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ABSTRACT
We present a procedure for designing interpolation kernels
that are adapted to time signals; i.e., they are causal, even
though they do not have a finite support. The considered
kernels are obtained by digital IIR filtering of a finite support
function that has maximum approximation order. We show
how to build these kernel starting from the all-pole digital
filter and we give some practical design examples.

1. MOTIVATION

Interpolation, whose historical roots can be traced back to
the first known literate societies [1], is a central tool in en-
gineering sciences. This is especially true in digital signal
processing applications where, implicitly or explicitly, an in-
terpolation step is frequently required. Unfortunately, the
“ideal” interpolation kernel, the sinc-function, which is used
in Shannon’s interpolation formula (T is some sampling step)

f (t) = ∑
n∈Z

fn sinc
( t

T
−n

)
, (1)

has three weak points which rule it out for real-world sys-
tems. More specifically, it does not satisfy any of the follow-
ing properties:

i. Finite cost implementation — Instead, the sinc has
infinite support with no finite (e.g., recursive) imple-
mentation;

ii. Causality — Instead, sinc-interpolation requires all
past and all future samples;

iii. Absolute summability — Which not the case of the
sinc function because ∑n∈Z

|sinc(t/T − n)| = +∞,
implying excessive sensitivity to additive noise.

As a remedy, practitionneers have tried to replace sinc in (1)
by less ideal — but carefully designed — kernels that would
fulfill these three requirements. In fact, it has become stan-
dard to look for kernels ϕ int(t) that have finite support and
satisfy the interpolation condition ϕ int(n) = δn [2, 3, 4].

Generalized interpolation — In previous publications, we
have shown that the standard approach yields significantly
suboptimal kernels [5, 6]. We exhibited infinite support ker-
nels satisfying properties i. and iii., that are competitive with
regards to computational cost and have optimal approxima-
tion quality (MOMS) [7]. Our approach consists in building
the interpolating kernel ϕint(t) from a finite support function
ϕ(t) according to the expression

ϕint(t) = ∑
k∈Z

hkϕ(t − k)

where H(e jω ) =
(
∑
n∈Z

ϕ(n)e− jnω
)−1 (2)

Here, H(z) = (∑n∈Z
ϕ(n)z−n)−1 is the z-transform of the dig-

ital filter {hk}k∈Z
. It is an all-pole fractional transfer function

which can be implemented exactly by a recursive algorithm
(see [6].

It can easily be checked that ϕint(n) = δn even though
ϕ(t) does not satisfy the interpolation condition.

Causal interpolation — When dealing with images, it is
pointless to enforce the causality of the interpolant ϕ int(t).
On the contrary, when time signals are considered, this prop-
erty is essential. It is precisely the purpose of the present pa-
per to adapt generalized interpolation so that it satisfies prop-
erty ii. We will, in particular, show how to build kernels ϕ(t)
that have minimum support for a given approximation order
and whose prefilter H(z) is causal. We will finally conclude
with a few good candidates that have both a fast implemen-
tation, and good approximation qualities.

We believe that the new interpolation kernels we propose
here can be of great use in practical applications such as au-
dio sound resampling (e.g., 48 kHz studio recording down
to 44.1 kHz CD-quality, or 192 kHz DVD sampling down to
44.1 kHz CD-quality).

2. MOMS

The order of approximation denoted by L gives the rate at
which the interpolation error decreases as the sampling step
T decreases:

∥∥∥ f (t)−∑
n∈Z

fnϕint

( t
T
−n

)∥∥∥
L2

∝
T→0

T L (3)

where f is some function with square-integrable L th deriva-
tive. In a series of image rotation experiments also available
on our web page1, we have been able to show that the ap-
proximation order is an important quantity for comparing the
quality of different interpolation kernels.

Mathematically, ϕint(t) as defined in (2) generates an Lth-
order interpolation if and only if the function ϕ(t) satisfies
the so-called Strang-Fix conditions:

ϕ̂(0) = 1,
ϕ̂(ω + 2nπ) = O(ωL) for all n ∈ Z\ {0}.

We use here the notation g(x) = O(xL) as a shorthand mean-
ing that the Taylor development of g(x) in the neighborhood
of x = 0 is of the form: g(x) = 0+ . . .+ 0 · xL−1 + aLxL + . . .

