

SURE-LET algorithms in image denois Possible extensi

Prior-based approaches for image der

Statistical approaches

Based on an explicit knowledge of the prior probability density of the signal to restore. Various objectives are possible, among which

- Maximum A Posteriori (MAP)
- Minimum MSE (e.g., Wiener)

This means that these methods assume that the following are given

- The probability density of the noise $q(B) = \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left(-\frac{\|B\|^2}{2\sigma^2}\right);$
- The probability density of the original signal p(X).

Goals of this talk

Show that it is possible to

- *avoid statistical assumptions* on the original signal (SURE)
- devise *non-iterative* algorithms (LET) that are optimal

Thierry Blu The SURE-LET Methodolo

Image der The SURE-LET Ap SURE-LET algorithms in image der

The problem Prior-based approaches for image denoising

Minimum MSE: Wiener

The Wiener "filter" consists in finding the linear¹ estimate, $\hat{\mathbf{X}} = \hat{\mathbf{A}}\mathbf{Y}$, that minimizes the *Mean Square Error* (MSE)

$$\mathscr{E}\left\{\frac{1}{N}\|\hat{\mathbf{A}}\mathbf{Y}-\mathbf{X}\|^{2}\right\} = \min_{\mathbf{A}}\mathscr{E}\left\{\frac{1}{N}\|\mathbf{A}\mathbf{Y}-\mathbf{X}\|^{2}\right\}$$

Solution: Requires only the knowledge of the covariance matrix $\mathbf{R} = \mathscr{E} \{ XX^{T} \}$ of the original signal

 $\hat{\mathbf{X}} = \mathbf{R} \left(\mathbf{R} + \sigma^2 \mathbf{Id} \right)^{-1} \mathbf{Y}$

NOTE: Although very popular, linear processing is not well-adapted to the processing of transient signals.

 ${}^1\text{if}\ {\mathscr E}\left\{ X\right\} =0$ — an affine estimate is used, otherwise.

hierry Blu The SURE-LET Methodolog

The problem Prior-based approaches for image denoising

Maximum a Posteriori

The MAP consists in choosing the estimate $\hat{\mathrm{X}}$ that maximizes the posterior probability density

 $p(\hat{\mathbf{X}}|\mathbf{Y}) = \max_{\mathbf{x}} p(\mathbf{X}|\mathbf{Y})$

which in this case amounts to maximize q(Y - X)p(X).

Optimal detector: given noisy measurements of a signal X having a finite number of values X_1, X_2, \ldots, X_K occurring with probabilities p_1 , p_2, \ldots, p_K , the MAP minimizes the error probability

 $\mathscr{P}\left\{\hat{\mathbf{X}}\neq\mathbf{X}\right\}$

NOTE: Description of the prior p(X) may require many parameters.

For signals with large, or infinite number of levels, the probabilistic optimality of the MAP becomes irrelevant \rightsquigarrow MSE.

Thierry Blu The SURE-LET Methodology

The SURE-LET Approach T algorithms in image denoising

The problem Prior-based approaches for image denoising

Minimum MSE: Non-linear case

It is possible to solve Wiener's problem without the linear processing hypothesis (see e.g., Raphan/Simoncelli); i.e., find the optimal processing $F(\cdot)$ that yields the estimate $\hat{X} = F(Y)$ such that

 $\mathscr{E}\left\{\frac{1}{N}\|\mathbf{F}(\mathbf{Y}) - \mathbf{X}\|^2\right\}$ is minimized.

Solution: $\hat{X} = \mathscr{E} \{X|Y\}$, the posterior expectation. This expression can be simplified to

$$\hat{\mathbf{X}} = \mathbf{Y} + \sigma^2 \frac{\nabla r(\mathbf{Y})}{r(\mathbf{Y})}$$

where r(Y) = (p * q)(Y) is the (marginal) probability density of Y.

NOTE: The optimal MSE processing is infinitely differentiable.

