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ABSTRACT

Reconstruction of point sources from boundary measurements is a
challenging problem in many applications. Recently, we proposed
a new sensing and non-iterative reconstruction scheme for sys-
tems governed by the three-dimensional wave equation. The points
sources are described by their magnitudes and positions. The core of
the method relies on the principles of finite-rate-of-innovation, and
allows retrieving the parameters in the continuous domain without
discretization.

Here we extend the method when the source configuration shows
joint sparsity for different temporal frequencies; i.e., the sources
have same positions for different frequencies, not necessarily the
same magnitudes. We demonstrate that joint sparsity improves upon
the robustness of the estimation results. In addition, we propose a
modified multi-source version of Dijkstra’s algorithm to recover the
Z parameters. We illustrate the feasibility of our method to recon-
struct multiple sources in a 3-D spherical geometry.

Index Terms— Wave equation, finite rate of innovation, source
localization, joint sparsity

1. INTRODUCTION

The linear inverse source problem has wide applications in biomed-
ical imaging. Several mathematical models can apply, such as Pois-
son’s equation for electroencephalography (EEG) [1], the heat equa-
tion for diffusive source localization [2], or the wave equation for
acoustic sources [3]. Here, we focus on boundary measurements
for systems goverend by the wave equation. The problem is ill-
posed and thus challenging, and additional assumptions about the
sources are required. Modern work has studied sparsity constraints,
for example, compressed sensing approaches for radar imaging [4]
or compact representations in adapted transforms [5, 6, 7].

Here we exploit an explicit sparsity prior on the source model
(i.e., a collection of point sources) and cast the reconstruction into
the finite-rate-of-innovation (FRI) framework, as initially proposed
in our preliminary work [3]. In the first step, we compute general-
ized samples to “sense” the sources using well-chosen test functions
to relate the boundary measurements with useful volumetric infor-
mation on the sources. Second, in the reconstruction step, we apply
the FRI principle to these generalized samples to obtain the sources’
locations, which is a non-linear estimation problem, by an equivalent
root-finding problem.

This work was supported in part by the Swiss National Science Foundation (under
the grants 2053530-132808 and PP00P2-123438) and in part by the Center for Biomed-
ical Imaging (CIBM) of Geneva-Lausanne Universities and Hospitals, and the EPFL.

The contributions of this paper are twofold. First, we extend the
method with a joint-sparsity constraint in order to improve the ro-
bustness of the estimation. Second, we propose to use a modified
Dijkstra’s shortest-path algorithm to solve for the axial (Z) compo-
nent of the source locations.

The paper is organized as follows. In Section 2, we introduce
the problem formulation and the parameters to be estimated for the
source recovery problem. In Sects. 3 and 4, we provide the details of
the joint reconstruction algorithm. In Section 5, the reconstruction
performance for single and joint annihilation algorithms is compared
and we conclude in Section 6.

2. PROBLEM FORMULATION

Consider an unknown point source distribution within a volume Ω
that creates a field according to the wave equation and measured on
the boundary of a given volume, ∂Ω. Observing the time harmonic
solutions of the wave equation of the form u(r, t) = eiωtU(r) and
p(r, t) = ejωtP (r), we obtain the inhomogeneous Helmholtz equa-
tion

∇2U + k2U = −P, (1)

where U and P are the field and the source terms, respectively, and

k2 = ω2

c2
is the wave number with ω being the angular frequency of

the wave.

In order to well-pose the source recovery problem [8], we further
parametrize the source distribution such that

P (r) =
M∑

m=1

cmδ(r− rm), (2)

where cm ∈ R, M ∈ Z
+ are the magnitudes, and rm ∈ Ω the

locations of the sources. We restate the problem as reconstruction
of source positions and magnitudes knowing the pressure field only
on the boundary by U |∂Ω and ∇U |∂Ω for some finite number of
temporal frequencies.

3. SENSING AND ANNIHILATION
We provide the generalized sensing method to extract the volumet-
ric source information from the boundary field measurements and
develop a non-iterative joint-reconstruction algorithm based on joint
sparsity and finite rate of innovation.

3.1. Generalized Sensing

We propose a sensing method to retrieve the samples of the vol-
umetric source distribution, termed generalized samples, from the

1575978-1-4577-1858-8/12/$26.00 ©2012 IEEE ISBI 2012



boundary measurements of the generated wave field with the care-
fully selected sensing functions.