Not so surprisingly, a function ϕ(t) of given support can-
not have an arbitrarily large approximation order [8]: if the

1http://bigwww.epfl.ch/demo/jrotation/index.html
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size of its support is S, then its maximal approximation order
is L = �S� ≤ S. In addition, the functions that saturate the in-
equality, i.e., such that L = S, are piecewise-polynomial and
can be expressed as a sum of the B-spline of degree L−1 and
its first L−1 derivatives:

ϕ(t) = β L−1(t − τ)+
L−1

∑
k=1

pk
dk

dtk β
L−1(t − τ) (4)

where τ is an arbitrary shift and pk are arbitrary coefficients
— This equation characterizes the MOMS (Maximum Or-
der Minimum Support) function class [7]. We recall that the
B-spline of degree d is a positive piecewise-polynomial func-
tion whose support is [0,d + 1] and whose Fourier transform
is given by

β̂ d(ω) =
(1− e− jω

jω

)d+1
.

The parameters of a MOMS can be designed so that it sat-
isfies the interpolation condition (I-MOMS or piecewise La-
grange kernel), or so that the proportionality constant in (3)
— also known as the asymptotic constant — is minimal (O-
MOMS).

3. MOMS WITH CAUSAL PREFILTER

Usually, the all-pole filter H(z) = (∑n∈Z
ϕ(n)z−n)−1 cannot

have a causal recursive implementation. Although this is not
an issue in image interpolation, this may be detrimental in the
case of online unidimensional signal processing. This is why
we want to characterize the subclass of MOMS that have a
causal prefilter H(z).

Our strategy is the following: Instead of finding which
constraint the parameters of the MOMS (τ and pk) have to
satisfy in order for H(z) to be causal, we will instead assume
that we are given τ and the poles of H(z) — inside the unit
circle — and show that this uniquely determines the coeffi-
cients pk. To this end, we define

A(z) =
L−1

∑
k=0

akz−k

as the polynomial whose zeros are the poles of H(z) and we
assume that the coefficients ak are normalized by A(1) = 1.
Notice that we also have ∑kϕ(k) = 1 because ϕ(t) satisfies
the Strang-Fix condition of order L ≥ 1. It is thus easy to
verify that

∑
n∈Z

ϕ(n)z−n = z−n0A(z)

where n0 is some integer delay. With no lack of generality,
we may assume that τ has been chosen in such a way that
n0 = 0 but then, this implies that τ is not completely arbitrary
anymore because it has to satisfy

deg(A)−L < τ ≤ 0. (5)

Theorem 1 Assume that the shift τ and the poles of the gen-
eralized interpolation prefilter are provided (under the form
of a normalized polynomial A(z)), and that they satisfy the
constraint (5).

Then, the unique MOMS function ϕ(t) such that

∑
n∈Z

ϕ(n)z−n = A(z)

is given by (4) where the parameters pk are the coefficients
of the Taylor development of the function

e jτωA(e jω)

β̂ L−1(ω)
= 1+ p1 jω + p2( jω)2 + . . . pL−1( jω)L−1

+ O(ωL)
(6)

Proof : Using Poisson’s summation formula, we have that

∑
n∈Z

ϕ̂(ω + 2nπ) = ∑
n∈Z

ϕ(n)e− jnω = A(e jω).

Applying the Strang-Fix conditions ϕ̂(ω + 2nπ) = O(ω)
for n �= 0 to this expression shows that ϕ̂(ω) = A(e jω) +
O(ωL). We then take the Fourier transform of (4) which
provides ϕ̂(ω) = e− jτωP( jω)β̂ L−1(ω), where we have de-
noted P(x) = 1 + p1x + . . . pL−1xL−1. After dividing by

e− jτω β̂ L−1(ω) we get (6).
Conversely, if (6) is satisfied, then we build the func-

tion ϕ(t) according to (4). We only have to verify that
∑nϕ(n)z−n = A(z). Because of (6), we are ensured that

∑
n∈Z

ϕ(n)e− jnω = e− j�τ	ω ∑
n∈Z

ϕ(n+ �τ	)e− jnω

= A(e jω)+ O(ωL)

= A(e jω)+ O((1− e− jω)L)

which provides

∑
n∈Z

ϕ(n+ �τ	)e− jnω− e j�τ	ωA(e jω) = O((1− e− jω)L).

The first term on the left-hand side is a polynomial of degree
(L−1), and so is the second term because τ satisfies (5). As
a result, the lhs is a polynomial of degree (L− 1) in e− jω

which should be divisible by a polynomial of degree L. This
is only possible if the lhs vanishes, i.e.,

∑
n∈Z

ϕ(n+ �τ	)e− jnω = e j�τ	ωA(e jω)

which finally implies that A(e jω) = ∑nϕ(n)e− jnω . �
Note that the function specified by this theorem is usually

not continuous because the (L−1) th derivative of a spline of
degree (L−1) is not continuous at the integers. This means
that, if we are looking for more regular kernels, we will need
to look for solutions of (6) which are such that: p L−1 = 0
(continuity), pL−1 = 0 and pL−2 = 0 (continuous first differ-
entiation), and so on.

