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ABSTRACT

Recently, sampling theory has been broadened to include a class of

non-bandlimited signals that possess finite rate of innovation (FRI).

In this paper, we consider the problem of determining the minimum

rate of innovation (RI) in a noisy setting. First, we adapt a re-

cent model-fitting algorithm for FRI recovery and demonstrate that

it achieves the Cramér-Rao bounds. Using this algorithm, we then

present a framework to estimate the minimum RI based on fitting the

sparsest model to the noisy samples whilst satisfying a mean squared

error (MSE) criterion - a signal is recovered if the output MSE is

less than the input MSE. Specifically, given a RI, we use the MSE

criterion to judge whether our model-fitting has been a success or a

failure. Using this output, we present a Dichotomic algorithm that

performs a binary search for the minimum RI and demonstrate that

it obtains a sparser RI estimate than an existing information criterion

approach.

Index Terms— Finite rate of innovation, model order, model-

fitting, sampling theory, recovery of Dirac pulses

1. INTRODUCTION

A crucial element in the acquisition of all real world signals is the

ability to convert a signal between the continuous and discrete-time

domains. Unsurprisingly, perfect reconstruction when converting

between these domains is highly prized. Recently, Vetterli et al [1]

demonstrated perfect reconstruction for a class of non-bandlimited

signals that possess finite rate of innovation (FRI). In other words,

they have a finite number of degrees of freedom per unit time.

Specifically, the authors showed that a periodic stream of Diracs and

a piecewise polynomial could be perfectly reconstructed using a sinc

or Gaussian sampling kernel.

Since then the sampling of FRI signals has received wide at-

tention and been extended to broader scenarios [2]. For example,

the use of polynomial and exponential reproducing sampling kernels

were proposed in [3], and reconstruction of piecewise sinusoidal sig-

nals examined in [4]. More recently, sampling and reconstruction of

FRI signals using arbitrary kernels was presented in [5] and recovery

from non-uniform samples was examined in [6, 7]. FRI theory has

also been generalised to spherical coordinate schemes in [8, 9] and

higher dimensional signals, such as multi-dimensional Diracs in [10]

and curves in [11]. As a result, FRI has found application in noisy

channel detection in ECG [12], reconstruction of MRI data [13], the

detection of spikes in neurophysiological data [14] and in ultrasound

imaging in [15]. A key requirement in all of the work outlined so far

is knowledge of the rate of innovation (RI) of the signal. In practice,

however, such knowledge is likely to be unknown thus an important

topic in FRI sampling is the estimation of this rate.
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Fig. 1. The FRI acquisition system. The continuous-time input sig-

nal x(t), in this case a sequence of K Diracs, is filtered by a sam-

pling kernel ϕ(−t/T ) and sampled at a period T .

In this paper, we present a novel framework to determine the

minimum rate of innovation of a noisy FRI signal. Instead of test-

ing all possible RI values and choosing one that achieves the mini-

mum MSE [16, 17], our framework is based on the following mean

squared error (MSE) criterion: an FRI signal has been successfully

recovered from its noisy samples if the MSE between the recov-

ered signal and the noisy samples is less than the input MSE (i.e.

original noise level). Given this MSE criterion, we adapt a recent

model-fitting algorithm [18] so that it reliably achieves the criterion

when the RI is correct. Consequently, we can use the algorithm

to judge a given RI value: if the criterion is met then a lower RI

may exist, whereas if the reverse is true then the RI needs to be in-

creased. Accordingly, we propose a Dichotomic algorithm that uses

the model-fitting method to perform an efficient binary search for the

minimum RI of a noisy FRI signal. We demonstrate that this algo-

rithm estimates a sparser RI than the standard Bayesian Information

Criterion [19] and that the model-fitting algorithm used reaches the

Cramér-Rao bounds.

The paper is organised as follows. In Section 2, we review the

FRI sampling theory relating to a periodic stream of Diracs in both

noiseless and noisy conditions. For a complete review of the state-

of-the-art see [20]. In Section 3, we examine the concept of using the

mean squared error (MSE) as a criterion for assessing the recovery

of an FRI signal. Using this MSE criterion, we adapt and analyse

a robust model-fitting method for FRI recovery in Section 4. Next,

using this model-fitting method, we present a novel algorithm to de-

termine the minimum RI in Section 5 and evaluate its performance

in Section 6. We then conclude in the final section.

