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ABSTRACT 
The P300 speller is a standard paradigm for brain–computer 
interfacing (BCI) based on electroencephalography (EEG). 
It exploits the fact that the user’s selective attention to a 
target stimulus among a random sequence of stimuli 
enhances the magnitude of the P300 evoked potential. The 
present study questions the necessity of using random 
sequences of stimulation. In two types of experimental runs, 
subjects attended to a target stimulus while the stimuli, four 
in total, were each intensified twelve times, in either 
random order or deterministic order. The 32-channel EEG 
data were analyzed offline using linear discriminant 
analysis (LDA). Similar classification accuracies of 95.3% 
and 93.2% were obtained for the random and deterministic 
runs, respectively, using the data associated with 3 
sequences of stimulation. Furthermore, using a montage of 
5 posterior electrodes, the two paradigms attained identical 
accuracy of 92.4%.  These results suggest that: (a) the use 
of random sequences is not necessary for effective BCI 
performance; and (b) deterministic sequences can be used 
in some BCI speller applications. 
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INTRODUCTION 
A brain–computer interface (BCI) [37] is a device which 
translates brain signals into commands that control 
applications. Currently, scalp electroencephalography 
(EEG) is the predominant technology for realizing non-
invasive BCI systems, not only because of the portability of 
EEG systems, but also due to the continual progress being 

made in eliciting different types of prominent control 
signals in a range of EEG-based BCI paradigms (for a 
review, see [5]). 

The P300 speller, the focus of the present study, represents 
one of the most successful EEG-based BCI paradigms. 
Primarily, it exploits the fact that selective visual attention 
to a target stimulus can enhance the average electrical 
potential elicited, referred to as the event-related potential 
(ERP [14]), compared to that elicited by other stimuli that 
are either unattended or deliberately ignored. More 
precisely, it is known that when subjects respond mentally 
to rare, target events that are randomly interspersed among 
frequent, non-target events (the so-called oddball 
paradigm), the target events (the oddballs) tend to elicit a 
stronger ERP component, termed P300, than the non-target 
events [10, 33]. The component is so named as it is a 
positive deflection in electrical potential that peaks around 
300 ms post-stimulus, and is usually more prominent at 
central-parietal sites. In the original formulation of the P300 
speller by Farwell and Donchin in 1988 [11], a 6  6 matrix 
of symbols, analogous to a virtual keyboard, is displayed 
on-screen to the user as choices—henceforth, we shall refer 
to this speller as the matrix speller to distinguish it from 
other variants. To select a choice, the user is required to 
attend to that choice, while the rows and columns of the 
matrix are intensified successively in random order. 
Intensification of a row or column that contains the 
intended choice, by virtue of its rare and random occurrence, 
constitutes an oddball, so eliciting a stronger P300 than that 
elicited by intensification of other rows and columns. This 
difference forms the basis for the intended choice to be 
identified. Recent works confirmed the validity of the 
matrix speller as a practical BCI, through online assessment 
with both able-bodied [8, 13] and pathological groups [24, 
30]. Numerous optimization schemes have been explored in 
order to increase the communication rate [21], from 
adjusting the various system parameters associated with the 
speller (e.g., matrix size [2, 29], inter-stimulus interval (ISI) 
[29], method of intensification [16, 34, 35], stimulus type 
[15, 22], etc.) to improving the methods of signal 
processing and classification [6, 15, 20]. This collective 
effort has allowed the mean input rate for the matrix speller 
to increase from about 12 bits/min, as estimated offline in 
Farwell and Donchin’s original study, to about 23 bits/min, 
as determined online in a recent study [35]. In another line 
of study, other visual paradigms in which different 
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geometric configurations are used to arrange the choices 
have been tested. These included a four-choice paradigm in 
which four stimuli (‘YES’, ‘NO’, ‘PASS’, ‘END’) were 
successively presented centrally [28]; a 2D cursor control 
system, wherein four arrows were arranged on the 
periphery of a square [25]; and a two-level speller, referred 
to as Hex-o-Spell, in which six discs containing either one 
or multiple symbols were arranged in the corners of a 
hexagon [6, 36]. 

