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Abstract—We address the problem of localizing point sources
in 3D from boundary measurements of a wave field. Recently, we
proposed the sensing principle which allows extracting volumetric
samples of the unknown source distribution from the boundary
measurements. The extracted samples allow a non-iterative re-
construction algorithm that can recover the parameters of the
source distribution projected on a 2-D plane in the continuous
domain without any discretization.

Here we extend the method for the 3-D localization of multiple
point sources by combining multiple 2-D planar projections. In
particular, we propose a three-step algorithm to retrieve the
locations by means of multiplanar application of the sensing
principle. First, we find the projections of the locations onto
several 2-D planes. Second, we propose a greedy algorithm to pair
the solutions in each plane. Third, we retrieve the 3D locations
by least squares regression.

Index Terms—Sensing principle, finite-rate-of-innovation
(FRI), wave equation, source imaging, inverse problem

I. INTRODUCTION

Inverse source problems have wide applications in signal
processing and biomedical imaging. Among these, recon-
struction of sparse source distributions from boundary mea-
surements have attracted great attention of many researchers
recently. In particular, several mathematical models are studied
extensively, such as Poisson’s equations for identification of
current dipolar sources in electroencephalography (EEG) [1],
the steady-state diffusion equation for the determination of a
light source function in bioluminescence tomography (BLT)
[2] and the wave equation for the recovery of heat absorption
profile in photoacoustic tomograpghy (PAT) [3]–[5].

Many advanced techniques for the recovery of source
distributions aim at super-resolution by exploiting sparsity
properties of the underlying source distribution. For example,
the low-dimensional signal subspace plays a key role for
the MUSIC-type of algorithms to estimate the location of
the absorbing regions [6]. Moreover, compressive sensing
approaches have been studied recently for radar imaging
applications [7].

Here, we focus on the inverse source problem for the wave
equation from the boundary measurements of the field. The
problem is ill-posed and thus challenging, and we exploit an
explicit sparsity prior on the source model (i.e., a collection
of point sources) that makes the problem well-posed [8]. Re-
cently, we proposed the sensing principle that allows extracting
volumetric samples of the source distribution with a set of well
chosen sensing functions [9], [10]. These samples are then

used in a non-iterative FRI-like framework [11] to retrieve
the projected positions of the source distribution onto a 2-D
plane. The key component of the method is the selection of the
sensing functions which are used to extract the samples of the
source function through surface integration. We have shown
before that the localization of the selected families of sensing
functions plays a key role in the accuracy of the estimation
[9], [10]. Here we propose a multiplanar application of the
sensing principle using a well-localized sensing functions for
different projections planes. In particular, we propose a three-
step algorithm to retrieve the locations of the pointwise source
distribution. First, we extract the projected positions onto
several 2-D planes. Second, we propose a greedy approach
to pair the solutions between projection planes. Third, we
reconstruct the 3-D locations from the 2-D paired solutions
by a least squares regression.

The paper is organized as follows. In Section 2, we intro-
duce the setting of the problem. In Section 3, we provide the
key components of the sensing principle. In Section 4, we
develop the proposed method for a 3-D measurement setup.
The feasibility of the proposed method is demonstrated with
numerical experiments in Section 5.

II. PROBLEM FORMULATION

Consider an acoustic source distribution inside a volume Ω.
In an acoustically homogeneous medium, the inhomogeneous
wave equation is described by

∇2p(r, t)− 1

c2
∂2p(r, t)

∂t2
= −H(r, t), (1)

where H(r, t) is a general representation of a spatiotemporal
source distribution which we further decompose as the product
H(r, t) = A(r)I(t), where A(r) is the spatial part and I(t) is
the temporal part of the source. In particular, we assume that
the temporal behaviour is usually foreknown and we focus on
the spatial part of the source function that we characterise as
a pointwise source distribution;

A(r) =

M∑
m=1

cmδ(r− rm), (2)

where cm ∈ R is the intensity, and rm ∈ Ω is the location of
M point source. With this parametrization the source distri-
bution is completely described by the positions and intensities
of M sources with 4M parameters. Hence, the goal of the



inverse problem is to reconstruct the point sources from the
measurements of the wave field p(r, t) on the surface of the
volume, ∂Ω.