2. SAMPLING FRI SIGNALS

The generic FRI sampling problem presented in [1] involves the re-

covery of a continuous-time FRI signal, x(t), from a set of N sam-

ples, {yn}
N−1

n=0
. These samples are obtained from an analogue-to-

digital acquisition system; the continuous-time signal x(t) is filtered

using a kernel, with impulse response ϕ(−t/T ), and then uniformly

sampled in time. Assuming a sampling period T , the samples we

obtain are

yn =

∫

∞

−∞

x(t)ϕ

(

t

T
− n

)

dt =

〈

x(t), ϕ

(

t

T
− n

)〉

, (1)
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Fig. 2. Example of recovering 2 Diracs in heavy noise (SNR =
0 dB). The blue dots indicate the recovered Diracs using maximum

likelihood over 500 realisations. Note that N = 21 samples.

where n = 0, 1, . . . , N − 1. Figure 1 illustrates this acquisition

system using a stream of Diracs (a standard FRI signal).

In this paper, we consider the specific case presented in [1, 2]:

the signal x(t) is a τ -periodic stream of K Diracs that are char-

acterised by a set of locations {tk}
K
k=1

and a set of amplitudes

{xk}
K
k=1

. This type of FRI signal has a rate of innovation of 2K/τ
and is defined as

x(t) =

K
∑

k=1

∑

l∈Z

xkδ (t− tk − lτ) . (2)

Note that the locations are restricted such that tk ∈ [0, τ [ . This

signal is then filtered with a sinc kernel with bandwidth B = 1/T .

Therefore, using the definition of the Dirichlet kernel (or τ -periodic

sinc function), the samples of (2) we obtain are

yn =
K
∑

k=1

xk
sin(πB(nT − tk))

Bτ sin(π(nT − tk)/τ)
. (3)

Note that T = τ/N in this framework thus N = Bτ as B =
1/T . Also, without loss of generality, we shall assume Bτ is an odd

integer.

Now, from [1, 2, 3], the standard framework for recovering the

signal x(t) in noiseless conditions is as follows. The first element is

to map the FRI samples yn in such a way that the resulting sample

moments sm have a power sum form. The mapping in question is

dependent upon the sampling kernel, e.g. an exponential reproduc-

ing mapping is used for arbitrary sampling kernel in [5]. In the case

of a sinc kernel, however, it is simply the discrete Fourier transform

of the samples:

sm =

N−1
∑

n=0

yne
−j2πmn/N =

K
∑

k=1

xke
−j2πmtk/τ , (4)

for m = −M, . . . ,M , where M = ⌊N/2⌋ and N = Bτ .

Given this power sum form, the locations {tk}
K
k=1

are deter-

mined using the non-linear annihilating filter method (also known as

Prony’s method). In brief, this method involves determining a filter

H whose coefficients h = [h0, h1, . . . , hK ]
T

satisfy h ∗ sm = 0,

where ∗ represents convolution. The locations of the Diracs are then

determined from the roots of the annihilating filter H . For further

details of the method see [2]. Finally, the amplitudes {xk}
K
k=1

are

determined via least mean squares. Note that N ≥ 2K + 1 samples

are required for perfect recovery.
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(a) {t1, x1} = {0.39, 2.52}
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(b) {t2, x2} = {0.65, 1.7}

Fig. 3. Comparing the performance of the model-fitting approach to

the Cramér-Rao (CR) bounds. The graphs show the standard devia-

tion of the position estimate as the noise level increases. Note that

K = 2 Diracs and N = 21 samples.

2.1. Model Mismatch

Unfortunately, in practice, the samples we obtain are corrupted by

noise or more generally model mismatch. We denote the noisy sam-

ples as ỹn and the noisy moments as s̃m. The presence of this noise

means that the annihilation equation, h ∗ sm = 0, is no longer valid.