The present study has two primary motives, one theoretical 
and one practical. On the theoretical side, we examine one 
of the most important, but often understated, working 
assumptions of the P300 speller paradigm, namely, that the 
performance of the BCI is the best when the choices are 
intensified in a random order. Specifically, we compare the 
classification accuracies obtained for two paradigms—a 
random paradigm, in which the choices are successively 
intensified in random sequence; and a deterministic 
paradigm, in which the choices are successively intensified 
in fixed sequence (i.e., in the same order repeatedly). The 
use of random intensification sequences has two clear 
advantages: (a) rare targets in a random sequence are 
known to elicit a larger P300 than non-targets for almost 
every subject [10], providing a general basis for 
discriminating between the two types of stimuli; (b) 
although its amplitude is modulated by attention [26], the 
P300 can be elicited without active attention by visual 
oddballs, hence can be considered an automatic response 
[18, 31]. It is unclear, however, to what extent the utility of 
the P300 speller hinges on the use of random sequences for 
choice intensification. More precisely, is selective attention 
to target choices alone sufficient for the choices to be 
identified, regardless of whether the sequence of 
intensification is random or deterministic? Given that the 
P300 amplitude elicited by targets increases as the 
subjective expectancy towards the target occurrences 
decreases [9, 32], it is tempting to conclude that, since the 
target occurrences in a deterministic sequence are not only 
predictable, but also entirely known, the degree of 
subjective expectancy is maximal, which would in turn 
imply that the P300 amplitude elicited by the targets should 
be smallest under such circumstances. However, the 
findings regarding subjective expectancy have been 
obtained using random sequences, and there is no guarantee 
that they can be generalized to the case of deterministic 
sequences. In fact, a recent study reported that targets 
following a predictive sequence, i.e., one which allowed the 
subject to precisely learn of the exact times of occurrences 
of the targets, elicited a P300 component whose magnitude 
was not significantly different from that elicited by targets 
following a random, non-predictive sequence [12]. 
Although that study was not conducted within a BCI 
context, its findings clearly cast doubts on the assumption 
that the P300 amplitude elicited by the targets in 
deterministic sequences will be reduced. Adding to these 
uncertainties are the recent findings that ERP components 

other than P300 can also be used to discriminate targets and 
non-targets. In particular, for the matrix speller, these 
components include P2 [1, 19] and N2 [1, 20, 22, 36]. For 
paradigms in which the choices are arranged differently, 
these include a range of both earlier and later components, 
such as P1, N1, P2, N2 and N3, in Hex-o-spell [6, 36], and 
again, N2, when the stimuli are centrally presented one-by-
one [3]. Given that the modulation of such a wide range of 
components might not all hinge on the use of random 
sequences, it is clearly a valid question as to whether some 
of these components will be modulated in the case of the 
deterministic paradigm. 

Apart from the theoretical interests above, there are 
practical concerns over the use of random sequences, 
especially from the point of view of user-centered design. 
Thus far, there have been a number of unresolved 
weaknesses associated with the matrix speller. To attain 
high accuracy, it is necessary to visually intensify all 
symbols for multiple times, and then average the resultant 
responses to produce a robust signal for classification. The 
sustained visual stimulation of rows and columns, however, 
can cause discomfort [16, 17], and discourage long use. 
Intensifying symbols one at a time can reduce the 
discomfort, but this results in a reduction in the 
communication rate [13]. Intuitively, the random 
stimulation might contribute to such discomfort, since the 
randomness requires the user to maintain a high-level of 
concentration throughout the symbol-selection process, 
which may last up to 10 seconds. In contrast, if the 
sequence of stimulation is deterministic, users can vary 
their level of concentration accordingly during a selection, 
e.g., to relax between target stimulations. Thus, if the 
deterministic paradigm can achieve a similar accuracy as 
the random paradigm, it will provide the target users with 
an alternative system that is potentially more user-friendly. 

In the present study, as a starting point for studying the 
differences between using random and deterministic 
sequences within a BCI context, a simple four-choice 
paradigm similar to [25] in terms of geometrical 
arrangement was used. The results are of direct relevance to 
the Hex-o-Spell paradigm, whose accuracy has been 
demonstrated recently to be higher than that of the matrix 
speller [36]. 

