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Discretization of continuous (analog) convolution operators by direct sampling of the convolution kernel and use
of fast Fourier transforms is highly efficient. However, it assumes the input and output signals are band-limited, a
condition rarely met in practice, where signals have finite support or abrupt edges and sampling is nonideal.
Here, we propose to approximate signals in analog, shift-invariant function spaces, which do not need to be
band-limited, resulting in discrete coefficients for which we derive discrete convolution kernels that accurately
model the analog convolution operator while taking into account nonideal sampling devices (such as finite
fill-factor cameras). This approach retains the efficiency of direct sampling but not its limiting assumption.
We propose fast forward and inverse algorithms that handle finite-length, periodic, and mirror-symmetric signals
with rational sampling rates.We provide explicit convolution kernels for computing coherent wave propagation in
the context of digital holography. When compared to band-limited methods in simulations, our method leads to
fewer reconstruction artifacts when signals have sharp edges or when using nonideal sampling devices. © 2013
Optical Society of America

OCIS codes: (070.0070) Fourier optics and signal processing; (090.1995) Digital holography; (070.7345)
Wave propagation; (100.2000) Digital image processing; (110.7410) Wavelets.
http://dx.doi.org/10.1364/JOSAA.30.002012

1. INTRODUCTION
Continuous convolution operations are central to model many
optical systems and physical phenomena, such as wave propa-
gation and diffraction, with applications ranging from optical
image formation to digital holography and X-ray scattering
[1–4]. However, since computers can only handle discrete sig-
nals, implementation of such continuous convolution opera-
tors requires an accurate mechanism to switch between
analog and discrete signals.

Convolution operations are commonly discretized by sam-
pling both the analog input signal and the convolution kernel,
with classical sampling theory justifying this approach when
the signals at hand are band-limited [5]. However, such an ap-
proach suffers from multiple drawbacks. First, most practical
signals are not well approximated by band-limited signals, es-
pecially when they have finite support or sharp edges, leading
to Gibbs oscillations. Second, traditional approaches offer
little flexibility regarding the sampling rates of the input and
output signals. Third, from a practical perspective, sampling
devices, such as digital cameras, gather light over extended
areas as opposed to infinitely small points assumed in the
ideal sampling model.

Here, we address the problem of approximating continuous
convolution operations within the context of generalized
sampling theory [6–8], where analog signals are represented
by linear combinations of shifted basis functions that need
not be band-limited. The expansion coefficients in such

representations are spatially localized and correspond to dis-
crete signals that can readily be processed by a computer. The
formalism also accommodates band-limited signals and there-
fore includes the traditional approach as a special case. How-
ever, in addition to the slow-decaying sinc function—the
underlying building block tied to band-limited signals—a
variety of basis functions can be used to model analog signals
with finite support or discontinuities (e.g., piece-wise constant
signals).

Our approach consists of (a) approximating the input signal
in an analog space using shifted basis functions adapted to the
signal, (b) computing an exact analog convolution, and
(c) sampling the result by approximating (projecting) it again
using suitable basis functions. This allows characterizing the
input and output signals by a set of discrete coefficients,
which are related by a discrete convolution. The design, there-
fore, retains the efficiency of the traditional approach and can
readily be implemented using fast Fourier transforms (FFTs).

While our approach applies to any general convolution op-
erator, we focus on operators related to wave propagation
problems. Specifically, we consider scalar diffraction theory
for wave propagation, the Rayleigh–Sommerfeld diffraction
integral and its Fresnel approximation [1,2]. In this context,
sampling strategies have been explored previously for Fresnel
fields [9–12] and more general classes of transforms that
include the Fresnel transform (FrT) as a special case [13–15].
In the particular case of the FrT, implementations are either
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convolution-based or involve two chirp multiplications and a
single FFT [3,4], the latter thereby providing some computa-
tional advantage (though applicable only in the far-field region
[16–18]). The single FFT approach also has its input and out-
put sampling rates as parameter-dependent variants. Methods
to address this issue [19,20] require zero-padding the original
signal and thereby offset the computational advantage of the
approach. The generalized form of the convolution-based

approach, which we propose in this paper, is related to the
Fresnelet formalism [21], with which it shares the basis func-
tion representation. Here, however, we do not require that the
underlying functions yield multiresolution spaces.

The paper is organized as follows. In Section 2, we intro-
duce the challenges related to discretizing continuous convo-
lution operations, specifically in the context of coherent
propagation of monochromatic scalar wave fields. We derive
our method in Section 3 and discuss its applicability to digital
holography in Section 4. In Section 5, we evaluate our
algorithm in a series of simulation experiments and conclude
in Section 6.

