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ABSTRACT
We investigate the use of quasi-interpolating approxi-

mation schemes, to construct an estimate of an unknown
function from its given discrete samples. We show theoreti-
cally and with practical experiments that such methods per-
form better than classical interpolation, for the same com-
putation cost.

1. INTRODUCTION

Resampling plays a central role in signal and image process-
ing. This operation is required whenever a signal has to be
evaluated at some locations where it is unknown, e.g. in
order to perform sampling rate conversions or to rescale,
translate or rotate digital images. In all cases, the problem
amounts to recovering, from known samples, a continuously-
defined estimate of an unknown function, which is then re-
sampled on a new grid. Shannon’s theory [1] provides an
exact way to recover a function from its samples, assum-
ing it is bandlimited and sampled accordingly. However,
the slow decay of the sinc interpolator, and the ringing ar-
tifacts it may introduce, prevent its practical use. Instead,
practitioneers rely on convolution with more localized ker-
nel functions having compact support, like bilinear, bicubic,
or cubic spline interpolators [2].

Once the kernel has been chosen, interpolation consists
in computing the unique function, in the reconstruction space,
that goes through the known samples. This paper aims at
showing that this is not the best way for estimating a func-
tion from its given discrete samples. Instead, we put for-
ward the use of quasi-interpolating schemes, which are well
known among approximation theoreticians (e.g. [3]), but
have found small support in practical applications. In this
paper, we present some elements of approximation theory
which are exploited to design efficient prefilters, that have
to be applied to the data prior to continuous model fitting.
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2. APPROXIMATION IN SHIFT-INVARIANT
SPACES

2.1. Formulation of the problem

Given the discrete samples fk = f(k), k ∈ Z of an un-
known function f(x) ∈ L2(R), we want to find the function
fapp(x) which best approximates f(x), that is which mini-
mizes ||fapp − f ||2L2

=
∫

R

(
fapp(x)− f(x)

)2
dx.

In the sequel, we denote H(z) =
∑

k∈Z
hkz−k the z-

transform of any digital filter (hk) and ĥ(ω) = H(ejω) its
Fourier transform. We also define the Fourier transform of
any function g(x) ∈ L2 by ĝ(ω) =

∫
R

g(x)e−jωxdx.

If f(x) is bandlimited, i.e. f̂(ω) = 0, |ω| ≥ π, Shan-
non’s theorem dictates that f(x) can be recovered exactly:

f(x) =
∑
k∈Z

fk sinc(x− k) ∀x ∈ R (1)

where sinc(x) = sin(πx)
πx . However, this method is not used

in practice because of the slow decay of sinc(x), which
makes Eqn. (1) sensitive to noise. Moreover, if f(x) is not
bandlimited, the reconstruction is not exact and ringing ar-
tifacts may appear. Instead, we look for a reconstruction in
a linear shift-invariant space Vϕ = Span({ϕ(x − k)}k∈Z)
generated by the translates of a template function ϕ(x) [4]:

fapp(x) =
∑
k∈Z

ck ϕ(x− k) ∀x ∈ R (2)

where the coefficients (ck) are obtained by discrete filtering:

(ck) = (fk) ∗ (pk). (3)

In the following, we suppose that ϕ has compact sup-
port, which makes Eqn. (2) computationally attractive. The
method is equivalent to performing an expansion like in
Eqn. (1): indeed, if we define the kernel ϕeq(x) by
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ϕeq(x) =
∑
k∈Z

pk ϕ(x− k) ⇔ ϕ̂eq(ω) = p̂(ω)ϕ̂(ω) (4)

then fapp(x) =
∑

fk ϕeq(x−k). Shannon’s reconstruction
is retrieved if ϕ(x) = ϕeq(x) = sinc(x) and P (z) = 1.

2.2. interpolation and quasi-interpolation

One speaks about interpolation when fapp(x) is required to
verify fapp(k) = fk. Then ϕeq(x) is an interpolator, i.e.
ϕeq(k) = {1 if k = 0, 0 else}. In this case, the prefilter
(pk) in Eqn. (3) has to be chosen as

P (z) =
1∑

k∈Z
ϕ(k) z−k

. (5)

On the other hand, the approximation scheme is quasi-
interpolating of order N if the interpolation condition holds
only when f(x) is a polynomial of degree ≤ N − 1. This is
a weaker constraint than interpolation, which adds freedom
in the choice of (pk). We will show that this filter can be
chosen so that the error ‖fapp − f‖L2 is reduced in com-
parison with the interpolating case. The next section shows
how to evaluate quantitatively this error.