EXPERIMENTAL METHODS 

Participants 
Six healthy Chinese subjects (S1–S6; 3 male and 3 female), 
aged 22–37 (mean 26.3), took part in the experiment as 
volunteers. Three subjects (S2, S4 and S5) had not 
previously sat an EEG experiment; the other three subjects 
(S1, S3 & S6) all had prior experiences with the P300 
speller paradigm using random sequences, but not using 
deterministic sequences. Informed consent was obtained 
from each subject. 
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Figure 2. 32-channel ActiveTwo EEG system.

 

Figure 1. An intensification of the choice “left”,  
printed in Chinese. 

Data Acquisition 
Each subject was seated in a quiet room 60 cm in front of a 
19’ LCD monitor (resolution: 1280  1024) that displayed 
the experimental stimuli as images. Each image was 
composed of four Chinese characters, arranged 
geometrically according to their respective meanings (left, 
up, right and down). Figure 1 exemplifies an intensification 
of the stimulus “left”. Each character is about 80 pixels 
wide (visual angle: 2.0°), with its center being 140 pixels 
(visual angle: 3.6°) from the center of the screen. 

EEG data were acquired at a sampling rate of 1024 Hz 
using a 32-channel ActiveTwo EEG system (BioSemi B. 
V., Amsterdam, The Netherlands). Figure 2 shows the 
positionings of the 32 pin-type, Ag/AgCl active electrodes. 
Two flat-type electrodes were attached over the left and 
right mastoids for offline re-referencing. Two additional 
electrodes, common mode sense (CMS) and driven right leg 
(DRL), positioned at C1 and C2 respectively, were used to 
complete a feedback loop, such that the average electrical 
potential over all electrodes was driven to as close a voltage 
as possible to the amplifier reference voltage [4]. Stimulus 
presentation was controlled using the software E-Prime 2.0 
(Psychology Software Tools, Inc.). 

Experimental Procedure 
Each subject completed two sets of four blocks for each of 
the two paradigms: random paradigm (RP) and 
deterministic paradigm (DP). Each block consisted of 24 
experimental runs. The details of a run are as follows: 

1. At the beginning of each run, subjects were shown a 
prompt (“Please attend to: X”) on-screen for 2 seconds, 
where X represented one of the four possible target 
choices (left, up, right and down), displayed in Chinese. 
Each choice was selected as the target choice exactly 

once every 4 runs. Thus, within a block, each choice 
was selected as target 6 times. 

2. An image showing the four choices in fully-lit color (as 
exemplified for “left” in Figure 1) was then presented 
for 2 seconds, after which all four choices were 
displayed in dimly-lit color for a further 2 seconds. 

3. The choices were then intensified in succession for 12 
sequences, each consisting of 4 intensifications. Each 
intensification consisted of the display of two images: 
the first image, in which one of the choices was fully-lit 
(while the others were dimly-lit), was displayed for 133 
ms; the second image, in which all choices were dimly-
lit, was displayed for 33 ms. The inter-stimulus interval 
(ISI) was therefore 166 ms. For convenience, a 
sequence of intensifications is referred to as a trial and a 
single intensification a sub-trial. 

4. For the RP runs, the choices were intensified in 
pseudorandom sequences, meaning that the following 
criteria were satisfied: (a) each choice was intensified 
exactly once in a trial; and (b) across trials, none of the 
choices was intensified twice consecutively. For the DP 
runs, the choices were intensified in fixed sequence, i.e., 
in the same order for all twelve trials. The order was 
selected to be “left, up, right & down”, i.e., clockwise 
starting from the Chinese character for “left”. 

5. Following the standard procedure for the matrix speller, 
subjects were asked to respond to every intensification 
of the target character by maintaining a mental count of 
the number of times the target character had been 
intensified within the run. 

6. The duration of each run was approximately 14 seconds, 
and there was a 3-second rest period between runs.  

Each block lasted for approximately 7 minutes, and there 
was an optional pause after 12 runs. The total time for one 
recording session was about 1 hour. 

The order of the two sets of blocks was counterbalanced 
across subjects, to control for any potential training effect. 
That is, for half of the subjects, the 4 RP blocks were 
administered first, while for the other half, the 4 DP blocks 
were administered first. 