2. PROBLEM FORMULATION
We consider linear and shift-invariant (SI) systems, character-
ized by an impulse response, h�x�, x � �x; y� ∈ R2, where the
output g�x� is given by the continuous-space (analog)
convolution between the complex-valued input signal f �x�
and h�x� as

g�x� �
Z
R2

f �ξ� · h�x − ξ�dξ ≜ f ⋆h�x�: (1)

When f is band-limited, with maximal frequency less than
1∕�2Δx� and 1∕�2Δy� in the x and y directions, respectively,
it is possible to retrieve samples of the continuous convolu-
tion, g�k� � g�kΔx;lΔy� from uniformly spaced samples
of f , f �k� � f �kΔx;lΔy�, k � �k;l� ∈ Z2, via the discrete
convolution

g�k� �
X
m∈Z2

f �m� · hBL�k −m� ≜ f � hBL�k�; (2)

where hBL�k� � hBL�kΔx;lΔy� and

hBL�x� �
1

ΔxΔy
�h�x�⋆sinc�x∕Δx�sinc�y∕Δy�� (3)

is a band-limited version of h�x�. However, this straightfor-
ward implementation no longer holds if f is not band-limited.
In this paper, we consider samples of functions f that are not
necessarily band-limited, and use them to estimate samples of
g. Our approach retains the general form of a discrete convo-
lution as in Eq. (2), but we replace hBL�k� by a digital filter that
is ideally adapted to the problem.

Before proceeding further, we recall the definitions
of the scalar wave propagation operators. The Rayleigh–
Sommerfeld diffraction integral [2], which relates the scalar
field of a propagating wave (having wavelength λ) across
two parallel planes separated by a distance z, is a convolution
operation as in Eq. (1), with the kernel

hRS;λ;z�x� �
z
jλ

·
exp

�
j 2πλ

���������������������
‖x‖2 � z2

p �
‖x‖2 � z2

; (4)

whose frequency response is given by [2]

ĥRS;λ;z�ν� � exp
�
j2πz

��������������������
1

λ2
− ‖ν‖2

r �
; ν � �νx; νy�: (5)

In the Fresnel approximation, h has the form [2]

hFrA;λ;z�x� �
exp

�
j 2πλ z

�
jλz

· exp
�
jπ
λz

‖x‖2
�
; (6)

which, unlike the Rayleigh–Sommerfeld kernel hRS;λ;z, is
separable:

hFrA;λ;z�x� � −j exp
�
j
2π
λ
z
�
· hFrT;τ�x� · hFrT;τ�y�; (7)

where the 1D kernel hFrT;τ�x�, with its associated parameter
τ � �����

λz
p

, is defined as

hFrT;τ�x� �
8<
:
exp

�
j π4
�
· δ�x�; τ � 0

1
τ exp

�
jπ x2

τ2

�
; otherwise

(8)

with its frequency response given by

ĥFrT;τ�ν� � exp
�
j
π

4

�
· exp�−jπτ2ν2�; ν ∈ R: (9)

This leads to the definition of the unitary 1D FrT [21] of f :

~F τf f g�x� � ~f τ�x� � f ⋆hFrT;τ�x�; x ∈ R: (10)

Being a unitary transform, the convolution kernel and the
frequency response for the inverse FrT are given by the com-
plex conjugates, h−1FrT;τ�x� � h�FrT;τ�x� and ĥ−1FrT;τ�ν� � ĥ�FrT;τ�ν�,
respectively.

When f is band-limited, discretizing the wave propagation
problem via Eq. (3), using the frequency spectrum of the as-
sociated convolution kernel, is known by different names in
literature, including the angular-spectrum method and the
convolution (CV)-based method [16–19]. In the rest of the
paper, we refer to such a discretization of any convolution op-
eration using FFT as CV-FFT. For example, the discrete
FrT associated with an N -periodic 1D input sequence, f �k�
(samples of f at regular intervals Δx), is computed using
CV-FFT as

~f CV–FFTτ �k� � F−1
N fFN �f � × UCV–FFT�k0�g�k� (11)

for −⌊N∕2⌋ ≤ k, k0 < ⌈N∕2⌉, where

UCV−FFT�k0� � rect�k0∕N� × ĥFrT;τ�k0∕�NΔx��; (12)

rect�ν� �
�
1; jνj < 1

2
0; otherwise

(13)
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with FN and F−1
N referring to the forward and inverse N -point

FFT, respectively. However, when the signals involved are not
band-limited, such a strategy results in ringing artifacts due to
the enforced band-limiting operation, as shown in Fig. 1(c),
even for a near-field region where the technique is usually
thought to be effective [16–18].

Finally, for the rest of this paper, we consider boundary
conditions that correspond to the following two physical ar-
rangements in the context of wave propagation: (i) free-space
propagation of a periodic wave field [Fig. 2(a)], and (ii) the
propagation of fields produced via transmission through or
reflection by finite-sized objects confined within a rectangular
waveguide lined with plane mirrors on its four interior
surfaces [Fig. 2(b)]. Note that the latter is analogous to using
mirror-symmetric boundaries for the computation of the
discrete FrT [Fig. 2(c)].

3. PROPOSED METHOD
Our approach considers a class of functions far more general
than band-limited signals. We follow the formalism of gener-
alized sampling theory and Hilbert space projections [23], a
brief review of which is given in Subsection 3.A. The basic
assumptions about the functional space to which the input
signal belongs are (a) integer shift-invariance, (i.e., a basis
function shifted by integer-multiples of the signal’s sampling
step spans the space) and (b) periodicity (i.e., the signals it
encompasses are periodic; the special case of aperiodic
signals is covered when the period tends to infinity).

