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ABSTRACT

Estimating the displacements between two images is often ad-
dressed using a small displacement assumption, which leads
to what is known as the optical flow equation. We study the
quality of the underlying approximation for the recently de-
veloped Local All-Pass (LAP) optical flow algorithm, which
is based on another approach—displacements result from fil-
tering. While the simplest version of LAP computes only
first-order differences, we show that the order of LAP ap-
proximation is quadratic, unlike standard optical flow equa-
tion based algorithms for which this approximation is only
linear. More generally, the order of approximation of the
LAP algorithm is twice larger than the differentiation order
involved. The key step in the derivation is the use of Padé
approximants.

Index Terms— Optical flow, all-pass filtering, approxi-
mation, Padé approximant.

1. INTRODUCTION

The 2D optical flow problem consists in estimating space-
varying displacement vectorsu(x, y) = (ux(x, y), uy(x, y))

T

that relate two known imagesI1(r) andI2(r); i.e., under the
ideal brightness consistency hypothesis [1]

I2(r) = I1(r− u(r))

wherer = (x, y)T are spatial coordinates. This is a challeng-
ing problem that finds applications in a wide range of fields
like computer vision, medical imaging [2, 3], biology [4, 5],
and image compression. The dominant algorithms use ideas
that were initially proposed in the 1980s: first, linearising
the effect of small displacements to obtain the “optical flow
equation”. Then, using this equation as a data term in a
regularization functional to be minimized (Horn-Schunck ap-
proach [6]), or as a set of constraints to be fitted blockwise
using few parameters (Lucas-Kanade’s approach [7]).

The type of objective function that has to be minimized
in the Horn-Schunck approach has been the source of con-
stant developments: robust penalty terms [8, 9],L1 regular-
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ization [10, 11] and low-rank regularizers [12]. For a com-
plete review of the state-of-the-art see [13, 14, 15, 16, 17],
and, more recently, [1, 18].

In this paper, we are interested in the quality of approx-
imation underlying optical flow algorithms. Specifically, we
evaluate this quality for a new algorithm that models displace-
ments as local all-pass (LAP) filtering operation [19]. The
contribution of this paper is to analyze how the LAP algo-
rithm makes it possible to achieve a higher order of approxi-
mation than the algorithms based on the optical flow equation,
without requiring to compute higher order derivatives.

Note that this algorithm is not related tospatio-temporal
filtering algorithms [20, 21] which rely on the time variation
of the spatio-temporal Fourier phase of asequence of images:
only spatial filters are involved in the LAP algorithm, and itis
between two images only that the displacement field is to be
estimated.

2. APPROXIMATION ORDER

Usual optical flow algorithms are based on an approximation
of the displacement by the vector fieldu(r). Using such an ap-
proximation is important in order to separateu(r) from f(r)
and so, to derive efficient algorithms. The standard approach
consists in deriving an optical flow equation [6] which usu-
ally amounts to approximatingI1(r−u(r)) using a first order
Taylor expansion; i.e. for small values ofu(r) and assuming
that the image is at least twice boundedly differentiable:

I1(r− u(r)) = I1(r)− u(r)T∇I1(r) + O
(
‖u(r)‖2

)

 I2(r) ≈ I1(r)− u(r)T∇I1(r)

Here and throughout this paper, the notationf(x) = O(g(x))
means that there exists a constant (independent ofx) such that

|f(x)| ≤ const× |g(x)|.

Hence, a first order approximation results in an error that is
quadratic inu(r). Although it is possible to use higher or-
der Taylor approximations [24], the attempts in this direction
have not been conclusive so far.
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Fig. 1. Synthetic experiment warping imageI1 to imageI2 using a slowly varying displacement field of maximal amplitude
15 pixels. The shown LAP result [19] achieves a median accuracyof 0.010 pixels (mean:0.102 pixels) in 6 seconds. For
comparison, the improved implementation of Horn-Schunck algorithm [18] achieves a median accuracy of0.604 pixels (mean:
0.868 pixels) in 47 seconds; LDOF [22] achieves a median accuracy of0.701 pixels (mean:1.310 pixels) in 30 seconds;
and MPOF [23] achieves a median accuracy of0.623 pixels (mean:0.964 pixels) in 279 seconds. To facilitate the visual
comparisons, we have used a color code to indicate directions (top-right color wheel) and amplitudes, redundantly withthe
arrows.