FRI algorithms designed to overcome this issue with noise can

be split into four categories. The first category exploits the observa-

tion: a Toeplitz matrix formed from the moments sm will have a rank

of K. Accordingly, denoising is achieved by enforcing, in an itera-

tive manner, the K-rank Toeplitz structure onto the noisy moments

s̃m. This operation was performed using Cadzow denoising [21] in

[2], and using structured low rank approximation [22] in [23]. The

second category uses subspace methods, e.g. the matrix pencil [24],

to directly estimate the locations {tk}
K
k=1

. This type of approach

was first proposed for FRI in [25] and has been subsequently used

in [5, 26]. The third category covers stochastic methods for FRI re-

covery such as Gibbs sampling in [27] and a genetic algorithm in

[28].

The final category is based on model-fitting [18, 16]. Instead of

trying to solve the annihilation equation, the central concept is to fit

an FRI model to the noisy samples (or moments) and thus recover

an estimate of the FRI samples. In this paper, we adapt the model-

fitting algorithm in [18] in order to determine the minimum rate of

innovation of a signal.

3. MSE CRITERION FOR FRI RECOVERY

Often, the performance of FRI recovery algorithms is based on how

accurately the parameters {tk, xk}
K
k=1

have been estimated in com-

parison to the Cramér-Rao (CR) bounds [2, 5, 20]. However, this ac-

curacy may be unreliable, e.g. FRI algorithms meet the CR bounds

only up to a certain breakdown Signal-to-Noise-Ratio (SNR) [29].

Also, in practice, we do not have access to the original parameters.

Instead, we follow the concept introduced in [18] - assessing



FRI recovery based on a mean squared error (MSE) between the

reconstructed FRI samples, ŷn, and the noisy samples, ỹn, which is

termed MSER. In more detail, rather than just trying to minimise

this value, e.g. maximum likelihood estimation [30, 31], the authors

constructed the following criterion based on the input MSE, MSEIN,

between yn and ỹn:

Criterion: MSER < MSEIN. (5)

Thus, the aim when recovering an FRI signal is to minimise MSER

until the criterion above is satisfied.

In this paper, we want to use this criterion to determine the un-

known rate of innovation for an FRI signal. However, as (5) can be

satisfied with any RI that is larger than the original, we evoke the

concept of parsimony and aim to estimate the minimum RI required

to satisfy the criterion. A consequence of this approach is that de-

pending on the value of MSEIN we may estimate a RI lower than the

original, i.e. we lose Diracs. To understand how this could happen,

consider estimating the two Diracs shown in Figure 2. The figure

shows that under heavy noise corruption, SNR = 0 dB, the estimate

of the smaller Dirac is unstable even when performing maximum

likelihood estimation. In other words, the smaller Dirac is indistin-

guishable from the noise level MSEIN thus a sparser model is more

appropriate to approximate the FRI signal.

4. MODEL-FITTING USING A RATIO OF POLYNOMIALS

The central concept of the model-fitting approach presented in [18]

is that the noiseless samples yn can be expressed as a ratio of two

polynomials: a numerator P of order K − 1, with coefficients p,

and a denominator H (the annihilation filter) of order K, with coef-

ficients h. Therefore, in the presence of noise, the authors propose

minimising, subject to the MSE criterion, the fit between this model

and noisy samples ỹn:

min
H,P

N−1
∑

n=0

∣

∣

∣

∣

∣

ṽn −
P
(

ejωn

)

H(ejωn)

∣

∣

∣

∣

∣

2

, (6)

where ṽn = ỹne
−j2πnM/N and ωn = 2πn/N . The advantage

of this approach is that the FRI samples are completely defined by

the coefficients of the respective polynomials. To overcome the non-

linear nature of the problem, [18] used a iterative linear minimisation

strategy, which is similar to the Steiglitz-McBride algorithm [32] and

Sanathanan and Koerner algorithm [33].

Now, in this paper, we introduce two novel elements to the it-

erative minimisation to improve the robustness of the model-fitting

approach. First, we use a new solving constraint proposed in [16]:

h
H

0hi = 1. Thus, the minimisation we wish to solve at each iteration

is

min
Hi,P

N−1
∑

n=0

∣

∣

∣

∣

∣

Hi

(

ejωn

)

ṽn − P
(

ejωn

)

Hi−1(ejωn)

∣

∣

∣

∣

∣

2

, s.t. h
H

0hi = 1, (7)

where i represents the iteration number and h0 the initial value of the

coefficients. The benefit of this constraint is that the solution to (7)

is equivalent to solving a small linear system of equations (i.e. very

efficient and fast). The second element we introduce is the idea of us-

ing a sequence of random initialisations when trying to solve (7). In

other words, if, after a finite number of iterations, the minimisation

in (7) fails to satisfy the MSE criterion then a new initialisation is

chosen and the process is repeated. Although this may seem costly,

as we shall now demonstrate, few initialisations are needed in the

vast majority of cases.