Specifically, we consider the following two problems: (P1)
given the samples of a signal, f , that belongs to a known SI
space, compute samples (or measurements with a known
camera) of the convolution g � f⋆h and conversely, (P2)
given measurements of g � f⋆h, obtained with a known ac-
quisition device, along with prior information about h and the
SI space in which f lies, recover the samples of f . We discuss

the solutions to these problems in Subsections 3.B and 3.C,
respectively.

A. Discrete Representation of Continuous Signals
We consider signals f in the Hilbert space L2, which consists
of all functions that are square-integrable in Lebesgue’s sense.
While we focus on 1D signals, extension to higher dimensions
will be straightforward. We further consider SI subspaces of
L2, which are generated by scaled and shifted versions of a
template function, φ1, denoted as

V1 �
�
f jf �x� �

X
k∈Z

c�k� · φ1

�
x

Δx1
− k

�
; ‖c‖l2

< ∞
	
; (14)

where ‖c‖2l2
≜

P
k∈Zjc�k�j2. Any function f ∈ L2 can be

orthogonally projected onto such an SI subspace, to yield
an optimal approximation [6], f V1 , given by

f V1�x� � 1
Δx1

X
k∈Z



f ;φ1

�
•

Δx1
− k

��
· φ1

�
x

Δx1
− k

�
(15)

�
X
k∈Z

c�k� · φ1

�
x

Δx1
− k

�
; (16)

where ha; bi � R
∞
−∞ a�ξ�b��ξ�dξ denotes an inner product and

φ1 is the dual of the template function φ1, the integer-shifted
versions of which span the same space V1 and also satisfy the
biorthogonality condition,

Fig. 1. (a) Box signal formed with N � 4096 samples where Δx1 �
10 μm and aperture width w � 5.15 mm, (b) FrT computed using
Fresnel integrals [22] with λ � 632 nm and z � 5 mm (only real values
shown), (c) inverse FrT of (b) computed using CV-FFT, and (d) using
IGCV-FFT where prior knowledge �φ1;φ2;Δx1� is exploited for filter
design.

Fig. 2. Two boundary conditions discussed for discrete FrT: (a) peri-
odic boundaries; (b) propagation of a finite-sized object/field confined
within a rectangular waveguide lined with mirrors on its four interior
planar surfaces, analogous to using (c) mirror-symmetric boundaries
for the discrete transform.
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hφ� 1�• −m�;φ1�• − n�i � δ�m − n�; m; n ∈ Z: (17)

The frequency response of the dual basis is given by [23]

φ
�̂
1�ν� �

φ̂1�ν�P
k∈Zjφ̂1�ν� k�j2 : (18)

We note that f V1�x� � f �x�, if f ∈ V 1. Moreover, the
orthogonal projection is completely characterized by the dis-
crete sequence c�k�, as long as φ1 forms a Riesz basis [6], which
effectively guarantees the denominator in Eq. (18) is positive
and bounded.

Possible basis functions include the sinc function from
classical sampling theory, with φ

�
1�x� � φ1�x� � sinc�x�,

where V1 then corresponds to the subspace of L2 that encom-
passes functions band-limited by 1∕�2Δx1� and c�k� refers to
signal samples after the band-limiting operation. Alternatively,
to represent signals with finite support, B-splines are a pos-
sible choice [24,25]. The B-spline of degree n is defined as

βn�x� � β0 ⋆ β0⋆ 	 	 	 ⋆β0|��������������{z��������������}
n�1 terms

�x�; (19)

where β0�x� � rect�x� from Eq. (13), using which its
frequency response can be deduced as β̂n�ν� � sincn�1�ν�.
For a continuous signal that lies in a B-spline space, the
coefficients c�k� can be efficiently computed from its samples,
f V1 �k� � f V1�kΔx1�, via recursive filtering [24].

B. Discretization of Continuous Convolution
We now show that continuous convolutions of the form

~g�x� � f V1 ⋆h�x�; (20)

can be numerically computed without aliasing, even in
cases where f V1 is not band-limited. With f V1 �x� fully charac-
terized by the discrete sequence c�k�, we also wish to represent
~g�x� using a similar discrete sequence and therefore approxi-
mate ~g via an orthogonal projection onto an SI space,
V 2 � spanfφ2�•∕Δx2 − k�gk∈Z, to obtain

~gV2�x� �
X
k∈Z

d�k� · φ2

�
x

Δx2
− k

�
: (21)

This pipeline of operations is illustrated in Fig. 3(a). Despite
f V1 �x� and ~gV2�x� being both functions of the continuous
variable x, they are uniquely characterized by the discrete se-
quences c�k� and d�k�, respectively. Remarkably, when the ra-
tio between their sampling steps is rational, Δx2∕Δx1 � p∕q
�p; q ∈ N�, the sequences c�k� and d�k� are related via a discrete
convolution with a digital filter, u�k�, shown in Fig. 3(b), whose
exact expression we introduce in the following theorem.