Using Fourier variables (̂I1(ω) denoting the Fourier
transform ofI1(r)), I1(r− u(r)) can be expressed as

I1(r− u(r)) =
1

4π2

∫

Î1(ω)e−ju(r)T
ωejr

T
ω dω (1)

and the Taylor approximation can be seen to derive from the
first order Taylor development of the exponential

e−ju(r)T
ω = 1− ju(r)T

ω+O
(
|u(r)T

ω|2
)

A recent approach to optical flow estimation devel-
oped by us [19], the local all-pass algorithm, uses a ra-
tional approximation (not a polynomial approximation) of
the exponential—a Padé approximation. This new algorithm
achieves a high accuracy and spatial consistency which makes
it outperform the state-of-the-art optical flow algorithmsin
synthetic experiments. In real-life experiments, the algorithm
is still very competitive, although not the best—at least, on
some experiments. In addition this algorithm is quite fast (a
few seconds for standard512× 512 images).

3. LOCAL ALL-PASS ALGORITHM

The LAP algorithm departs from the observation that, when
u(r) is constant across the image,I1(r − u) is exactly the
result of the convolution of an all-pass filter,δ(r − u), and
I1(r). Hence, the idea is to approximate this ideal filter using
an all-pass filter,h(r). It turns out that all-pass filters can
always be expressed in the Fourier domain as the ratio

ĥ(ω) =
p̂(ω)

p̂(−ω)
(2)

wherep(r) is an arbitrary real filter (with a Fourier transform).
However, instead of looking for the ideal all-pass filter, the
idea developed in the LAP is to approximate the filterp(r)
onto a basis of few filters. Then slowly varying flowsu(r)
can be estimated by approximating the all-pass filter in local
windows. The working principle of the LAP algorithm is that
the all-pass filtering relation between the two images can be
expressed linearly as a function ofp(r):

I2(r) = h(r) ∗ I1(r) ⇔ p(−r) ∗ I2(r) = p(r) ∗ I1(r).

Then, a simple mean square minimization (fast, non-iterative)
provides the parameters representingp(r), from which, a non-
linear accurate formula provides an estimate of the flowu(r).

Now, the question we want to answer is: if we are able to
choose the best all-pass filterh(r) in this constrained frame-
work, what is the order of the approximation ofI1(r − u(r))
by h(r) ∗ I1(r)?

4. PADÉ APPROXIMATION OF THE COMPLEX
EXPONENTIAL

To find the approximation order of the LAP algorithm, it is
useful to consider Padé approximants of the complex expo-
nential function with equal numerator and denominator de-
grees [25]. These approximants can be obtained from the con-
tinued fraction ofex [26, p. 70], but we will follow a different
approach.

Let us define the sequence of complex functions,εn(x),



defined through the recursion






ε0(x) = ejx − 1,

εn(x) = j

∫ x

0

εn−1(ξ)(e
j(x−ξ) − 1) dξ, for n ≥ 1.

(3)

Proposition 1 The functionsεn(x) satisfy the following
properties

i. Sign change:εn(x) = −εn(−x)ejx;

ii. Complex conjugation:εn(−x)∗ = εn(x);

iii. Polynomial order: |εn(x)| ≤ 2−n|x|2n+1.

iv. Taylor: εn(x) ∼ j(−1)n x2n+1

(2n+1)! asx → 0

Property iii also implies thatεn(x) isO
(
x2n+1

)
.

Proof — Propertiesi and ii : it is easy to show (using a
change of variablesξ → −ξ in the integral) thatεn(−x)ejx

andεn(−x)∗ satisfy the same recursion equation asεn(x).
Hence, sinceε0(−x)ejx = −ε0(x) andε0(−x)∗ = ε0(x),
we infer by induction onn that i andii are true for all integer
n ≥ 0.

Propertyiii : Thanks to the symmetryii , we can restrict
the proof tox ≥ 0. Using the recursion equation (3), we have
the following inequality

|εn(x)| ≤ max
0≤ξ≤x

|εn−1(ξ)|

∫ x

0

∣
∣ej(x−ξ) − 1

∣
∣

︸ ︷︷ ︸

≤x−ξ

dξ

≤
x2

2
max
0≤ξ≤x

|εn−1(ξ)|

Since |ε0(x)| ≤ x, we infer that|εn(x)| ≤ 2−nx2n+1 by
induction onn.

Propertyiv: by Taylor, we haveejx − 1 ∼ jx asx → 0.
The recursion is verified by substitution ofεn−1(x) ∼
an−1x

2n−1 into (3) and using the identity

anx
2n+1= −

∫ x

0

an−1ξ
2n−1(x− ξ) dξ =

−an−1x
2n+1

2n(2n+ 1)
.