According to the second Green’s identity, the generalized sam-
ples of the unknown source distribution can be obtained by

〈Ψ, P 〉 =
∮
∂Ω

(Ψ∇U − U∇Ψ) · ∂S, (3)

where ∂S is in the outward surface normal direction, provided that
the sensing function satisfies

∇2Ψ = −k2Ψ within Ω. (4)

The proposed family of sensing functions satisfying (4) are charac-
terized by

Ψl [n] =
eiklz

x+ iy − an
, an = aeinα, an �∈ Ω, (5)

where l represents the chosen frequency with the corresponding
wavenumber kl, and an’s are the poles of the sampling function lo-
cated on the XY-plane with equidistant radial angles, α, outside the
domain Ω. This choice of the sensing functions allows us to robustly
reconstruct the projections of the locations of the point sources on
the XY-plane by annihilating the generalized samples. For the joint-
sparse source model, we simply extract generalized samples using
the same family of test functions, but at different frequencies.

3.2. Joint Annihilation

The generalized samples extracted according to (3) satisfy the equal-
ity

μl[n] = 〈Ψl[n], P 〉 =
M∑

m=1

cmeiklzm

sm − an
=

∑M−1
m=0 c′meimnα

∏M
m=1(sm − an)

(6)

for the selected wavenumber kl, l ∈ �1, L� and n ∈ �1, N�, and
sm = xm + iym. Hence, it is clear that the exponential terms in
the numerator of (6) can be annihilated by an FIR digital filter, h,
characterized by

H(z) =

M−1∏
r=0

(1− eirαz−1) =
M∑
r=0

hrz
−r. (7)

Defining a polynomial for the denominator of the (6) as X(an) =∏M
m=1(sm − an) =

∑M
q=0 xqa

q
n with xM = 1, the annihilation

equation has the following form

{μl[·]X(a·)} ∗ h = 0, for all l ∈ �1, L�. (8)

In terms of matrix representation, (8) can be formulated as:

Alx = HDlVx = 0, (9)

where H is an (N −M) × N Toeplitz matrix representing the an-
nihilating filter h, Dl is an N × N diagonal matrix of generalized
samples, V is an N × (M +1) Vandermonde matrix of poles of the
sensing function; i.e., an and x is the unknown vector of M+1 poly-
nomial coefficients with xM = 1. For the noiseless case, the system
Alx = 0 has (N −M) equations with M unknowns. Hence, we
conclude that for this setup we need at least N = 2M generalized
samples.

For joint reconstruction of the source locations, we extend the
above linear system of equations so as to incorporate multiple gener-
alized samples taken at different frequencies, i.e., from the following
set of linear subsystems

HDlVx = 0 (10)

...

HDLVx = 0,

we construct a large system of the form

Ax = BCVx = 0, (11)

where B is an L(N −M) × LN block diagonal matrix of H ma-
trices, C is an LN × N matrix formed by vertically concatenating
Dl matrices. From (11), we conclude that it is possible to jointly
reconstruct the point source locations.

3.3. Model Mismatch and Denoising

The linear system Ax = 0 is solved in the least-squares sense to
extract the source locations on XY-plane. For the noiseless case, the
method achieves exact solution, but in practice the measurements
are corrupted with noise. Hence, one needs to compensate for the
measurement noise model mismatches.

Assuming that the generalized samples are corrupted with com-
plex AWGN; i.e., μ̂l[n] = μl[n]+v[n] where v denotes the complex
noise, we propose to denoise the generalized samples with the fol-
lowing Cadzow-like denoising scheme [9].

As mentioned earlier, the subsystem matrix, Al = HDlV, is of
rank M in the noiseless case. In the proposed denoising scheme, we
exploit this fact to denoise generalized samples extracted for dif-
ferent frequencies separately. In order to allow noise and model
mismatch, we first assume higher number of sources M̃ > M to
construct H̃ and Ṽ. We then obtain the corresponding unitary ma-
trices, i.e., H̃0 and Ṽ0 to precondition the system matrix such that

Ãl0 = H̃0D̂lṼ0.