The optimal algorithm only requires the knowledge of the *pdf of the noisy signal* \rightarrow no prior information is needed!

hierry Blu The SURE-LET Methodolog

The SURE-LET Approach RE-LET algorithms in image denoising

The problem Prior-based approaches for image denoising

Example

Assuming a Laplace prior, $p(X) = \prod_{n=1}^{N} \frac{\lambda}{2} e^{-\lambda |x_n|}$, these statistical approaches yield a pointwise thresholding involving $T = \lambda \sigma^2$:

Estimation of the MSE without signal prior

Thanks to the white Gaussian noise hypothesis, Stein's estimate

$$\mathsf{SURE}(\mathbf{Y}) = \frac{1}{N} \|\mathbf{F}(\mathbf{Y}) - \mathbf{Y}\|^2 + \frac{2\sigma^2}{N} \operatorname{div}(\mathbf{F}(\mathbf{Y})) - \sigma^2$$

 $\mathsf{satisfies}^2 \ \mathscr{E} \left\{ \mathsf{SURE}(\mathbf{Y}) \right\} = \mathscr{E} \left\{ \| \hat{\mathbf{X}} - \mathbf{X} \|^2 / N \right\}.$

Moreover, SURE(Y) has a small variance ($\propto 1/N$), thus

$$\frac{1}{N} \| \hat{\mathbf{X}} - \mathbf{X} \|^2 \approx \mathsf{SURE}(\mathbf{Y})$$

Note: Particularly adapted for large data sizes (e.g., images).

No assumptions on the original signal X, no statistical characterization.

 $^{2}\mathsf{Expectation}$ taken over all possible realizations of the noise.

Thierry Blu The SURE-LET Methodolog

11 / 36

Image denoising The SURE-LET Approach Th SURE-LET algorithms in image denoising Pr

The problem Prior-based approaches for image denoising

Regularization approaches

Choice of a functional J(X) that is known to be small when applied to the original signal. Typical choices are

- Tikhonov (e.g., smoothness prior): $J(X) = ||\mathbf{R}X||^2$
- Sparsity prior: $J(\mathbf{X}) = \|\mathbf{X}\|_{\ell^0} \rightsquigarrow J(\mathbf{X}) = \|\mathbf{X}\|_{\ell^1}$
- Total variation (edge prior): $J(X) = \sum_n |x_n x_{n-1}|$

The signal estimate \hat{X} is then selected as the solution of

 $\min_{\mathbf{y}} J(\mathbf{X}) \text{ such that } \|\mathbf{Y} - \mathbf{X}\|^2 \leq N\sigma^2$

Note: Using Lagrange's multipliers method, J(X) can be re-interpreted as a statistical prior and the optimization equivalent to a MAP.

No explicit distance minimization between original and denoised signal.

ry Blu The SURE-LET Methodolog

Stein's Unbiased Risk Estimate A Linear Expansion of Thresholds (LET)

The SURE-LET Approach SURE-LET algorithms in image denoising

A simple proof

On the one hand

$$\mathscr{E}\left\{\|\mathbf{F}(\mathbf{Y}) - \mathbf{X}\|^{2}\right\} = \mathscr{E}\left\{\|\mathbf{F}(\mathbf{Y})\|^{2}\right\} - 2 \underbrace{\mathscr{E}\left\{\mathbf{X}^{\mathsf{T}}\mathbf{F}(\mathbf{Y})\right\}}_{\mathscr{E}\left\{(\mathbf{Y} - \mathbf{B})^{\mathsf{T}}\mathbf{F}(\mathbf{Y})\right\}} + \underbrace{\|\mathbf{X}\|^{2}}_{\mathscr{E}\left\{\|\mathbf{Y}\|^{2}\right\} - N\sigma^{2}}$$
$$= \mathscr{E}\left\{\|\mathbf{F}(\mathbf{Y}) - \mathbf{Y}\|^{2}\right\} + 2\mathscr{E}\left\{\mathbf{B}^{\mathsf{T}}\mathbf{F}(\mathbf{Y})\right\} - N\sigma^{2}$$

and on the other hand (Stein's Lemma)

$$\mathscr{E} \left\{ \mathbf{B}^{\mathrm{T}} \mathbf{F}(\mathbf{Y}) \right\} = \int \underbrace{q(\mathbf{B}) \mathbf{B}^{\mathrm{T}}}_{-\sigma^{2} \nabla q(\mathbf{B})^{\mathrm{T}}} \mathbf{F}(\mathbf{X} + \mathbf{B}) d^{N} \mathbf{B}$$

=
$$\int \sigma^{2} q(\mathbf{B}) \operatorname{div} \left(\mathbf{F}(\mathbf{X} + \mathbf{B}) \right) d^{N} \mathbf{B}$$
 (by parts)
=
$$\mathscr{E} \left\{ \sigma^{2} \operatorname{div} \left(\mathbf{F}(\mathbf{Y}) \right) \right\}$$

hierry Blu The SURE-LET Methodolog

The SURE-LET Approach SURE-LET algorithms in image denoising Bossible avtensions

Stein's Unbiased Risk Estimate A Linear Expansion of Thresholds (LET)

SURE minimization

Because it is an estimate of the MSE of a processing, it is natural to minimize the SURE for finding good estimates of the parameters that define the processing.