DATA ANALYSIS 

To compare the projected performance attainable by the 
random and deterministic paradigms, the EEG data 
acquired for their corresponding runs were analyzed using 
the same procedure, to be detailed in this section. In brief, 
for both paradigms, four-fold cross-validation was 
performed for each subject. Specifically, for a given fold of 
analysis, the runs from three of the four blocks were used to 
train a classifier, which was subsequently applied to 
classify the target choices in the remaining block; the 
analysis was repeated four times such that each block 
served once as the testing data. 
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Preprocessing 
Six preprocessing steps, all handled using EEGLAB [7], 
were carried out in the order stated below. 

1. Filtering. The cutoff frequencies of the band-pass filter 
were set to 1.0 Hz and 40 Hz. 

2. Segmentation. The band-passed data were segmented 
into sub-trials of duration 833 ms. Each sub-trial started 
at 333 ms pre-stimulus, and lasted until 500 ms post-
stimulus. For each block, a total of 1152 sub-trials were 
extracted, corresponding to 288 and 864 sub-trials that 
were time-locked to a target and a non-target stimulus, 
respectively. These sub-trials are referred to as target 
sub-trials and non-target sub-trials. 

3. Re-referencing. Within each sub-trial, the time-series 
associated with the two mastoid electrodes were 
averaged, and subtracted from that associated with each 
of the 32 main electrodes. 

4. Baseline correction. For every sub-trial, a baseline 
potential between 333 ms pre-stimulus to 333 ms post-
stimulus was estimated for each electrode. Such a 
baseline period was chosen such that it covered one 
sequence of intensifications, and contained, on average, 
one target trial and three non-target trials for both 
random and deterministic blocks. 

5. Artifact rejection. EEG data are often contaminated by 
artifacts whose presence can be attributed to oculomotor 
activities, such as eye blinks and eye movement, which 
are reflected as large amplitude signals that are most 
prominent at anterior frontal sites. To reduce the effects 
of such outliers, sub-trials in which an absolute potential 
exceeding 50V was recorded from either of the two 
anterior frontal sites (FP1 and FP2; see Figure 2), within 
a time-window spanning 333 ms pre-stimulus to 500 ms 
post-stimulus, were rejected. The other sub-trials 
belonging to the same trial were also rejected. On 
average, the percentage of trials that remained were 83.0 
± 16.1% and 78.0 ± 17.4% for the random and 
deterministic paradigms, respectively. 

6. Downsampling. Each sub-trial was downsampled from 
1024 Hz to 128 Hz. 

Classification 
After preprocessing, machine-learning was applied to 
recognize the target choice in each run. Since artifact 
rejection had been applied, the number of trials available 
for training was different for each subject and each fold of 
cross-validation. On average, out of a maximum of 864 
trials, there were 717 and 674 trials remaining for training, 
for the random and deterministic paradigms, respectively. 

Feature selection 
The 2048 time-samples from 0–500 ms post-stimulus, 
corresponding to the 64 time-samples in the 32 electrodes, 
were first standardized, and were then used as the candidate 

features for constructing a feature vector. That is, given a 
sub-trial, the potential x measured at a particular electrode 
and time-point was transformed as follows: 

x’ = (x – x)/x (1) 

where x and x were the pooled estimates of the mean and 
standard deviation of x, based on the training data and 
without taking classes (targets vs. non-targets) into account. 
The time-window covered most of the ERP components 
previously reported to be modulated in the random 
paradigm, including P1, N1, P2, N2 and P300. To optimize 
the classification performance and to control for effects of 
over-fitting, the maximum number of spatiotemporal 
features (K) selected for inclusion was examined at 6 levels: 
50, 100, 200, 500, 1000, and 2048. Specifically, based on 
the training data, the two-sample t-statistics were obtained 
for every spatiotemporal feature, i.e., the corresponding 
potentials in target sub-trials and non-target sub-trials were 
subject to the Student’s t-test. The K most-discriminative 
features whose t-statistics had the largest absolute values 
were then selected [23] for the given fold of analysis. 