Lemma 1 There exists a sequence,Pn(x), of real polynomi-
als of degreen such that

εn(x) = Pn(−jx)ejx − Pn(jx). (4)

Proof — We will prove by induction onn thatεn(x) can be
expressed asan(x)ejx + bn(x), wherean(x) andbn(x) are
polynomials of degreen. This property is satisfied forn = 0
with a0(x) = 1 andb0(x) = −1. So, let us assume that it is
satisfied for some integern ≥ 0. We will prove that it will be
satisfied forn+ 1 as well.

By using (3) we find that

εn+1(x) = j

∫ x

0

εn(ξ)(e
j(x−ξ) − 1) dξ

= −

∫ x

0

En(ξ)e
j(x−ξ) dξ (by parts)

= −Fn(x)e
jx

whereEn(x) is the primitive ofεn(x) that vanishes at0, and
whereFn(x) is the primitive ofEn(x)e

−jx that vanishes at0.
So, if we assume thatεn(x) = an(x)e

jx + bn(x) where
an(x) andbn(x) are polynomials of degreen, then its prim-
itive is of the formEn(x) = αn(x)e

jx + βn+1(x), where
αn(x) is a polynomial of degreen and βn+1(x) a poly-
nomial of degreen + 1. Then,Fn(x) is the primitive of
αn(x) + βn+1(x)e

−jx that vanishes at0. This function is
of the form an+1(x) + bn+1(x)e

−jx where an+1(x) and
bn+1(x) are polynomials of degreen + 1. This shows that
εn+1 is of the forman+1(x)e

jx + bn+1(x).
Then, thanks to the symmetries stated in Proposition 1, we

obtainbn(x) = −an(−x) (from propertyi) and thatan(x) is
a real polynomial of the variablejx (from propertyii ); hence,
we can choose to definePn(−jx) = an(x).

Note: the polynomial sequencePn(x) can be shown to sat-
isfy the recursion ODE:−P ′′

n + P ′
n = Pn−1. It is the only

polynomial solution to this equation that satisfies the initial
conditionPn(0) = 2P ′

n(0) (for n ≥ 1). For instance, we
have

P1(x) = 2 + x,

P2(x) = 6 + 3x+
x2

2
,

P3(x) = 20 + 10x+ 2x2 +
x3

6
, etc.

As can be observed, the coefficients of these polynomials are
strictly positive, a property that can be proven by induction.

Proposition 2 The polynomialsPn(x) defined in Lemma 1
do not have pure imaginary roots; or, equivalently, if we de-
fineγn = infx∈R |Pn(jx)|, then

γn > 0, for all positive integern.

Proof — Let us show that, if for somen, there exists a real
x0 such thatPn(jx0) = 0 then we reach a contradiction. We
can assume thatx0 6= 0 because the coefficients ofPn(x) are
strictly positive (cf. earlier remark).

First, sincePn(x) is a real polynomial andx0 6= 0, both
jx0 and−jx0 are roots ofPn(x), which means thatPn(x)
can be factorized as(x2+x2

0)P
1
n−2(x), whereP 1

n−2 is a poly-
nomial of degreen− 2.

Then, from Proposition 1 (Propertyiii applied toεn(x)
of (4)), we know thatPn(−jx)ejx − Pn(jx) = O(x2n+1)
which implies thatP 1

n−2(−jx)ejx−P 1
n−2(jx) = O(x2n+1).

This is actually impossible, because expressions of the form

ε(x) = P (x)ejx +Q(x) (5)

whereP (x) andQ(x) are arbitrary (complex or real) polyno-
mials of degreem ∈ N cannot beO(x2m+5). To see this, let
us perform the following differential operator on the function
ε(x) which we assume to beO(x2m+5): ε′′(x) − jε′(x) =

ejx
{
e−jxε′(x)

}′
. Expressingε(x) according to (5) we find



that

ejx
{
e−jxε′(x)

}′

︸ ︷︷ ︸

O(x2m+3)

= (P ′′(x)+jP ′(x))
︸ ︷︷ ︸

polynomials of degreem− 1

ejx+Q′′(x)−jQ′(x)
︸ ︷︷ ︸

.

The rhs is of the form (5) withm changed intom − 1 and is
nowO

(
x2(m−1)+5

)
, so that we can repeat the same differen-

tial operator until we obtain polynomialsP (x) andQ(x) of
degree0; i.e., constants. Hence, we reach a point where we
find that there exist constantsp andq such thatpejx + q =
O
(
x5

)
which is obviously impossible, since the best order

we can get for an expression of the formpejx + q is O(x)—
reached whenp = −q. Hence, an expression of the form (5)
with polynomialsP (x) andQ(x) of degreem = n−2 cannot
beO

(
x2n+1

)
.

This contradiction shows that our hypothesis on the exis-
tence of pure imaginary roots ofPn(x) was wrong.