Example: Donoho's *SureShrink*; find the optimal threshold T such that $SURE_{soft(.,T)}$ is minimal³.

$$N.\mathsf{SURE}_{\mathsf{soft}(.,T)} = \underbrace{\sum_{n} |\mathsf{soft}(y_n, T) - y_n|^2}_{\left(\sum_{|y_n| < T} y_n^2\right) + T^2 \#_{|y_n| \ge T}} + \underbrace{\sum_{n} 2\sigma^2 \frac{\mathrm{d}\,\mathsf{soft}}{\mathrm{d}y}(y_n, T)}_{2\sigma^2 \#_{|y_n| \ge T}} - N\sigma^2$$

NOTE: Very few other examples in the SP literature (Pesquet et al.).

 ${}^{3}\#_{|y_n|\geq T}$ is the number of coefficients y_n such that $|y_n|\geq T$.

LET Approach Stein's Unbiased Risk Estimate mage denoising A Linear Expansion of Thresholds (LET)

Linear approximation

It is particularly attractive to perform a *linear* decomposition of the processing onto a basis of *elementary* processings

Linear Expansion of Thresholds (LET)

$$\underbrace{\mathbf{F}(\cdot)}_{\hat{\mathbf{X}}=\mathbf{F}(\mathbf{Y})} = \sum_{k=1}^{K} a_k \underbrace{\mathbf{F}_k(\cdot)}_{\text{elementary}}$$

Advantages

- Explicit description of the processing;
- Using enough (reasonable) basis elements, it is possible to approximate most non-linear parametric processing;
- Minimization of a quadratic objective (e.g., SURE) yields a *linear* system of equations (non-iterative solution).

Prior-free parametric processing

A change of emphasis

Standard Choice of a *parametric prior*, find the parameters from the noisy data, then derive the optimal processing (e.g., MAP)

In the SURE-based approach, the *signal estimation* problem is replaced by a *processing approximation* problem — i.e., approximation of a *functional*, not a signal:

$$\underbrace{ \underbrace{ Y \longmapsto \hat{X}}_{\text{standard}} } \qquad \text{replaced by} \qquad \underbrace{ Y \longmapsto \mathbf{F}(\cdot)}_{\text{proposed}}$$

Optimization over a class of processings vs. optimization over a class of signals

Thierry Blu The SURE-LET Methodology

The SURE-LET Approach SURE-LET algorithms in image denoising

Stein's Unbiased Risk Estimate A Linear Expansion of Thresholds (LET)

SURE-LET processing

Minimization of the SURE for processings described as a LET: the coefficients a_k of the linear combination are obtained as

$$\{a_k\}_{k=1\ldots K} = \underset{\{a_k\}_{k=1\ldots K}}{\arg\min} \frac{1}{N} \Big\| \sum_{k=1}^K a_k \mathbf{F}_k(\mathbf{Y}) - \mathbf{Y} \Big\|^2 + \frac{2\sigma^2}{N} \sum_{k=1}^K a_k \operatorname{div} \left(\mathbf{F}_k(\mathbf{Y})\right) - \sigma^2$$

i.e., by solving a linear system of equations:

$$\sum_{k=1}^{K} a_k \mathbf{F}_l(\mathbf{Y})^{\mathsf{T}} \mathbf{F}_k(\mathbf{Y}) = \mathbf{F}_l(\mathbf{Y})^{\mathsf{T}} \mathbf{Y} - \sigma^2 \operatorname{div} \mathbf{F}_l(\mathbf{Y}) \quad \text{for } l = 1, 2, \dots K$$

Note: When model order K increases, the variance of SURE increases \rightsquigarrow MSE estimation quality decreases.

Non-iterative optimization, naturally fast.

13 / 36

14 / 36

Proposed *Parametrize the processing* directly, then find the optimal parameters (SURE minimization)

Orthogonal representations

Transformed domain denoising

It is frequent to use linear transformations (wavelets, DCT) to represent signals/images better: e.g., to "decorrelate" them, or to sparsify them:

W = DY	$\sim \rightarrow$	$Y = \mathbf{R}W$
analysis		synthesis

where $\mathbf{RD} = \mathbf{Id}$. Typical transformations may be

- orthogonal useful because of *MSE preservation* ~> separate processing of transformed coefficients;
- **redundant** useful because *simple (coefficientwise) processing* of transformed coefficients is sufficient to produce high-quality results.