Linear discriminant analysis 
Fisher’s linear discriminant analysis (see [15], for 
example) was applied to the training data to obtain a 
binary classifier for discriminating between target and 
non-target sub-trials. The classifier corresponds to a 
decision hyperplane defined by: 

w  x – b = 0 (2) 

where x is a vector in the space of feature vectors, w a 
normalized vector of feature weights, and b a bias term. 
The sum w  x – b is referred to as the standardized 
discriminant function [27], which tends to be positive for 
targets and negative for non-targets. In this paper, the 
elements of w will be referred to as the standardized 
discriminant function coefficients. 

Calculation of classification performances 
To determine the minimum number of intensification 
sequences necessary to achieve accurate performance, 
runs were classified using the data associated with N trials, 
for N = 1,…,12. Specifically, the intended choice in each 
run was determined using the classifier obtained, and 
compared to the actual choice that was specified to the 
subject. For a given run, N scores were calculated for each 
choice c as follows: 

Score(N,c) = ,
1 1

N N

k,c k c
k k

s
 

 = w x , N = 1,…,12 (3) 

where sk,c represents the sub-score for the sub-trial that was 
timelocked to the intensification of the choice c in the kth 
trial within the run, and xk,c the feature vector associated 
with that sub-trial. The choice with the highest score was 
determined to be the target for the given run. Note that: (a) 
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Figure 3. Mean classification accuracies versus the number of trials employed for classification, for the random paradigm 
(left) and deterministic paradigm (right). Each curve was obtained using a different number of features  

(K = 50, 100, 200, 500, 1000, and 2048) for classification.

the constant, bias term b in (2) was not included in 
calculation of the sub-scores, since this term would have no 
effect on the relative scores across choices; (b) the sub-
scores associated with a rejected sequence were all replaced 
by zeros. Overall, the above calculations were performed 
for both training and testing runs, to evaluate whether or not 
there was serious problem of over-fitting. 

RESULTS 

Classification Performances 
Figure 3 summarizes the mean classification accuracies 
obtained with different number of trials (N = 1, ..., 12) for 
both the random paradigm (RP) and the deterministic 
paradigm (DP). Each curve represents the accuracies 
obtained for a particular number of features (K = 50, 100, 
200, 500, 1000 and 2048). Individual accuracies were 
averaged across the four folds of validations. As expected, 
the average accuracy generally increased with increasing N 
for both paradigms. Also, since it was evident that the 
average accuracy increased with K, only the cases for K = 
2048 are reported in detail from this point onward. Most 
importantly, accurate performance was obtained for both 
paradigms, with the accuracies for N = 3 and N = 12 being 
95.3 ± 1.7% and 99.0 ± 1.3% for RP, and the corresponding 
accuracies were 93.2 ± 4.9% and 98.3 ± 1.4% for DP. The 
training accuracies were also obtained for both paradigms. 
Although the testing accuracy for each N was lower than 
the corresponding training accuracy for both paradigms, 
such effects of over-fitting were not serious. Specifically, 
the differences between training accuracy and testing 
accuracy (training – testing) at N = 3 and N = 12 were 2.7 ± 
1.3 % and 0.2 ± 0.6% for RP, and 3.1 ± 2.2% and 0.4 ± 
0.5% for DP, respectively. 

The Spatiotemporal Features Underlying Classification 
In this sub-section, the basis for discriminating target and 
non-target sub-trials in the present experiment is 
demonstrated and characterized using three methods: (a) 
event-related potentials; (b) standardized discriminant 
function analysis; and (c) supplementary classification 

analyses, by montages (i.e., subsets of electrodes) and by 
time-intervals. For practical considerations, it is essential to 
determine whether accurate performance is attainable with 
only a small set of electrodes. Thus, our main focus is on 
locating the electrodes that are the most informative. The 
temporal aspects were also inspected systematically to 
determine which time-interval was the most informative. 