4. SOME DESIGN EXAMPLES

Theorem 1 shows how to choose the MOMS function ϕ(t)
so that the the interpolation prefilter H(z) is given by A(z)−1.
We can now make a choice for A(z). More specifically, we
are interested in 1-pole interpolation prefilters because they
have the fastest implementation. Since the root of A(z) has to
be inside the unit circle, we are thus left with the expression:

A(z) = α +(1−α)z−1 with α > 1/2.

According to (5), τ has to be chosen in ]1−L,0] — we as-
sume α �= 1 here.

We will consider three interesting values of L corre-
sponding to a piecewise-polynomial kernel of degree L−1.
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4.1 Approximation order L = 2.

The corresponding MOMS is a piecewise-linear function.
Applying Theorem 1, we get

p1 = α + τ .

For the kernel to be continuous, we thus need that τ = −α ,
that is to say that we have a free parameter left α ∈]1/2,1[,
yielding

ϕ(t) = β 1(t +α).

This degree of freedom can be put to benefit for optimizing
the quality of interpolation. More specifically, when we min-
imize the proportionality constant in (3), we get α ≈ 0.79
(see [9]). We have plotted the corresponding interpolating
function ϕint(t) in Fig. 1 and its spectrum in Fig. 4.

4.2 Approximation order L = 3.

The corresponding MOMS is a piecewise-quadratic function.
Applying Theorem 1, we get:

p1 = 1
2 +α + τ

p2 = 1
2 (1+ τ)(2α+ τ).

In order to have a continuous kernel, we have two options:
• either τ = −2α in which case p1 = −(α −1/2) and
α ∈]1/2,1[, yielding

ϕ(t) = β 2(t + 2α)− (α−1/2)
d
dt
β 2(t + 2α);

• or τ = −1 in which case p1 = α − 1/2 and α ∈
]1/2,+∞[, yielding

ϕ(t) = β 2(t + 1)+ (α−1/2)
d
dt
β 2(t + 1).

This provides two families with one free parameter. We have
plotted the interpolating functionϕ int(t) corresponding to the
first option with α = 3/4 in Fig. 1 and its spectrum in Fig. 4.

4.3 Approximation order L = 4.

The corresponding MOMS is a piecewise-cubic function.
Applying Theorem 1, we get:

p1 = 1+α+ τ
p2 = 1/3+ τ+ 3α/2+ τ2/2+ατ
p3 = (1+ τ)(2+ τ)(3α+ τ)/6.

Interestingly, it is possible here to have a continuously differ-
entiable kernel which yields a unique solution (τ = −2 and
α = 2/3):

ϕ(t) = β 3(t + 2)− 1
3

d
dt
β 3(t + 2).

Even more interesting is that the generalized interpolation
prefilter is

(
2/3(1 + z−1/2)

)−1
which can be implemented

using a recursion that requires only one division by 2 and
one addition per sample. This could be particularly useful
for fixed arithmetic implementation.

We have plotted the corresponding interpolating function
ϕint(t) in Fig. 3 and its spectrum in Fig. 4.

Preliminary image rotation tests have shown that this cu-
bic kernel behaves even better than cubic spline interpolation.

5. CONCLUSION

We have presented a general technique for designing infinite
support causal interpolators based on the shortest functions
that have a given approximation order L; these turn out to
be piecewise-polynomial of degree L− 1. We have, in par-
ticular, considered the case of the simplest interpolation pre-
filter and have analyzed the regular solutions obtained when
the polynomial degree of the interpolator is 1, 2 and 3. We
believe that, due to their low implementation cost (see [6])
and their good approximation properties, these interpolants
are likely to be useful especially for the interpolation of time
signals.
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Figure 1: Interpolating linear function ϕ int(t) in the case L =
2 for the optimal value α = 0.79 [7].
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Figure 2: Interpolating quadratic function ϕ int(t) in the case
L = 3 for the values α = 0.79 and τ = −2α .
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Figure 3: Continuously differentiable interpolating cubic
function ϕint(t) in the case L = 4.
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Figure 4: Frequency spectrum of the three functions plotted
in Figs 1–3. Dotted line: corresponding to Fig. 1; Dashed
line: corresponding to Fig. 2; Plain line: corresponding to
Fig. 3.
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