▪Theorem 1 (Equivalent digital filter for continuous

convolutions): Let f V1�x� � P
k∈Zc�k� · φ1�x∕Δx1 − k�, ~g�x� �

f V1 ⋆h�x�, and d�k� � �Δx2�−1 · h~g;φ� 2�•∕Δx2 − k�i, with
Δx2∕Δx1 � p∕q �p; q ∈ N�. Then, we have

d�k� �
X
l∈Z

c�l� · u�pk − ql�; (22)

where

u�x� � 1
Δx2

�
φ1

�
x

Δx1

�
⋆h�x�⋆φ

� �
2

�
−

x
Δx2

�	
; (23)

u�k� � u�kΔx2∕p�: (24)

Proof: The expression of u can be graphically derived in
Figs. 3(a) and 3(b). □

When the input function is periodic, the discrete convolu-
tion in Eq. (22) simplifies to a circular convolution that can be
implemented using FFT, leading to a generalized CV-FFT al-
gorithm (GCV-FFT).

▪Theorem 2 [FFT algorithm for computing continuous

convolutions (GCV-FFT)]: Let f V1�x� � P
k∈Zc�k� ·

φ1�x∕Δx1 − k� be an NΔx1-periodic function �N ∈ N�
and let h�x� be a stable filter with known frequency
response ĥ�ν�. Then, the orthogonal projection of the
continuous convolution ~g�x� � f V1 ⋆h�x� in an SI space V2,
~gV2�x� � P

k∈Zd�k� · φ2�x∕Δx2 − k�, with Δx2∕Δx1 � p∕q
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Fig. 3. Discretization of continuous convolution operations based on generalized sampling theory. (a) The continuous convolution g�x� � f⋆h�x�
can be approximated using two suitable SI spaces, Vi � spanfφi�•∕Δxi − k�gk∈Z, (i � 1; 2), as ~gV2 �x� � � f V1⋆h�V2 �x�, which in turn can be numeri-
cally computed by a discrete convolution without aliasing, even when f and h are not band-limited. (b), (c) When Δx2∕Δx1 � p∕q, �p; q ∈ N�, the
expansion coefficients of f V1 and ~gV2 are related by digital filters for both (b) the forward and (c) the inverse convolution operation. (d), (e) Equiv-
alent filters to (b) and (c) when the signals are defined by their discrete samples rather than expansion coefficients.
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�p; q; Nq∕p ∈ N�, is completely characterized by the discrete
relation between d�k� and c�k�:

d�k� � �1∕p� · F−1
Nq∕pfFN �c� × Ug�k�; 0 ≤ k < Nq∕p; (25)

where

U �k0� � q
X
m∈Z

φ̂1

�
k0
N

−mq
�
· ĥ

�
k0

NΔx1
−
mq
Δx1

�

· φ�̂ �2

�
pk0
Nq

−mp
�
; 0 ≤ k0 < Nq: (26)

Proof: In Appendix A. □
Note that the N -periodic FN �c� is concatenated with its

copies to have length Nq, before its point-wise multiplication
with the Nq-periodic vector U . The Nq-periodic product vec-
tor is then made to fold (alias), with every pth alternate
element added together, changing its periodicity to Nq∕p, be-
fore computing itsNq∕p-point inverse FFT (IFFT). In practice,
the infinite sum in Eq. (26) can be truncated to reach any de-
sired accuracy. Note that this infinite sum will converge if ĥ is
bounded and if the basis functions φ1, φ2 generate Riesz bases.
An illustration of the discrete implementation of a 1D convo-
lution operation using the above result is shown in Fig. 3(a).

The following corollary describes the special case when
~g�x� � f V1 ⋆h�x� is sampled without projection onto V2.

▸Corollary 2.1 (Equivalent digital filter linking input

coefficients to samples of the continuous convolution):
Discrete samples of the convolved signal ~g�k� � ~g�kΔx2� are
obtained via

~g�k� � �1∕p� · F−1
Nq∕pfFN �c� × Usg�k�; 0 ≤ k < Nq∕p; (27)

where Us is the Nq-point vector (0 ≤ k0 < Nq),

Us�k0� � q
X
m∈Z

φ̂1

�
k0
N

−mq
�
· ĥ

�
k0

NΔx1
−
mq
Δx1

�
: (28)

Proof: Substitute φ
�̂
2�ν� � 1 in Eq. (26). □

While the input signal f V1 is uniquely defined by the coef-
ficients c�k�, it may also be directly defined by its discrete sam-
ples. For this case, the following corollary provides a discrete
relationship between the samples of f V1 and ~gV2 via a digital
filter, uint�k� [Fig. 3(d)].