(a) Event-related potentials 
Figure 4 shows the grand-averaged ERP waveforms (i.e., 
average ERP waveforms across subjects) elicited by both 
targets and non-targets for both paradigms, as recorded over 
various positions on the scalp, taking all 4 experimental 
blocks into account for all subjects. In both cases, a 
prominent positivity peaking between 150–300 ms post-
stimulus was observed for the waveform elicited by targets 
but not by non-targets, over a broad range of electrodes, as 
highlighted in Figure 4 for the electrodes Fz, Cz and Pz. 
However, the grand-averaged ERP waveforms do not 
capture the individual differences across subjects. Thus, this 
positivity between 150–300 ms does not necessarily 
comprise the most informative features on a per-subject 
basis. To demonstrate the individual differences, the two-
sample t-statistics comparing the potential associated with 
every spatiotemporal feature in the target and non-target 
sub-trials were obtained for all six subjects. These t-
statistics are shown as feature maps in Figure 5 for both 
paradigms. A highly positive (or negative) value would 
imply that the mean potential for target sub-trials was 
significantly greater (or less) than that for non-target sub-
trials. Consistent with the grand-averaged ERP shown in 
Figure 4, prominent positivities within the 150–300 ms 
interval post-stimulus were observed for most subjects at 
many frontal, central and parietal locations, for both 
paradigms. However, for all subjects except S4, a 
prominent peak that emerged within the 100–200 ms 
interval post-stimulus was also observed at some occipital 
locations. For S1–S3, the peak was positive, while for S5–
S6, the peak was negative. 
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Figure 4. Grand-averaged event-related potential (ERP) obtained at 20 selected electrodes, for both  
the random (left) and deterministic (right) paradigms. The interval between 150–300 post-stimulus  

is highlighted in gray for Fz, Cz & Pz, to illustrate the positivity observed. 

 

Figure 5. T-value maps obtained for individual subjects, for both the random (left) and deterministic (right) paradigms. 
The t-statistics associated with the features for which the difference across the target and non-target conditions  

was non-significant (p>0.05) were displayed as zero-values. 

(b) Standardized discriminant function analysis 
The contribution made by each spatiotemporal feature for 
group separation can be ranked according to its associating 
coefficient in the standardized discriminant function [27]. 
To shed light on the nature of the primary features, the 

square of the coefficients were summed over time, to 
compare the contributions of different electrodes, and over 
space (i.e., electrodes), to measure the contributions of 
different time-points. Figure 6 shows, for both RP and DP, 
the variation in contributions (by percentage) along the 
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 Random Deterministic 

Sub. Oz O2 P7 P8 O1 PO3 T7 Oz P7 P8 O2 O1 PO3 PO4 

S1 10.5 7.9 9.9 4.8 6.1 3.1 4.1 9.9 9.4 7.7 7.1 5.2 3.1 2.7 

S2 11.9 7.1 8.1 7.3 5.8 4.7 2.7 7.7 8.4 7.8 5.9 6.0 2.3 4.6 

S3 10.5 8.5 5.6 8.7 4.0 3.5 3.3 12.6 7.5 9.8 6.5 5.6 2.1 3.2 

S4 2.1 3.9 11.8 9.5 3.0 5.4 4.0 2.0 11.6 8.4 3.2 2.3 11.8 3.0 

S5 13.1 9.1 3.5 8.8 4.3 5.7 1.8 12.7 5.3 7.0 7.5 4.3 5.0 3.3 

S6 7.6 12.2 8.4 4.0 5.5 3.2 3.4 12.3 6.7 2.8 11.4 5.5 1.8 3.7 

Avg. 9.3 8.1 7.9 7.2 4.8 4.3 3.2 9.5 8.2 7.3 6.9 4.8 4.3 3.4 

Table 1.   The relative contributions made by the 7 most informative channels, for both the random and deterministic 
paradigms. Note that the two sets of informative electrodes were largely the same. 

 Random Deterministic 

Sub. T1 T2 T3 T4 T1 T2 T3 T4 

S1 19.9 36.0 22.8 21.3 26.7 32.4 17.8 23.0 

S2 25.3 30.3 22.8 21.6 24.8 31.5 23.5 20.3 

S3 18.8 29.6 30.9 20.7 21.7 36.8 23.2 18.2 

S4 20.1 35.8 24.7 19.3 19.9 40.4 22.1 17.6 

S5 32.9 23.9 21.9 21.2 27.8 28.6 21.1 22.5 

S6 23.8 28.7 26.7 20.7 25.8 29.9 21.2 23.1 

Avg. 23.5 30.7 25.0 20.8 24.5 33.3 21.5 20.8 

Table 2.   The relative contributions made by different time intervals (T1: 0–125 ms; T2: 125–250 ms; T3: 250–375 ms; T4: 
375–500 ms), for both the random and deterministic paradigms. The value corresponding to the most informative interval per-

subject was shown in bold. Note that on average, T2 was the most informative for both paradigms. 