Algorithm 1: Cadzow-like Denoising

Data: D̂l,(Corrupted with cAWGN) and assume Higher
Number of Source, M̃ > M

Result: Denoised Generalized Samples Dl

begin
Ãl0 ←− H̃0D̂lṼ0;

while rank(Ãl0) > M do
Â←− argmin

rank(Â)=M

||Â− Ãl0||F (1)

Dl ←− argmin
D
||H̃0DṼ0 − Â||F (2)

Ãl0 ←− H̃0DlṼ0;

We propose two-step iterations for the Cadzow-like denoising
scheme. First, we find the low-rank approximation of Ãl0 mini-
mizing an objective (1) in Algorithm 1 by forcing the last M̃ −M
singular values of it to be zero. Second, we extract the denoised
generalized samples as a minimization of the objective (2) in Al-
gorithm 1. We continue the iterations until the (M + 1)th largest

singular value of Ãl0 is smaller than a predefined threshold.
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4. MAGNITUDE AND Z-AXIS ESTIMATION

4.1. Magnitude Recovery

In order to completely describe the source distribution, one still has
to determine the z-positions of the source locations and the magni-
tudes. The estimation of these parameters are done with the same
set of generalized samples. Considering (6) with the XY-locations
estimated in the previous step we obtain another linear system

μl[n] =
M∑

m=1

cmeiklzm

sm − an
, n ∈ �1, N�, (12)

where μl[n] are the denoised generalized samples and sm = xm +
i + ym are the estimated XY-plane positions. In matrix notation,
(12) can be represented as Efl = μT

l with the following explicit
representations:

⎡
⎢⎣

1
s1−a1

· · · 1
sM−a1

...
...

...
1

s1−aN
· · · 1

sM−a1

⎤
⎥⎦

E

⎡
⎢⎣

c1e
iklz1

...

cMeiklzM

⎤
⎥⎦

fl

=

⎡
⎢⎣
μl(1)

...
μl(N)

⎤
⎥⎦

=μT
l

.

The solution to this system is given by fl = E†μT
l , where † rep-

resents the pseudoinverse of a matrix. Here, it is possible to find a
frequency-variant magnitude solution depending on the problem for-
mulation. Assuming that the magnitudes are also jointly sparse the
joint reconstruction of the magnitude of L set of generalized samples
will be the mean of the magnitude solution sets:

C =

⎡
⎢⎣
c1
...

cM

⎤
⎥⎦ =

1

L

L∑
l=1

|fl| . (13)

4.2. Periodicity Cancellation for the Z-Solutions

For the Z component of the source locations, the problem is harder
than that of the magnitude. The main difficulty is that the phase of
Pl is periodic. Therefore, for each zm, we have a set of periodic
solutions within the domain of Ω as follows:

Z(l) =

⎡
⎢⎣
z1(l)

...
zM (l)

⎤
⎥⎦ =

arg(fl) + 2πnl

kl
, ∀

⎧⎪⎨
⎪⎩
nl ∈ Z

zm(l) ∈ Ω

l = 1 : L

. (14)

We note that if the common period of L solutions lies outside of
the domain Ω, then there is a unique solution which has the same
value among all possible solution sets from Z(1) to Z(L) for the
noiseless case. Therefore, we propose a solution for the z-location
as a modified multi-source Dijkstra’s algorithm for closed paths as
the minimization of the following objective:

n̂l = argmin
l

L∑
l=2

∣∣∣∣ arg(f1(m)) + 2πn1

k1
− arg(fl(m)) + 2πnl

kl

∣∣∣∣

Z =

⎡
⎢⎣
z1
...

zM

⎤
⎥⎦ =

1

L

L∑
l=1

arg(fl) + 2πn̂l

kl
(15)

We assume that the selected frequencies are sorted in increasing
order such that the set zm(1) is the smallest set among other L − 1

possible solution sets and set as the initial reference set R. At each
iteration, we compare the reference set (R) with a search set (S),
which is the solution to the next higher frequency. We chose a set
N⊂S and N≡R such that each element in R has its closest equivalent
in set N. Then the set D keeps the distance between the two closest
sets and set T keeps the corresponding solutions. Once we select
the solutions sets among all frequencies we choose mean of the set
having the shortest path as our solution. The proposed method is
summarized in Algorithm 2.