▸Corollary 2.2 (Equivalent digital filter linking

input–output samples of the continuous convolution):
If f ∈ V1 and f �k� � f �kΔx1� are its uniform samples, then
~gV2 �k� � ~gV2�kΔx2�, with Δx2∕Δx1 � p∕q, is given by

~gV2 �k� � �1∕p� · F−1
Nq∕pfFN � f � × U intg�k�; 0 ≤ k < Nq∕p;

(29)

where U int is the Nq-point vector,

U int�k0� � q
X
m∈Z

η̂1

�
k0
N

−mq
�
· ĥ

�
k0

NΔx1
−
mq
Δx1

�

· η�̂�2

�
pk0
Nq

−mp
�
; 0 ≤ k0 < Nq (30)

with

η̂i�ν� �
φ̂i�ν�P

m∈Zφ̂i�ν�m� ; i � 1; 2; (31)

η
�̂
i�ν� �

φ̂i�ν� · �
P

m∈Zφ̂
�
i �ν�m��P

n∈Zjφ̂i�ν� n�j2 : (32)

Proof: Since f ∈ V1, f �x� � f V1�x� and can be represented as
in Eq. (16), with c�k� and φ1 replaced by f �k� and η1, respec-
tively, where η1 is the equivalent interpolating (i.e.,
η1�k� � δ�k�, k ∈ Z) basis function that also spans V1 [23]. Sim-
ilarly, ~gV2�x� can also be represented using ~gV2 �k� and η2. The
FFT of the digital filter uint�k� is then found by replacing φ̂1 and

φ
�̂
2 in Eq. (26) by η̂1 and η

�̂
2, respectively. Note that the discrete

samples ~g�k� can also be directly obtained from f �k�, using
Eq. (29), by substituting η

�̂
2�ν� � 1 in Eq. (30). □

The number of computations required to carry out the dis-
crete convolution in Theorem 2 can be further reduced when
the signals involved have symmetries. In what follows, we dis-
tinguish between discrete periodic signals with whole-sample

(WS) and half-sample (HS) mirror symmetry [26]. Such
signals are mirror-symmetric about a sample and about a point
midway between two samples, respectively. HS mirror-
symmetric boundary conditions are illustrated in Figs. 2(b)
and 2(c).

▸Corollary 2.3 (Low complexity FFT algorithm for con-

tinuous convolution of signals with mirror symmetry):

Let f V1 �x� � P
k∈Zc

m�k� · φ1�x∕Δx1 − k�, with cm being a
2N -point periodic sequence having HS mirror symmetry,

cm�k� �
�

c�k�; 0 ≤ k < N
c�2N − 1 − k�; N ≤ k < 2N:

(33)

If u�x� � u�−x� in Eq. (23) and Δx1 � Δx2, then we have
~gV2�x� � P

k∈Zd
m�k� · φ2�x∕Δx1 − k�, where dm�k� is also a

2N -point sequence with HS mirror symmetry. Furthermore,
the even and odd elements of its corresponding N -point
first-half, d�k�, are given by

d�2k� � dm�2k� ≜ dmeven�k�; 0 ≤ k < ⌈N∕2⌉; (34)

d�2k� 1� � dmeven�N − 1 − k�; 0 ≤ k < ⌈�N − 1�∕2⌉; (35)

where

dmeven�k� � F−1
N

�
F 2Nfdmg��� � F 2Nfdmg�� � N �

2

	
�k�; (36)

for 0 ≤ k < N , and

F 2Nfdmg�k0� ≜ F 2Nfcmg�k0� × Um; 0 ≤ k0 < 2N; (37)

F 2Nfcmg�k0� � FNfcmeveng�k0�

�
�
exp

�
j
π

N
k0

�
· FNfcmeveng�N − k0�

	
; (38)
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Um�k0� �
X
m∈Z

φ̂1

�
k0
2N

−m
�
· ĥ

�
k0

2NΔx1
−

m
Δx1

�
· φ�̂ �2

�
k0
2N

−m
�
:

(39)

Proof: When c�k� and u�k� have HS and WS symmetry, re-
spectively, d�k� � c � u�k� has HS symmetry [26]. The mirror
symmetry in the input and output signals thereby allows their
FFT/IFFT to be computed using half-length counterparts [27].
Note that Eq. (39) is exactly similar to Eq. (26), with N re-
placed by 2N and p � q � 1. □

It follows that if φ1, φ2 have even symmetry (e.g., B-splines),
the stated requirement of u�x� � u�−x� is satisfied if h�x� �
h�−x� (e.g., FrT). The fact that the calculations involve non-
redundant signals of half and quarter the original size in
the 1D and 2D cases, reduces the FFT/IFFT computational
complexity involved by 50% and 75%, respectively.

C. Invertibility of the Equivalent Digital Filters
With GCV-FFT providing an efficient way to solve the forward
problem (P1), we look next at the inverse problem (P2), to
recover the samples of the original signal f V1 from the mea-
surements of ~g � f V1⋆h, obtained with a known acquisition
device, using prior information about h and the SI space in
which f V1 lies. We refer to this as the inverse GCV-FFT
(IGCV-FFT) algorithm, corresponding to a continuous filter, h.