III. SENSING PRINCIPLE

Let us consider the time harmonic solutions of (1)

∇2P (r, ω) +
ω2

c2
P (r, ω) = −I(ω)A(r), (3)

which is the inhomogeneous Helmholtz equation. Without
loss of generality, we now consider a specific frequency ω.
Based on the second Green’s identity, we propose the sensing
principle that provides a link between the source function and
the measurements such that

〈Ψ, A〉 = (4)
1

I(ω)

{

∂Ω

[P (r, ω)∇Ψ(r, ω)−Ψ(r, ω)∇P (r, ω)] · e∂ΩdS,

where I(ω) is a constant that we use to compensate the
surface integral and Ψ(r, ω) is a sensing function satisfying
the homogeneous Helmholz equation in the the volume

∇2Ψ(r, ω) +
ω2

c2
Ψ(r, ω) = 0 in Ω. (5)

This way the sensing principle allows to extract volumetric
samples of the source distribution through a surface integral
of the sensor measurements of the acoustic field. Finally, we
use the extracted samples by the sensing principle, i.e., 〈Ψ, A〉
the so-called generalised samples to retrieve the parameters of
the source function.

IV. ALGORITHM

We propose a three-step algorithm to estimate the 3-D
location of the point sources from the observed acoustic field
by means of applying the sensing principle.

A. Planar Projection

Fig. 1: Poles of the sensing functions in the horizontal XY-
plane and after rotation in the X′Y′-plane.

In the first step, we choose a set of sensing functions Ψ
satisfying (5) in a general X′Y′Z′coordinate system:

Ψn(Rr, ω) =
ejωz

′/c

x′ + jy′ − an
, an /∈ Ω, (6)

where an’s are the poles of the sensing function on X′Y′-plane
located at equidistant angles an = aejnθ, n ∈ J0, N−1K, |a| is
greater than the radius of Ω excluding the volume and θ is an
arbitrary angle. The matrix R represents rotation matrix of the
coordinate system along the X-axis in a standard right-handed
cartesian coordinate system given byx

′

y′

z′


︸ ︷︷ ︸

r′

=

1 0 0

1 cosα sinα

0 − sinα cosα


︸ ︷︷ ︸

R

xy
z


︸︷︷︸

r

. (7)

In Fig. 1, we provide a visualisation for the rotation of the
poles of the sensing functions on the X′Y′-plane.

Then, we define a polynomial, Q(X) whose roots are the
positions of the point sources on the X′Y′-plane:

Q(X) =
M∏
m=1

(X − s′m) =

M∑
k=0

qkX
k where s′m = x′m + iy′m

(8)
where qM = 1. With this selection, the extracted samples of
the source function (4) turns into an annihilable equation as
follows:

〈Ψn, A〉 = µn =

M∑
m=1

cme
iωz′m/c

x′m + iy′m − an
(9)

=

∑M−1
m=0 c

′
me

imnθ∏M
m=1(x′m + iy′m − an)

=

∑M−1
m=0 c

′
me

imnθ

Q(an)
,

where c′m are complex-valued coefficients that do not depend
on n nor θ. The sequence µn ·Q(an), for n ∈ J0, N − 1K for
some N ≥ 2M + 1 (i.e., innovation rate given by the FRI
sampling [11]), can be annihilated by a known FIR digital
filter h = {hk} for k ∈ J0, N − 1K characterized as

H(z) =
∑
k∈Z

hkz
−k =

M−1∏
k=0

(1− eikθz−1),

where the zeros of the filter are chosen as the poles of (6)
on the plane, i.e., eikθ for k ∈ J0,M − 1K. Finally, solving
this annihilation system for the coefficients of the polynomial
Q(X), the point sources’ positions on the X′Y′-plane are found
to be the roots of the polynomial Q.

B. Pairing of the Projections

In the second step, we first define an inclusion map so that
we can treat the projected points as in R3. Let f : R2 → R3

be an inclusion map defined as

f

(
r′i =

[
x′i
y′i

])
:=

 x′i
y′i cos(αi)

y′i sin(αi)