3. EVALUATION OF THE APPROXIMATION
ERROR

A remarkable result from [4] is that the error ‖fapp − f‖L2

can be predicted very accurately by the quantity

εf =

√
1
2π

∫
|f̂(ω)|2E(ω) dω. (6)

The error kernel E(ω) characterizes the approximation
method. Let us define ϕd, the dual function of ϕ, by

ϕ̂d(ω) =
ϕ̂(ω)
âϕ(ω)

(7)

where the discrete autocorrelation filter aϕ = (ak) is de-
fined by ak =

∫
R

ϕ(x)ϕ(x − k). Then the error kernel can
be written as (the star is for complex conjugation):

E(ω) = 1− |ϕ̂(ω)|2
âϕ(ω)︸ ︷︷ ︸

Emin(ω)

+ âϕ(ω)
∣∣p̂(ω)∗ − ϕ̂d(ω)

∣∣2︸ ︷︷ ︸
Eres(ω)

. (8)

Emin(ω) is a lower bound for E(ω), describing the er-
ror when fapp is the orthogonal projection of f upon Vϕ,
which is optimal but unattainable in our case (because f is
unknown). We first have to choose ϕ(x) so that Emin(ω) is
minimized. As in practice most signals, and particularly im-
ages, are essentially lowpass, Emin(ω) must vanish as much
as possible near ω = 0. More specifically, we enforce

Emin(ω) = O(ω2L) (9)
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Fig. 1.
√

E(ω) when ϕ = βn is a centered B-spline.

where the integer L should be chosen as large as possible.
This is equivalent to the well-known Strang-Fix conditions
[5]:

ϕ̂(0) �= 0 and ϕ̂(k)(2nπ) = 0 for
{

n �= 0
k = 0 . . . L− 1

(10)
in which case ϕ is said to have approximation order L. Be-
cause the support of ϕ has a size T ≥ L, with equality iff
ϕ is a MOMS [6], L has to be chosen small enough so as to
keep a reasonable computation cost.

In Fig. 1, we depict
√

Emin(ω) and
√

E(ω) in the in-
terpolating case described by Eqn. (5). ϕ(x) is chosen as
the centered B-spline βn(x) of degree n, which is a MOMS

with order L = n + 1. It satisfies β̂n(ω) =
(

sin(ω/2)
ω/2

)n+1

and ak = β2n+1(k). As we can see, the approximation
quality depends directly on L, as confirmed by experiments
in [2]. The difference between approximation by orthog-
onal projection and by interpolation is significant, particu-
larly for a small order L. We now detail how this difference
can be reduced if we use a non-interpolating approximation.

4. DESIGN OF OPTIMAL PREFILTERS

4.1. Quasi-interpolating all-pole filters

If the interpolation constraint is relaxed, the filter (pk) can
be chosen so that Eres(ω) is arbitrarily small in the Nyquist
band ω ∈ ]− π, π[, especially around ω = 0. We want that

E(ω) ∼ Emin(ω) (11)

in order for fapp(x) to be as well behaved as the optimal
orthogonal projection of f upon Vϕ, near ω = 0. This
amounts to require that

p̂(ω) = ϕ̂d(ω)∗ + O(ωN ) (12)
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with N ≥ L + 1. As soon as N ≥ L, it is known that the
approximation scheme is quasi-interpolating of order L [4].

In [4], the shortest FIR filters satisfying N = L + 1 in
Eqn. (12) were designed. In this paper, we propose instead
to use all-pole IIR filters, which arise naturally in this con-
text because the interpolation prefilters are of this type (see
Eqn. (5)).

It is essential to notice that a convolution with an IIR
all-pole filter 1/H(z) can be performed by a fast algorithm,
which takes essentially the same time as a FIR convolution
by H(z) [7]. When using the resampling algorithm defined
by Eqns (2),(3), most of the time is consumed by the mul-
tiple evaluations of ϕ(x), while the prefiltering step has a
minor contribution, as confirmed in Tab. 2. That is why ϕ
must have minimal support.

So, we are looking for a filter with the form P (z) =
1/Q(z), where (qk) is a FIR filter, so that Eqn. (12) is satis-
fied. If ϕ(x) is symmetric, we choose a symmetric filter, so
that the whole process has linear phase. Note that Eqn. (10)
implies that âϕ(ω) = |ϕ̂(ω)|2 +O(ω2L). Then, if N ≤ 2L,
Eqn. (12) can be rewritten as

q̂(ω) = ϕ̂(ω) + O(ωN ). (13)

4.2. Practical examples

As an example, we give in Tab. 1 the prefilters obtained for
spline approximation using ϕ(x) = βn(x) with the most
used degrees n = 0 . . . 3. We choose N = L + 1 in Eqn.
(12), or N = L + 2 in the case where the interpolating
prefilter in Eqn. (5) already satisfies Eqn. (12) with N =
L + 1, which is the case for even values of n.