Invertibility is particularly important in digital systems [28]
and has been investigated for Fresnel-like transforms before
[29,30]. Here, we seek a sequence c0�k� whose forward trans-
form closely matches d�k� in the least-squares sense. In the fol-
lowing theorem, we prove that the coefficients c0�k� can be
obtained from d�k� by applying a digital filter, v�k� [Fig. 3(c)],
and provide its FFT coefficients.

▪Theorem 3 (IGCV-FFT algorithm for discrete

inverse convolution): Let the Nq∕p-periodic coefficients
d�k� result from the forward convolution in Theorem 2,
d�k� � P

l∈Zc�l� · u�pk − ql�. Then the sequence c0 with mini-
mum l2-norm that minimizes the problem

c0 � arg min
c∈l2

‖d −
X
l∈Z

c�l� · u�p • −ql�‖
l2

(40)

is obtained through the linear filtering operation,

c0�k� � �1∕q� · F−1
N fFNq∕p�d� × Vg�k�; 0 ≤ k < N; (41)

where

V �k0� � pqU†
k0modN �0; ⌊k0∕N⌋�; 0 ≤ k0 < Nq; (42)

and U†
r denotes the Moore–Penrose pseudoinverse of the

q × p-sized matrix Ur , defined as

Ur �m;n� � U

r � Nm� Nq

p
n
�
; 0 ≤ m < q; 0 ≤ n < p

(43)

with U defined as in Eq. (26).
Proof: In Appendix B. □
WhenΔx1 � Δx2 (p � q � 1), the above result simplifies to

V �k0� � 1∕U �k0�, 0 ≤ k0 ≤ N − 1, for nonzero values of U , and
zero otherwise. In particular, when h � hFrT;τ is the FrT kernel

and φ1, φ2 are chosen as B-spline functions with Δx1 � Δx2,
the FFT coefficients U �k0� in Eq. (26) are always nonzero,
thereby ensuring the possibility of perfect reconstruction.
For arbitrary choices of φ1, φ2, Δx1, Δx2 and h, the minimum
l2-norm solution yields perfect reconstruction, if and only if
the q × p matrices in Eq. (43) are full-rank matrices, with
their rank equal to p. A similar inverse to Corollary 2.2 is
straightforward in this context, where f 0V1 �k� � f 0V1�kΔx1�,
f 0V1�x� � P

k∈Zc
0�k� · φ1�x∕Δx1 − k�, can be obtained from

~gV2 �k� using a digital filter, vint�k�, shown in Fig. 3(e), whose
FFT coefficients V int can be obtained from Eq. (42), with U
in Eq. (43) replaced by U int of Eq. (30).

4. APPLICATION TO DIGITAL
HOLOGRAPHY
We now derive discrete filters for the Rayleigh–Sommerfeld
diffraction integral and the FrT. This is achieved by replacing
the continuous filter h in the expression for the digital filter
u�k�, derived in Eq. (24) of Theorem 1, by hRS;λ;z and hFrT;τ
(or hFrA;λ;z), respectively. The 2D FFT coefficients of the dig-
ital filter corresponding to the Rayleigh–Sommerfeld diffrac-
tion integral can be thus obtained by extending Eq. (26) to 2D
as follows:

URS�k0; l0� � qxqy
X

m;n∈Z

�
φ̂1

�
k0 −mNxqx

Nx
;
l0 − nNyqy

Ny

�

· ĥRS;λ;z

�
k0 −mNxqx

NxΔx1
;
l0 − nNyqy
NyΔy1

�

· φ�̂
�
2

�
k0 −mNxqx
Nxqx∕px

;
l0 − nNyqy
Nyqy∕py

�	
; (44)

for 0 ≤ k0 < Nxqx, 0 ≤ l0 < Nyqy, where Δx2∕Δx1 � px∕qx,
Δy2∕Δy1 � py∕qy. Similarly, the 1D FFT coefficients of the
digital filter corresponding to the separable and unitary FrT
can be deduced as

UFrT�k0� � q
X
m∈Z

�
φ̂1

�
k0 −mNq

N

�
· φ�̂ �2

�
k0 −mNq
Nq∕p

�

· exp
�
j
π

4

�
· exp

�
−jπτ2

�
k0 −mNq
NΔx1

�
2
�	

; (45)

for 0 ≤ k0 < Nq. Note that the band-limited CV-FFT approach
in Eq. (11) reduces to a special case of Eq. (45), where
φ̂1�ν� � φ̂2�ν� � rect�ν� and Δx1 � Δx2.

5. EXPERIMENTAL RESULTS AND
DISCUSSION
With the framework for the numerical implementation of con-
volution operations laid out in the previous sections, we now
illustrate its features and practical applicability, via simulation
results.

A. Inverse Transform from Sampled Fresnel Integral
Here, we compare the reconstruction fidelity for CV-FFT and
IGCV-FFT, by individually estimating a signal from its FrT
samples, where the latter is originally calculated using the
more computationally intensive and accurate Fresnel inte-
grals [2]. We consider a box signal, f �x�, with aperture width
w � 5.15 mm, composed of N � 4096 samples, spaced apart
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byΔx1 � 10 μm [Fig. 1(a)]. We use a box function as the refer-
ence since its FrT can be numerically computed using Fresnel
integrals in an accurate manner. Using a C implementation of
the integral [22], we obtain the FrT samples ~f τ�kΔx1�, with
τ � �λz�0.5 given by λ � 632 nm and z � 5 mm, as in Fig. 1(b).
We then estimate f �kΔx1� from ~f τ�kΔx1�, using CV-FFT and
IGCV-FFT.