Transformed domain LET processing: $\mathbf{F}(\mathbf{Y}) = \sum_{k=1}^{K} a_k \mathbf{R} \mathbf{\Gamma}_k(\mathbf{W})$

PSNR=15 dB

PSNR=28.33 dB

SURE-LET pointwise

NOTE: Adding more parameters brings almost no improvement. Better denoising efficiency requires multivariate thresholding rules.

Orthogonal representations SURE-LET algorithms in image denoising

Pointwise wavelet thresholding

Principle: use an orthogonal (non-redundant) wavelet representation (e.g., symlet 8) and threshold each wavelet band using

 $\gamma_{a,b}(w) = aw + bw \mathrm{e}^{-\frac{w^2}{12\sigma^2}}$

where a, b minimize the SURE in each subband.

The SURE-LET Approach SURE-LET algorithms in image denoising

InterScale wavelet thresholding

The relative locality of the DWT implies that there may be a *spatial* correlation between different wavelet scales: three potential tree-structures — LH. HH and HL

Interscale thresholding consists in expressing the denoised estimate as

 $\hat{x}_w[n] = \gamma(w[n], w^{\mathbf{p}}[n])$

The SURE-LET Approach SURE-LET algorithms in image denoising

Orthogonal representations Non-Orthogonal/Redundant Representations

InterScale wavelet thresholding

Principle: separate the parent into large and small coefficients, and within each zone so defined, apply a pointwise thresholding function:

 $\gamma(w, w^{\mathrm{p}}) = \mathrm{e}^{-\frac{(w^{\mathrm{p}})^{2}}{12\sigma^{2}}} \left(aw + bw \mathrm{e}^{-\frac{w^{2}}{12\sigma^{2}}} \right) + (1 - \mathrm{e}^{-\frac{(w^{\mathrm{p}})^{2}}{12\sigma^{2}}}) \left(a'w + b'w \mathrm{e}^{-\frac{w^{2}}{12\sigma^{2}}} \right)$ small parents large parents

NOTE: DWT is orthogonal, hence w and w^p are statistically independent \sim same SURE formula as for the pointwise case.

PROBLEM: the wavelet coefficients are not exactly aligned from band to band (filtering and downsampling effect). How to obtain a parent aligned exactly with his child?

The SURE-LET Approach SURE-LET algorithms in image denoising Orthogonal representations

Parent/child alignment: Group-Delay Compensation

Adequate high-pass filtering of the lowpass LL_i — which contains the whole parent tree: W compensates the group-delay difference between the low-pass and the high-pass band.

The SURE-LET Methodolog

The SURE-LET Approach SURE-LET algorithms in image denoising

Orthogonal representations

Example of result

SureShrink

PSNR=28.08 dB

The SURE-LET Methodology

PSNR=15 dB

PSNR=29.29 dB

SURE-LET interscale

Best non-redundant transform-domain algorithm.

22 / 36

Extension to multichannel denoising

Direct generalization by replacing:

- scalar-valued by vector-valued wavelet coefficients;
- scalar-valued by matrix-valued LET parameters.

Assuming R=covariance matrix of the noise, and $g(x) = \exp(-x/12)$

NOTE: Automatically selects the best color space.

Thierry Blu The SURE-LET Methodology

The SURE-LET Approach SURE-LET algorithms Durities

Orthogonal representations Non-Orthogonal/Redundant Representations

Undecimated pointwise wavelet thresholding

It has been observed 10 years ago (Coifman, Guo *et al.*) that redundant DWT are substantially more efficient for image denoising.

Two iterations of a 1D UDWT

Perfect reconstruction condition: $\mathbf{R}.\mathbf{D} = \mathbf{Id}$

Image denoising The SURE-LET Approach SURE-LET algorithms in image denoising Possible extensions

Overview of the Multichannel SURE-LET denoising

The SURE-LET Approach SURE-LET algorithms in image denoising

Orthogonal representations Non-Orthogonal/Redundant Representations

Undecimated pointwise wavelet thresholding

Thresholding rule

Defining $\Gamma_{a,b}(W) = [\gamma_{a_1,b_1}(w_1), \gamma_{a_2,b_2}(w_2), \dots, \gamma_{a_N,b_N}(w_N)]$, the processing takes the form $\mathbf{F}(Y) = \mathbf{R}.\Gamma_{a,b}(\mathbf{D}.Y)$ where

$$\gamma_{a,b}(w) = aw + bw \left(1 - e^{-\left(\frac{w}{3\sigma}\right)^8}\right)$$

and where the (a_k, b_k) are all identical within the same wavelet subband — i.e., two parameters per subband.

The optimal set of parameters $\{a,b\}$ is then found by minimizing the global image-domain SURE.

NOTE: Contrary to the nonredundant case, a hard-like threshold works better than a softer version.