Theorem 1 A Pad́e approximation of order2n of the com-
plex exponential function is given by the rational fraction
Pn(jx)/Pn(−jx) and we have that

∣
∣
∣ejx −

Pn(jx)

Pn(−jx)

∣
∣
∣ ≤

|x|2n+1

2nγn
.

This shows that this rational approximation ofejx isO
(
x2n+1

)
.

Proof — We use (4) to get

ejx −
Pn(jx)

Pn(−jx)
=

εn(x)

Pn(−jx)
.

Then, the theorem results from the inequalities stated in
Propositions 1 (Propertyiii ) and 2.

Note: It is important to notice that, here, the polynomial
involved in the rational fraction is only of degreen, despite
the fact that the approximation order is twice larger. This is
in contrast with polynomial approximations like Taylor’s,in
which case the order of the approximation is the degree of the
approximating polynomial.

5. LAP APPROXIMATION ORDER

We are interested in the order of the approximation ofI1(r−
u(r)) by h(r) ∗ I1(r) whenh(r) is an all-pass filter of the
form (2). More specifically, like in the LAP algorithm, we
assume that the filterp(r) involved in (2) is in the span of a
basis of derivatives (up to ordern) of a Gaussian function

p(r) =

n∑

l=0

l∑

k=0

ak,l
∂l

∂xk∂yl−k

{

exp
(

−
x2 + y2

2σ2

)}

, (6)

whereσ is a free positive parameter. The cardinality of this
basis is1

2 (n + 1)(n + 2), and it is clear that the all-pass fil-
ter (2) specified by

p̂(ω) = Pn(−juT
ω)e−

1
2
σ2‖ω‖2

can be expressed on this basis. Typically, in the LAP algo-
rithm, the value chosen forn is either1 (three basis filters,

comprised of up to the first order derivatives), or2 (six basis
filters, comprised of up to the second order derivatives).

Now, we need to introduce a Fourier-based notion of reg-
ularity: a functionf(r) overR2 is said to bem timesL1-
Fourier differentiable iff both its Fourier transform̂f(ω) and
‖ω‖mf̂(ω) are absolutely integrable. This notion implies—

but is not equivalent—that the partial derivatives∂
kf(r)

∂xi∂yk−i for
0 ≤ i ≤ k ≤ m exist and are continuous. Then we have the
following theorem.

Theorem 2 Consider a locationr0 and the local all-pass fil-
ter hr0(r) defined according to(2) with

p̂r0(ω) = Pn(−ju(r0)
T
ω)e−

1
2
σ2‖ω‖2

. (7)

Then, if I1(r) is (2n + 1)-times L1-Fourier differentiable
(slightly stronger thanC2n+1(R2)), we have

I1(r− u(r0))− hr0(r) ∗ I1(r) = O
(
‖u(r0)‖

2n+1
)
;

i.e., this approximation is of order2n.

Proof — We use the inverse Fourier transform formula (1) to
get I1(r− u(r0))− hr0(r) ∗ I1(r) =

1

4π2

∫

Î1(ω)
(
e−ju(r0)

T
ω − ĥr0(ω)

)
ejr

T
ω dω.

By Theorem 1, we know that
∣
∣e−ju(r0)

T
ω − ĥr0(ω)

∣
∣ ≤ const× |u(r0)

T
ω|2n+1

≤ const× ‖u(r0)‖
2n+1‖ω‖2n+1

where the constant is independent ofω. Hence we can easily
bound

∣
∣I1(r− u(r0))− hr0(r) ∗ I1(r)

∣
∣

≤ const× ‖u(r0)‖
2n+1

∫

‖ω‖2n+1|Î1(ω)| dω

≤ const′ × ‖u(r0)‖
2n+1

where the last inequality holds because ourL1-Fourier differ-
entiability assumption onI1 is equivalent to finiteness of the
above integral.

6. DISCUSSION

In our current practice [19], LAP is used withn = 1 (only
first order derivatives involved, three basis filters) orn = 2
(only first and second order derivatives involved, six basisfil-
ters). Theorem 2 shows that under a regularity assumption on
the image, the LAP algorithm is of approximation order2 or
of order4. This is remarkable because standard optical flow
algorithms are based on a simple first-order approximation
of the effect of a displacement—the “optical flow equation”.
What we have shown in this paper is that, without increas-
ing the differentiation depth, i.e., computing only first order
derivatives, and assuming sufficient regularity of the image,
we can approximate the effect of a displacement more ac-
curately: the error is a cubic power of the amplitude of the
displacement, compared to a quadratic power for the optical
flow equation.
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