While the inverse FrT computed with CV-FFT can be seen
to suffer from Gibbs oscillations [Fig. 1(c)], the reconstruction
obtained using IGCV-FFT [with φ1�x� � β0�x�, h�x� �
hFrT;τ�x�, φ2�x� � δ�x� and Δx1 � Δx2 in Eq. (26)] produces
a more fair reconstruction [Fig. 1(d)].

B. Reconstruction of Non-Band-Limited Signals
Leveraging a Priori Knowledge
We now illustrate how the knowledge that the recovered sig-
nal lies in a space V1 can be exploited during inversion using
IGCV-FFT. We consider the signal f �x� shown in Fig. 4(a),
defined as a linear combination of box, linear, and cubic
B-splines. Due to the inherent linearity and shift-invariance
of the system, the FrT samples of f �x� are given by adding
the output of three instances of GCV-FFT, where φ1�x� �
βi�x� and φ2�x� � δ�x�, for i � 0, 1, 3, respectively [Fig. 4(b)].
We then attempt to reconstruct f �x� by alternately assuming
that it lies in a band-limited space (which it does not) or in any
one of the three different SI spaces V1 � spanfβi�• − k�gk∈Z,
i � 0, 1, 3 (which it does not either, since f is a combination
of all three). The CV-FFT approach, in Fig. 4(c), suffers from
severe ringing artifacts, particularly because none of the three
basis functions constituting the input signal is similarly band-
limited. Instead, using the inverse filter in Eq. (42) with

φ1�x� � βi�x�, φ2�x� � δ�x�, and Δx1 � Δx2 for i � 0, 1, 3,
the reconstructions are all ringing-free, yet they faithfully
recover only those spatial regions of f �x� that are well
represented by the assumed reconstruction space V1

[Figs. 4(d) and 4(f)].

C. Modeling of Acquisition Sensors with Finite Fill
Factors
We next look at how GCV-FFT can naturally model the imag-
ing process with digital cameras, where each sensor spatially
averages the incoming signal over its active area [Fig. 5(a)] to
give a pixel value. Note that this boils down to taking φ2�x� �
β0�x∕γ� [Fig. 5(b)], with d�k� then representing the pixel val-
ues. The corresponding dual basis is similarly defined as
φ
�
2�x� � �1∕γ�β0�x∕γ�, where 0 < γ ≤ 1 is the fill factor [11],

defined as the ratio between the integration area and the pixel
size it represents.

As an example, we consider the FrT of a square aperture
that is measured by its projection onto VCCD �
spanfφ2�•∕Δx2 − k�gk∈Z, where φ2�x� � β0�x∕γ� [Fig. 5(c)].
Since the model underlying the CV-FFT reconstruction does
not match the acquisition procedure, the band-limited
reconstruction produces ringing artifacts. These artifacts
can be visually highlighted as dark regions using the Struc-
tural Similarity Map (SSIM) [31], which associates a high in-
dex (1) to regions similar to the ground truth and a low index
(0) to regions that differ, as shown in Fig. 5(e). Instead, by
using φ1�x� � β0�x�, h�x� � hFrT;τ�x�, φ2�x� � β0�x∕γ�, the
IGCV-FFT algorithm is well adapted to the problem at
hand and hence yields perfect reconstruction, as evident in
Figs. 5(f) and 5(g).

Fig. 4. (a) f �x� composed of three types of basis functions (β0, β1, and β3); (b) ~f τ�x�, where τ � 1, (only real values shown) and its samples
subsequently used for the recovery of f �x�; (c) the reconstructed signal and samples in the band-limited space, obtained using CV-FFT;
(d)–(f) the recovered signal in the three separate SI spaces, V1 � spanfβi�• − k�gk∈Z, i � 0, 1, 3, using IGCV-FFT. Clover leaves indicate
reconstruction artifacts (e.g., Gibbs oscillation) and hearts denote perfect reconstruction.
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In the particular context of digital holography, Stern and
Javidi [11], and more recently Kelly and Claus [32], have
shown that finite-size pixels attenuate high spatial frequencies
in the propagated signal, in addition to the artifacts introduced
by the sampling operation, rendering a perfect reconstruction
virtually impossible. Here, we overcome this limitation by lev-
eraging prior knowledge of the basis functions that underly
the acquisition device and the signal.

D. Comparison of GCV-FFT for h−1 with IGCV-FFT for h
Since GCV-FFT allows discretizing forward convolutions with
h, it could also be used to approximate the inverse operation
h−1. However, this is not equivalent to computing the IGCV-
FFT algorithm for h. Specifically, for a signal f ∈ V1, the se-
quence of operations consisting of (a) continuous convolution
with h, (b) projection onto V2, (c) continuous convolution

with h−1, and finally (d) projection onto V 1, is usually not
identity.