 (10)



for each projection point ri′ on a plane defined by the normal
ni = RT

i n0 (See Fig.2) where Ri is the rotation matrix of
the coordinate system for αi (7) and n0 = [0, 0, 1]T is the
normal vector of the standard XY-plane. We propose a naive
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Fig. 2: Visualization of the closest pair of points algorithm
for M = 2 points projected onto different planes Pi with the
normals of the planes ni

solution for the closest pair problem for two separated sets
of points between consecutive projection planes. Indeed, the
main idea is to compute the Euclidean distance between all
the pairs of points in two sets and then pick the pair with
the smallest distance. Let us consider we have P projection
planes defined by Pi i ∈ J0, P − 1K where each plane has
M points to be paired. We assume an initial labelling for the
points in plane P0 with 1 to M . Then, to find the closest pair
of points p ∈ Pi and q ∈ Pi−1, we compute the distances
between all the M ×M pairs of points and we pick and label
the pair with the smallest distance and exclude it from the
set. We repeat the same approach for the remaining points.
We provide a summary of the method in Algorithm 1 and a
visualisation in Fig 2. The method is computed in O(n2) but
can be solved it in O(n log n) using the recursive divide and
conquer approach [13].

Algorithm 1: Closest Pair of Points
Data: p ∈ Pi, for i ∈ [[0, P − 1]]
Result: lp: Labels of p ∈ Pi
begin

Initialize: Label l0: 1 to M
for i=1 to P-1 do
P ∗i = Pi
while P ∗i is not empty do

p∗ = argmin
p∈P∗i

min
q∈Pi−1

||f(p)− f(q)||2

P ∗i =P ∗i \{p∗}
Label li : Match the labels of p∗ and q

C. 3-D Reconstruction of the Positions

In the third step, we solve for the following least squares
problem

r̂m = argmin
rm

P−1∑
i=0

||Di||2, ∀m ∈ J1,MK (11)

where ||Di|| is the distance of the solution rm to the line that
passes through the point f(r′i) and parallel to ni (See Fig. 3):

||Di||=
||(rm − f(r′i))× ni||

||ni||
,

where × represents the cross product of the two vectors and
||ni||= 1. In Fig. 3, we provide a visualisation of the solution.
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Fig. 3: Visualization of the 3-D reconstruction by least square
regression of the distance between the true point (red) and the
lines (dashed) defined by the projection points and the normals

V. EXPERIMENTAL RESULTS

We performed numerical experiments to validate our re-
construction algorithm. Specifically, we considered a spherical
detection geometry having a radius of 8 cm that is typical for
the imaging of breast tissue in a PAT setting using a temporal
illumination profile given as I(t) = ∂/∂t(e−t

2/2σ2

)/
√

2πσ2.
The speed of sound is taken as constant c = 1500m/s and we
assumed that there are 1342 sensors uniformly positioned on
the surface. We focused on the localisation accuracy of our
method.

We define the reconstruction error per point source by

RMSE =

√√√√ 1

M

M∑
i=1

||rm − r̂m||2

where rm is the true position, r̂m is the estimated position.
In Fig. 4, we compare the reconstruction accuracy using the
frequency samples at 200 KHz of the sensor data at 20 dB
for varying number of projections such that the angle between
the planes is π

2P . In Fig. 4, we demonstrate the improvement
obtained by increased number of projections in which we
achieve about mm reconstruction accuracy among a radius
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Fig. 4: RMSE results of an average of 50 independent reali-
sations for varying number of projections for M = 3, 5 and 7
using the frequency samples at 200 KHz of the sensor data at
20 dB

of 8cm. We conclude that multiplanar approach performs
accurate localization once the sensing principle is applied on
sufficient number of projection planes, i.e., small projection
angle between the planes.

VI. CONCLUSIONS

In sum, we proposed a non-iterative algorithm for the de-
tection of point absorbers in three dimensional wave equation
from the boundary measurements. The key component of the
method is the selection of the sensing function that is used
to extract the generalized samples by the surface integral.
Here, we demonstrate that a well localised family of sensing
functions with the proposed framework to build the solution
in 3D from 2D projections can achieve accurate results even
for the low SNR regime.

For simplicity of the discussion, we provide the method that
combines the projected solutions using a simple rotation of the
coordinate system along the X-axis only. However, a general
rotation in three dimension can be obtained from three basic
rotation matrices along X,Y, and Z-axes. Therefore, the idea
can be easily generalized to a framework that combines the
projections from any rotation as a composition of the rotations
along the three axes.

Sparse models for the inverse source problems from overde-
termined boundary field measurements remain as a promising
research area of further research. The current work focuses
on the systems governed by the wave equation, however the
framework can be applied to similar problems encountered in
different domains. Moreover, we also consider possibility and
feasibility of the proposed method in real applications.
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