Table 1. Analysis of the number of failure cases (out of 500,000

tests) of the Model-Fitting Algorithm as the number of random ini-

tialisations varies.

SNR (dB)

# Rand Init 20 18 16 14 12 10 8 6 2 4 0 -2

100 0 0 1 2 4 3 3 6 5 2 0 0

50 2 2 4 6 15 18 23 15 17 7 0 0

30 18 25 22 32 56 69 75 58 42 9 1 0

Q99.9 11 12 13 14 15 15 15 11 11 6 3 2

* FRI signal setting: K = 6 Diracs and N = 51 samples.

** Q99.9 = 99.9th Quantile of the number of initialisations required

Table 2. Estimating the number of Diracs for an FRI signal.

SNR (dB)

30 25 20 15 10 5

Dichotomic Algorithm 12 11 10 10 8 7

BIC [19] w. Cadzow denoising [2] 13 13 11 11 11 8

* FRI signal setting: K = 12 Diracs and N = 97 samples.
** Bold values indicate the minimum number of Diracs

4.1. Validating the Robustness of the Model-Fitting

We start this validation by comparing the performance of the model-

fitting algorithm to CR bounds when estimating an FRI signal com-

prising K = 2 and N = 21 samples. The resulting standard devia-

tion of the location estimate for each Dirac is shown in Figure 3. Im-

portantly, the figure demonstrates that the MSE criterion still allows

the algorithm to reach the CR bounds for high SNR values. In the

second validation, we examine the relationship between the number

of random initialisations and the number of times the model-fitting

algorithm fails to satisfy the MSE criterion. For this validation, we

use an FRI signal comprising K = 6 Diracs and N = 51 sam-

ples, and use a limit of 50 iterations for the fitting algorithm. Using

500,000 realisations of each noise level, the number of failure cases

for a varying number of random initialisations and SNR levels are

detailed in Table 1. The table shows that the number of failure cases

quickly decreases as the number of initialisations increases; in par-

ticular, the maximum 99.9% quantile of the number of initialisations

required never exceeds 15.

5. DETERMINING THE RATE OF INNOVATION

Given the model-fitting method described above and an accuracy

MSEIN, we now present our algorithm to determine the minimum

RI for an FRI signal. The central element of the algorithm is that our

model-fitting approach has a binary outcome - it either succeeds or

fails when trying to met the MSE criterion for a certain RI - and, as

demonstrated in the previous section, this outcome is very reliable.

Accordingly, we formulate a dichotomic algorithm to determine the

minimum RI using the success/failure of the model-fitting. More

precisely, we perform a binary search for the minimum K, i.e. the

minimum number of Diracs in the signal. Given that a set of FRI

samples can reconstruct at most L = ⌊N/2⌋ Diracs, then this search

spans the following range K ∈ [1, L]. The full details of this Di-

chotomic algorithm are given in Alg. 1. The advantage of using this

search method is that it requires at most I calls of the model-fitting

approach, where
I = ⌈log2 (L)⌉ . (8)
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(a) SNR = 30 dB
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(b) SNR = 15 dB
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(c) SNR = 5 dB
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(d) SNR = 30 dB
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(e) SNR = 15 dB
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(f) SNR = 5 dB

Fig. 4. Results of the Dichotomic algorithm when recovering an FRI signal, with unknown rate of innovation, under three different noise

levels: SNR = 30 dB, 15 dB and 5 dB. Graphs (a), (b) and (c) compare the noiseless FRI samples and the original Diracs to the recovered

Diracs. Graphs (d), (e) and (f) compare the noisy FRI samples to the reconstructions achieved by Dichotomic and BIC with Cadzow denoising.

Note that K = 12 Diracs and N = 97 samples.

Consequently, the dichotomic algorithm can very efficiently deter-

mine the minimum rate of innovation of a signal.

Algorithm 1 Dichotomic method to estimate the rate of innovation

of an FRI signal.