 

Figure 6. The contributions (by %) made by different 
electrodes, shown as a topomap (left), and different time-
points, shown as a time-series (right), as indicated by the 
sum of squares of the standardized discriminant function 

coefficients along the appropriate dimension. Top: 
random paradigm; bottom: deterministic paradigm. 

spatial and temporal dimensions, averaged across the six 
subjects and for the four folds of analyses. The results of 
the spatial analysis are shown in detail in Table 1 for the 
seven most important electrodes in each paradigm. Had the 
relative contributions been the same for the 32 electrodes, 
the total contributions made by each electrode would have 

been 3.125 %. Consistent with the similarities shown in 
Figure 6, the first six electrodes were the same across 
paradigms, namely Oz, O1, O2, P7, P8, and PO3—all 
posterior electrodes. Also, their order of importance was 
almost identical, except that O2, by proportion, was 
consistently found to contribute to the discrimination more 
for RP than for DP, for all six subjects. 

Table 2 shows the total contributions made by four time-
intervals (T1: 0–125 ms, T2: 125–250 ms, T3: 250–375 ms 
& T4: 375–500 ms), for each subject and for both 
paradigms. It is apparent that the feature weights tend to be 
concentrated in time-interval T2 (125–250 ms), exceptions 
being S3 and S5 for RP, wherein the feature weights were 
more concentrated in T3 and T1, respectively. These 
temporal characteristics suggest that the time-interval from 
125–250 ms was more responsible for the discrimination 
than the other time-intervals. 

(c) Supplementary classification analyses 
Two types of classification analyses were performed to 
characterize the spatiotemporal characteristics present in the 
two paradigms. In the first analysis (the spatial analysis), 
the data associated with 8 montages (see Figure 7), each 
comprising 5 electrodes, were used for classification. In 
half of the montages, a midline electrode (Fz, Cz, Pz or Oz) 
was included together with four neighboring electrodes; in 
the other half, a midline electrode was included together 
with four laterally arranged electrodes. 

115



 

Figure 8. Mean classification accuracies versus the number 
of trials employed for classification, for the random (left) 

and deterministic (right) paradigms. Top panel: each curve 
was obtained using different montages (M1–M8; see Figure 
7) for classification. Bottom panel: each curve was obtained 

using different time-intervals (T1–T4) for classification.

Given that the standardized discriminant function analysis 
in part (b) indicated an advantage for posterior electrodes, it 
was expected that the two montages M4 (Oz, O1, O2, PO3 
& PO4) and M8 (Oz, O1, O2, P7 & P8) would give rise to 
the most accurate performances. However, the standardized 
discriminant function is multivariate in nature, i.e., it 
indicates the importance of a set of variables in the presence 
of other variables. Thus, it is not necessary that the set of 
features carrying the most weights in the analysis in section 
(b) give rise to the highest classification accuracies when 
employed separately. In the second analysis (the temporal 
analysis), consistent with the analyses in part (b), the four 
time intervals (T1–T4) were examined by using the data 
from all 32 channels for classification. 

Figure 8 shows the results of the two analyses. For the 
spatial analysis, it is clear that the classification accuracies 
for both paradigms increased along the anterior-posterior 
axis, reaching a maximum at M4 and M8 (Figure 8, top 
panel). In particular, using 3 trials for classification, the 
accuracies for RP and DP were respectively 92.4 ± 8.4% 
and 92.4 ± 6.2% for M4, and 89.4 ± 10.0% and 88.4 ± 
14.5% for M8. For the temporal analysis, the classification 
accuracies peak at T2 (125–250 ms) for both paradigms 
(Figure 8, bottom panel). Thus, both results are consistent 
with the conclusions made in part (b). 