25 / 36

The SURE-LET Approach SURE-LET algorithms in image denoising Parsible extensions

roach Orthogonal representations oising Non-Orthogonal/Redundant Representations

Undecimated pointwise wavelet thresholding

Undecimated discrete symlet transform

PSNR=29.49 dB

NOTE: Surprisingly, it is the simplest wavelet type (Haar) that works best. Smallest support?

Thierry Blu The SURE-LET Methodology 29 / 36 Image denoising The SURE-LET Approach SURE-LET algorithms in image denoising Possible extensions Other MSE estimates PURE-LET Haar denoising Linear modifications

It is possible to adapt the SURE so as to take into account

- **1** An arbitrary noise covariance: $\mathscr{E} \{BB^{T}\} = \mathbf{R};$
- **2** A distortion: Y = AX + B;
- **3** A non-Euclidian, but quadratic quality measure: $\mathscr{E}\left\{ \|\mathbf{Q}(\hat{X} X)\|^2 \right\}$.

Given all these linear modifications, the SURE formula has to be modified

 $SURE(\mathbf{Y}) = \frac{1}{N} \|\mathbf{Q}(\mathbf{F}(\mathbf{Y}) - \mathbf{A}^{-1}\mathbf{Y})\|^2 + \frac{2}{N} \operatorname{div} \left(\mathbf{R}\mathbf{A}^{-\mathsf{T}}\mathbf{Q}^{\mathsf{T}}\mathbf{Q}\mathbf{F}(\mathbf{Y})\right) - \frac{\operatorname{Tr}(\mathbf{Q}\mathbf{A}^{-1}\mathbf{R}\mathbf{A}^{-\mathsf{T}}\mathbf{Q}^{\mathsf{T}})}{N}$

Note: Prior information on X may be needed when matrices involved are singular. Application to deconvolution (Vonesch, Pesquet/Benazza/Chaux).

Orthogonal representations Non-Orthogonal/Redundant Representations

Undecimated pointwise wavelet thresholding

Undecimated discrete Haar wavelet transform

 $\mathsf{PSNR}{=}15\,\mathsf{dB}$

PSNR=30.28 dB

NOTE: Surprisingly, it is the simplest wavelet type (Haar) that works best. Smallest support?

Thierry Blu

The SURE-LET Methodology

30 / 36

oproach Other MSE estimates PURE-LET Haar dend

Other noise statistics

It is possible to obtain unbiased estimate of the MSE for non Gaussian statistics. Typically (Raphan/Simoncelli, Eldar) for

- Additive arbitrary pdf
- Exponential families of pdf

Example of the Poisson Unbiased Risk Estimate (PURE)

\blacksquare Estimate x from noisy Poisson measurements y

 $\mathscr{P}\left\{y=n\right\} = x^n e^{-x}/n!$

- Processing on y to obtain an estimate \hat{x} of x: $\hat{x} = f(y)$
- PURE = $f(y)^2 2yf(y-1) + y(y-1)$ is such that $\mathscr{E} \{ \text{PURE} \} = \mathscr{E} \{ |\hat{x} - x|^2 \}$

Note: All these estimates are quadratic in $\mathbf{F}(\cdot) \rightsquigarrow \mathsf{LET}$ parametrization.

The SURE-LET Approach SURE-LET algorithms in image denoising Possible extensions

Approach Other MSE estimates denoising PURE-LET Haar denoising

Haar and Poisson

The Haar wavelet transform has two important properties

- Orthogonality, i.e., preservation of the MSE in the wavelet transform
- "Propagation" of the Poisson statistics at coarser scales.
- \rightsquigarrow PURE involving neighboring scales.
- \rightsquigarrow thresholding function involving interscale dependencies.
- \rightsquigarrow application to fluorescence microscopy images.

Natural extension (with Florian Luisier and Cédric Vonesch) of the interscale SURE-LET approach to Haar PURE-LET.

Image denoising The SURE-LET Approach LET algorithms in image denoising Portible averaging

Overview of the multi-frame algorithm

The SUR SURE-LET algorithms i enoising pproach Other MSE estimates enoising PURE-LET Haar denoising

Conclusion

Presentation of a generic framework for signal/image denoising.

Advantages:

- Does not require hypotheses on the signal, only on the noise (SURE)
- Linear approximation of the denoising process on a basis of "thresholds" (LET)
- Fast, non-iterative (SURE + LET)
- Natural construction of multivariate thresholding rules.
- Extensions to non-Gaussian noise corruptions.

Papers available at http://www.ee.cuhk.edu.hk/~tblu/