, the LAP requires signif-

icantly less computation time. Finally, we observe that the LAP

does not estimate spurious motion outside the torso area and exactly

identifies the static spine area. Further images illustrating these re-

sults and comparing it against elastix and demons can be found at

https://sites.google.com/site/cwsgilliam/3D-LAP .

5. CONCLUSIONS

In this paper, we have presented a new algorithm for 3D motion es-

timation in volumetric images. The algorithm is based on a recent

filtering framework for optical flow estimation. Specifically, the al-

gorithm uses an all-pass filter to relate a local region in one image

to the corresponding region in another image and then extract a lo-

cal estimate of the motion from the filter. We demonstrated that this

algorithm is significantly faster and more accurate than two standard

non-rigid image registration algorithms when estimating a constant

and a smoothly varying motion flow in synthetic conditions. Finally,

we presented initial results for respiratory motion estimation on in-

vivo MRI data and showed that the flows produced by the LAP en-

abled more accurate motion compensation than the competition.
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