Inputs: Noisy samples ỹn and MSEIN

1: Set Kmax = ⌊N/2⌋+1, Kmin = 0, Ktest = (Kmax+Kmin)/2
and Kopt = ⌊N/2⌋.

2: Using Ktest and ỹn, run the model-fitting algorithm described

in Section 4 to obtain the reconstructed samples ŷn. Calculate

MSER

3: Check the criterion in (5). If true, set Kmax = Ktest and

Kopt = Ktest, else Kmin = Ktest.

4: Repeat steps 2 and 3 until Kmax −Kmin = 0.

5: Minimum rate of innovation is Kopt.

6. SIMULATIONS

We now analyse the performance of our Dichotomic algorithm

against the standard Bayesian Information Criterion (BIC) outlined

in [19]. To compute the BIC, we use Cadzow denoising from [2] to

obtain a proxy of the maximum likelihood estimation at each value

of K. Also, note that the BIC algorithm is applied to the noisy FRI

moments s̃m hence the required signal model is a sum of sinusoids.

To perform this analysis, we use an FRI signal comprising K =
12 Diracs and sampled using N = 97 samples. The corresponding

FRI samples are then subjected to a noise level varying from SNR

= 30 dB to 5 dB. Note that the model-fitting algorithm is set to use

50 random initialisations and has a limit of 50 iterations. The result-

ing estimates of the number of Diracs for both algorithms are shown

in Table 2 and three examples, at SNR = 30, 15 and 5 dB, are illus-

trated in Figure 4. In the figure, graphs 4(a), 4(b) and 4(c) compare

the noiseless FRI samples and the original Diracs to those recovered

using the Dichotomic algorithm. Whereas graphs 4(d), 4(e) and 4(f)

compare the noisy FRI samples to the reconstructions achieved using

the Dichotomic algorithm and the BIC with Cadzow denoising.

The results illustrate three main points: first, in benign noise

conditions, the Dichotomic algorithm is capable of determining the

true RI, and in turn the true FRI signal. This should not be surpris-

ing as it is built around the model-fitting algorithm that was shown

to reach the CR bounds in Section 4.1. Second, the Dichotomic al-

gorithm always obtains a lower estimate of the number of Diracs

and hence a sparser estimate of the noisy FRI samples. Finally, the

graphs in Figure 4 demonstrate that the Dichotomic algorithm con-

tinues to estimate the Diracs it find accurately and hence allows for

a good quality approximation of the FRI samples.

7. CONCLUSIONS

In this paper, we proposed a novel framework to find the minimum

rate of innovation of a noisy FRI signal. The framework is based on

using a MSE criterion to assess the recovery of an FRI signal in a

model-fitting algorithm. The idea is to find the sparsest model that

fits the noisy FRI samples whilst satisfying the MSE criterion. To

achieve this, we adapted an existing model-fitting algorithm so that

it reliably met the MSE criterion when the RI was correct. We also

demonstrated that the algorithm reached the Cramér-Rao bounds.

The key element is that the model-fitting method acts as a binary test

for arbitrary RI values - the criterion is either met or it is not. Ac-

cordingly, we presented a Dichotomic algorithm that used the model-

fitting method to perform an efficient binary search to determine the

minimum RI of a noisy FRI signal. Finally, we showed that the al-

gorithm is capable of obtaining the correct RI value when no noise

is present and obtaining the sparsest estimate of the RI when noise

corruption occurs.
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[5] J.A. Urigüen, T. Blu, and P.L. Dragotti, “FRI sampling with

arbitrary kernels,” IEEE Trans. Signal Process., vol. 61, no.

21, pp. 5310–5323, 2013.

[6] X. Wei, T. Blu, and P. L. Dragotti, “Finite rate of innovation

with non-uniform samples,” in Proc. Int. Conf. Signal Process.,

Commun. and Comput., Hong Kong, 2012.

[7] S. Mulleti and C. S. Seelamantula, “Periodic non-uniform sam-

pling for FRI signals,” in Proc. Int. Acoust., Speech and Signal

Process. (ICASSP), Brisbane, Australia, 2015, pp. 5942–5946.

[8] S. Deslauriers-Gauthier and P. Marziliano, “Sampling signals

with a finite rate of innovation on the sphere,” IEEE Trans.

Signal Process., vol. 61, no. 18, pp. 4552–4561, 2013.
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