DISCUSSIONS 
In the random and deterministic paradigms, by using the 
32-channel data associated with 3 trials, target choices 
could be recognized at a mean accuracy of 95.3% and 
93.2%, respectively. Moreover, for both paradigms, the 
accuracy reached at least 90% for all six subjects by the end 
of the fourth trial. In addition, consistent with the 
indications from the standardized discriminant function 
analysis, the highest accuracy was achieved by a montage 
consisting of 5 posterior electrodes (Oz, O1, O2, PO3 & 
PO4), being 92.4% for both paradigms. Evidently, as far as 
the classification performance is concerned, neither 
paradigm has an apparent advantage over the other. 
Consistent results regarding the temporal aspects were also 
obtained for the standardized discriminant function analysis 
and the supplementary classification analyses; in both 
analyses, the time-interval between 125–250 ms was found 
to be the most informative for both paradigms. Such 

spatiotemporal distributions of primary features are not 
typically associated with P300 responses, which have a 
central-parietal distribution that peak around 300 ms post-
stimulus. They are, nonetheless, consistent with the 
growing evidence accumulated that the P300 responses do 
not necessarily comprise the primary features for 
classification in this type of visual paradigms. For this 
reason, some authors have advocated the more generic term 
of ERP-based visual speller [36]. In the present experiment, 
the early responses recorded at the posterior sites were 
found to be the primary features for both the random and 
deterministic paradigms, suggesting that these responses, 
unlike the P300 responses, might be qualitatively similar 
across paradigms, and might not be modulated by 
randomness in the intensification sequences. These 
conclusions have to be confirmed with a larger data set. 

In terms of classification performance, our results compare 
favorably with a previous study in which a four-choice 
paradigm was employed [28]. In that study, the best-
performing subject managed an accuracy of 75% at 4 trials, 
and 92% at 19 trials. A possible explanation for our much 
higher accuracies is our use of a much shorter ISI (166 ms, 
vs. 1,400 ms in [28]). In the original matrix speller study 

 

Figure 7. Eight candidate montages (M1–M8), each 
consisting of 5 electrodes, for which classification 

accuracy was obtained. 
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[11], a higher accuracy was observed at an ISI of 500 ms 
than at 125 ms, suggesting that a longer ISI could be helpful 
for good performance. On the other hand, as pointed out in 
[15], this conclusion might hold only within certain limits 
of ISIs. Our result that the classification performance is 
higher at an ISI of 166 ms (than at 1,400 ms) is consistent 
with this view. A systematic investigation of the ISI 
variable, after controlling for other confounding factors 
(such as geometrical configuration), is necessary to 
determine if any general conclusion could be drawn 
regarding the dependence of accuracy on ISI. 

Finally, of the two criteria (randomness and low target 
probability) necessary for an oddball sequence, the present 
study has investigated only the former criterion. For 
practical considerations, it is especially important to 
determine if the present results, obtained with a four-choice 
paradigm, can be extended to other paradigms that allow 
more choices to be selected. If so, the use of deterministic 
sequences may offer a more user-friendly alternative than 
random sequences for ERP-based visual spellers. Work is 
under way to test if the deterministic paradigm works as 
well as the random paradigm as the number of choices is 
increased, e.g., from 4 to 8. 

CONCLUSION 
The primary aim of the present study was to determine 
whether the use of random sequences for stimulus 
intensification is crucial for accurate performance in ERP-
based visual spellers by comparing the accuracies obtained 
when the choices were intensified either in random or 
deterministic sequences. It was found that the intended 
choices could be recognized at a mean accuracy of 95.3% 
and 93.2%, respectively, using the 32-channel data 
associated with 3 intensification sequences. The time-
interval from 125–250 ms post-stimulus was found to be 
the most informative. To assess the projected performance 
of a BCI system in which the number of electrodes 
available is expected to be limited, further analyses were 
performed using the data associated with 8 candidate 
montages, each comprising 5 electrodes. A comparable 
mean accuracy of 92.4% was achieved in both paradigms 
for the best montage, consisting of 5 posterior electrodes: 
Oz, O1, O2, PO3 & PO4. These results suggest that: (a) the 
use of random sequences is not necessary for effective BCI 
performance; and (b) deterministic sequences can be used 
in some BCI speller applications. 
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