In order to illustrate the difference between using
(i) GCV-FFT for h−1 and (ii) IGCV-FFT for h, we consider a
signal f ∈ V 1 � spanfβ1�•∕Δx1 − k�gk∈Z, as shown in Fig. 4.
Using GCV-FFT, we compute its discretized FrT, ~f V2

τ , mea-
sured via projection into V2 � spanfβ1�•∕Δx2 − k�gk∈Z, with
Δx2∕Δx1 � 1 or 1∕2. We then estimate f from ~f V2

τ using either
approach and compare the reconstruction results. The
reconstruction obtained using (i) differs from f , while
(ii) proves to be a perfect reconstruction (Fig. 6). The quality
of the reconstructed signal using (i) improves when
Δx2∕Δx1 � 1∕2. The IGCV-FFT approach yields perfect
reconstruction for both Δx2∕Δx1 � 1 and 1∕2.

6. DISCUSSION AND CONCLUSION
By approximating input and output functions as linear combi-
nations of localized basis functions we obtain a flexible frame-
work to compute continuous convolutions. Its main features
are summarized below: (i) it does not require assuming the
input or output signals are band-limited thereby limiting Gibbs
oscillation artifacts near sharp edges; (ii) it takes into account
variable sampling rates between the input and output signals
making it suitable for multiresolution algorithms [21,33];
(iii) the implementation retains the form of a discrete convo-
lution, making it directly applicable wherever band-limited
methods are in use; (iv) the basis functions can be chosen
to match the experimental, camera-specific setups; (v) both
periodic and mirror-periodic boundary conditions can be se-
lected (with a fast algorithm for mirror-periodic signals that
reduces the computational complexity by a factor of 2 (in 1D)
and 4 (in 2D) over direct periodic implementation); and
(vi) the equivalent discrete inverse operator, optimal in
the least-squares sense, can be implemented using the same
algorithm.

Our approach could be applied to a wide range of analog
operators. Experiments to compute and reconstruct complex
wave fields indicate that our approach might be particularly
well suited for digital holography applications. To facilitate
integration with existing methods (which could include recent
compressed-sensing methods [34–36]) and spur new uses, we
make Matlab code available [37].

APPENDIX A: PROOF OF THEOREM 2
The frequency response of the digital filter in Eq. (24) is

U�ej2πνΔx1∕q� � q
X
m∈Z

�
φ̂1�Δx1ν −mq� · ĥ

�
ν −

mq
Δx1

�

· φ�̂ �2�Δx2ν −mp�
	
: (A1)

The corresponding Nq-point FFT vector is obtained by sam-
pling Eq. (A1) at Δν � 1∕�NΔx1�, yielding the expression
in Eq. (26).

APPENDIX B: PROOF OF THEOREM 3
We denote by c and d the column vectors that contain the N
input and Nq∕p output coefficients in GCV-FFT:

d � A · c; (B1)

Fig. 5. (a) Typical CCD with finite-size detector elements and (b) its
corresponding family of 1D basis functions. (c) ~f VCCD

�λ·z�0.5 �kΔx2� (only ab-
solute values shown) (λ � 632 nm, z � 1 cm, Δx1 � Δx2 � 10 μm,
γ � 0.7) for a square aperture, f �x� (not shown). (d) Reconstruction
using CV-FFT and (e) its SSIM map [31] showing the presence of ar-
tifacts (white: SSIM � 1, black: SSIM � 0). (f) Reconstruction using
IGCV-FFT, yielding (g) an SSIMmap that is uniformly 1 (white, perfect
reconstruction).
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Fig. 6. Comparison of methods to estimate f from ~f V2
τ (not shown),

where τ � 2.5 and φ2 � β1, using discrete-inverse f 0V1 with
IGCV-FFT, and alternatively, using discretized-continuous-inverse

�~f V2
τ ⋆h−1FrT;τ�V1 with GCV-FFT.
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where the transformation matrix A is given by

A � W−1
Nq∕p · U ·WN; (B2)

U �
h
INq∕p INq∕p

i
·DU ·

2
664
IN
..
.

IN

3
775; (B3)

WN �m;n� � exp�−j2πmn∕N�; 0 ≤ m;n < N; (B4)

DU �m;n� � U �m� · δ�m − n�; 0 ≤ m;n < Nq; (B5)

IN �m;n� � δ�m − n�; 0 ≤ m;n < N; (B6)

so that rank�A� � rank�U�. It can be verified that U is a sparse
matrix having only the Nq FFT coefficients in DU as its non-
zero entries, and that

rank�U� �
XN∕p−1

r�0

rank�Ur�; (B7)

whereUr is as given in Eq. (43). This allows the pseudoinverse
[28] of U to be calculated from smaller matrices Ur . The
pseudoinverse of A is given by

A† � W−1
N · U† ·WNq∕p; (B8)

and has essentially the same form as Eq. (B2), involving
up-sampling, convolution, and down-sampling operations.
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