Algorithm 2: Modified Dijkstra’s Shortest Path

Data: Phase Solution, arg(Pl) of Eq.12 for l = 1 : L
Result: Z-location of the source, Z = [z1, · · · , zM ]T

begin
for m ∈ �1,M� do

R0 ←− zm(1)
T←− R0

R←− R0

for l ∈ �1, L− 1� do
S←− zm(l + 1)
N←− ExtractMin(R,S)
D←− |R-N|
T←− T+N
R←− N

D←− D + |D-R0|
zm = 1

L
T(min(D))

5. EXPERIMENTAL RESULTS

We perform numerical experiments to asses the performance of our
new reconstruction algorithm for a variety of source configuration
by observing the localization quality of joint reconstruction with re-
spect to varying number of frequencies. Our settings are inspired
by from photoacoustic imaging [10], which is an imaging modality
with promising biomedical applications including early detection of
breast cancer and small animal imaging.

For the experimental setup, we consider a spherical volume of
radius 1cm where the source points are generated randomly. More-
over, we assume that the generalized samples are available from the
field measurements on the boundary of the volume of interest with
a frequency range of 1MHz to 1.2MHz with a 50kHz separation
(f = f0 + (0 to L) × Δf with f0 = 1MHz and Δf is 50 kHz)
which is reasonable in the photoacoustic applications. Here the sep-
aration step-size is chosen such that the beating frequency between
the distinct frequencies guarantees a unique solution within the do-
main Ω. Once we have the generalized samples, we further degrade
them with cAWGN to evaluate the performance of the localization
and denoising algorithms.

In the first experiment, we compare the observed estimation
variance of the parameters with respect to the theoretical limits
given by CRLBs for a single acoustic source. In Fig. 1 (a),(b) and
(d), we compare the performance of the estimations along X and
Y axes and the magnitude for single and multiple frequency recon-
struction, respectively. As expected, the joint-reconstruction method
performs better as we have more frequency measurements. For the
Z-localization, as the joint-reconstruction algorithm needs at least
two different set of measurements to choose the proper period of
the solution, we only compare for multiple frequencies in Fig. 1
(c). Here, it is clear that by adding more jointly sparse generalized
samples, the algorithm can reach to CRLB for a lower SNR level.
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Table 1: RMSE (10−4) per source for 100 realizations of randomly gener-
ated sources using generalized samples (20dB). L indicates the number of
frequencies.

number of sources number of sources

L 1 3 5 L 1 3 5

2 13.1 13.2 13.6 4 9.4 11.5 13.1

3 11.0 12.3 13.2 5 6.4 9.3 12.1

For the second experiment, we consider only the localization er-
ror for multiple source estimation problem in terms of RMSE per
source. From Table 1, we see that the average reconstruction error
can be decreased by jointly reconstructing more frequencies. This
result is especially interesting to control the error per source in local-
izing more source points in the model. Finally, we provide a sample
scatter plot for localization of three sources with two and five fre-
quencies in Fig. 2. We observe the XY-plane estimations on Figs. 2
(a) and (c) and XZ-plane estimations on Figs. 2 (b) and (d) where
we clearly observe the periodicity behavior in estimation along the
Z-axis.
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Fig. 1: Comparison of CRLBs for a single monopole source configuraiton
(dashed line) with observed variance (solid line) for 100 realizations and dif-
ferent number of frequencies. (a) Variance of estimated X locations. (b) Vari-
ance of estimated Y locations. (c) Variance of estimated Z locations. (d) Vari-
ance of estimated magnitude.

6. CONCLUSIONS

We investigated the joint-sparsity source model for the localization
of point sources from boundary measurements of a 3D wave field.
We proposed an extension to our previous sensing and reconstruc-
tion algorithm incorporating multiple measurements of the field at
different frequencies. Comparison between the estimation perfor-
mance and the theoretical limits, revealed that the proposed joint-
sparse sensing and reconstruction algorithm achieves the CRLBs for
lower SNR levels than the previous algorithm which only considers
single frequency measurement.

The results for multiple source localization showed that joint-
sparsity source models can be very useful in robust estimation of the
parameters for low SNR regime. We believe that our method has a
promising application in improving the detection of multiple source
points in generation photo/thermo acoustic imaging.
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Fig. 2: Scatter plot of estimated locations for 50 realizations using general-
ized samples (20dB) at multiple frequencies: L = 2 (top); L = 5 (bottom).
The (+) indicate the ground truth and (·) the estimated locations

Sparse source models for the localization of source distribu-
tions from overdetermined boundary field measurements remains as
a promising research area of further research. Moreover, we also
consider the possibility and feasibility of the proposed method for
photoacoustic imaging applications.
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