Let us detail the design of a prefilter for the piecewise
linear approximation corresponding to ϕ = β1, which has
approximation order L = 2. We have the development:

ϕ̂(ω) = 1− 1
12

ω2 + O(ω4). (14)

We are looking for a filter q̂(ω) = 1 − u + u cos(ω)
such that q̂(ω) = ϕ̂(ω) + O(ω3). This yields u = 1

6 , and
Q(z) = 1

12z−1 + 5
6 + 1

12z.
On Fig. 2 we show the spectrum of the corresponding

quasi-interpolator (see Eqn. (4)), which is closer to the ideal

ϕ(x) Q(z) = 1/P (z)

β0(x) − 1
24z−1 + 13

12 − 1
24z

β1(x) 1
12z−1 + 5

6 + 1
12z

β2(x) − 7
1920z−2 + 67

480z−1 + 233
320 + 67

480z − 7
1920z2

β3(x) − 1
720z−2 + 31

180z−1 + 79
120 + 31

180z − 1
720z2

Table 1. Proposed prefilters for spline quasi-interpolation.
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Fig. 2. ϕ̂eq(ω) corresponding to piecewise-linear interpola-
tion and quasi-interpolation.

lowpass filter than the interpolator β̂1(ω). Then its use will
introduce much less blurring, as confirmed in Fig. 3.

5. EXPERIMENTS

To demonstrate the effectiveness of the proposed approach,
we perform 17 rotations by a 2π/17 angle on standard im-
ages, using different interpolators and quasi-interpolators.
The process is applied in a separable way, and we use clas-
sical mirror boundary conditions.

The results are shown in Tab. 2. In the first table, the
first column is for bilinear interpolation (ϕ = β1, P (z) =
1), the second one is for shifted interpolation, an alterna-
tive method proposed in [8] with ϕ(x) = β1(x − τ), τ =
1
2 (1 −

√
3

3 ) and P (z) = 1/(1 − τ + τz−1). The third and

(L=2) int. int. shift. quasi. FIR quasi. IIR
Lena 29.40 34.87 35.47 36.81

Barbara 23.84 25.96 26.13 27.32
Baboon 21.98 24.40 25.17 26.23

Boat 26.33 30.59 31.37 32.52
Camera 23.29 26.54 27.49 28.64
Peppers 28.89 33.08 34.36 35.41

time 1 U 1.05 U 1.1 U 1.1 U

Bicubic int. Sp-3 int. Sp-3 quasi.
Lena 35.29 38.69 39.81

Barbara 25.95 28.99 30.55
Baboon 25.01 27.63 28.64

Boat 31.21 34.07 35.00
Camera 27.33 30.18 31.23
Peppers 34.22 36.83 37.64

time 2.3 U 2.6 U 2.7 U

Table 2. PSNR after 17 rotations by 2π/17 on images, us-
ing interpolating and quasi-interpolating methods.
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fourth columns are for bilinear quasi-interpolation, with the
prefilters being respectively P (z) = −1

12 z−1 + 7
6 + −1

12 z
proposed in [4] and our new IIR filter proposed in Tab. 1.

The second table shows the results for cubic spline (i.e.
ϕ = β3, denoted Sp-3) interpolation and proposed quasi-
interpolation. The well-known bicubic interpolation pro-
posed by Keys [9] (having order L = 3) is also evaluated.

As we see from these numerical results as well as in
Fig. 3, the proposed quasi-interpolators provide significant
improvements over their interpolating counterparts, with al-
most no increase in computation time, given in arbitrary
unit. Bilinear quasi-interpolation performs better than bicu-
bic interpolation, and is twice faster. These experiments val-
idate the theoretical design and show the relevancy to mini-
mize the error kernel E(ω).

6. CONCLUSION

In this work, we demonstrated the relevance of using quasi-
interpolation for resampling purpose. We designed IIR opti-
mal filters allowing approximation with essentially the same
performance as the optimal least-squares solution. The gain
in comparison with classical interpolation has been shown
theoretically using the error kernel, and practically by rota-
tion experiments, which validate the proposed approach.
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Fig. 3. Part of the image obtained after 17 rotations by
2π/17 with bilinear interpolation and quasi-interpolation.
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