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ABSTRACT

We show the feasibility and the potential of a new signal process-
ing algorithm for the high-resolution deconvolution of OCT sig-
nals.

Our technique relies on the description of the measures in a
parametric form, each set of four parameters describing the opti-
cal characteristics of a physical interface (e.g., complex refractive
index, depth). Under the hypothesis of a Gaussian source light,
we show that it is possible to recover the 4K parameters corre-
sponding to K interfaces using as few as 4K uniform samples of
the OCT signal. With noisy data, we can expect the robustness
of our method to increase with the oversampling rate—or with the
redundancy of the measures.

The validation results show that the quality of the estimation
of the parameters (in particular the depth of the interfaces) is nar-
rowly linked to the noise level of the OCT measures—and not to
the coherence length of the source light—and to their degree of
redundancy.

1 INTRODUCTION

Optical Coherence Tomography (OCT) is a recent high-resolution
imaging technique [1, 2, 3]. It is based on an interferometric mea-
sure in which a wave with low temporal coherence is split into
two parts. One of the beams hits the object to image, is backscat-
tered and guided to a photocaptor, while the second one acts as
a reference and is guided to the photocaptor as well, where it is
recombined with the object wave to yield interferences. Varying
the pathlength of the reference wave, one is able to scan inside
the object at depths such that the backscattered wave keeps some
coherence with the incident one (see Fig. 1).

The OCT signal essentially carries the information of abrupt
changes in the refractive index and the depth-resolution that can
be attained is roughly half the coherence length of the reference
wave [4]. In common experiments, this resolution is between 4µm
and 16µm [5], although using a Fourier deconvolution technique
might improve this figure [6]

We propose here a direct signal processing method that is able
to reach a resolution that does not depend on the coherence length,
but rather on the noise level of the OCT measure. This high-
resolution parametric method is reminiscent of the retrieval of com-
plex exponentials in a noisy signal, which is a standard signal pro-
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Fig. 1. Schematical overview of an OCT measure. The object is
reduced to its interfaces as in the model used for this paper (see
Section 2.2).

cessing problem, e.g., in mobile communications [7]. Our tech-
nique is actually exact under the assumption of a Gaussian co-
herence function; it is also “critical” in the absence of noise—the
retrieval of N parameters requires no more than N samples of the
interference pattern. The redundancy in the OCT measure, which
may be quite high, can thus be exploited to reduce noise.

2 MODELIZATION OF THE OCT SIGNAL

2.1 Standard Convolution Model

An incident 1D complex wave ψ(t−x/c), whose coherence func-
tion (and power spectrum density S(ν) = Ĝ(ν)) is defined by

G(t2 − t1) = 〈ψ(t1)
∗ψ(t2)〉 (1)

illuminates an object that we want to image. We assume that this
object is characterized by a linear time-invariant impulse response
h(t), which implies that it is the source of a backpropagating re-
flected wave ψR(t+x/c), where ψR = h∗ψ. This wave is guided
to the photocaptor along a path of parameterized (variable) length
x1. The incident wave is also guided to this photocaptor along a
path of (fixed) length x0 and the average intensity resulting from
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the superposition of the two waves is measured

I(x1 − x0) =

����ψ�t + x0
c

�
+ ψR

�
t + x1

c

����2
�

=

� ����1 + ĥ(ν)e2iπν
x1−x0

c

����
2

S(ν) dν

= const + 2�

�
h ∗ G

�
x1−x0

c

��
.

Finally, the signal that has to be processed is

I0(x) = 2�
	

h ∗ G(x
c
)



(2)

We assume here that the power spectrum density of the inci-
dent light is Gaussian

S(ν) =
1√

2π ∆ν
e
− 1

2

�
ν−ν0
∆ν

�2

� �

G(t) = e−
(2π∆ν)2

2 t2+2iπν0t

(3)

where ν0 is the central frequency of the source and ∆ν is related
to its temporal coherence length, lc, through lc =

√
2 log 2

π
c

∆ν
[4].

2.2 Multilayer Parametric Model

As can be seen from (2) and (3), the OCT signal is a bandpass ver-
sion of the signature h(t) of the object. In particular, this means
that attempting to reconstruct the low-pass portion of h(t) from
the OCT measurements, I0(t), is an ill-posed problem. This im-
plies that it is only the transitional features of the object that are
likely to be extracted, because they alone have a sufficiently large
bandwidth to intersect the support of S(ν).

This is why we propose to model the object as a succession of
interfaces between which the refractive index is constant. To sim-
plify even more, we consider here the unidimensional case charac-
terized by a complex refractive index

n(x) =

��


n0 for x < x1

nk for xk ≤ x < xk+1 and k = 1 . . . K − 1
nK for xK ≤ x

and by the wave equation y′′(x) +
�

2πν
c

�2

n(x)2y(x) = 0.

Then, the Fourier transform of the impulse response h(t) is
given by

ĥ(ν) =

K�
k=1

ake−2iπbkν/c for all |ν − ν0| ≤
∆ν

2
, (4)

neglecting multiple reflections. Here, a careful analysis of the
wave equation provides the relation between (ak, bk) and (xk, nk).

As a consequence, the OCT signal can be parameterized as a
sum of Gabor functions

I0(x) = 2�

� K�
k=1

αke
− 1

2σ2 (x−βk)2
�

(5)

where αk = ake
− ν2

0
2∆ν2 , βk = bk + i ν0c

2π∆ν2 and σ = lc
2
√

2 log 2
.

The purpose of this paper is to present an exact method for iden-
tifying the parameters αk and βk from a finite number of samples
of I0(x).

3 A HIGH-RESOLUTION METHOD

We will from now on assume that we know the value of lc, and
hence, of σ. Moreover, we have access to the measurements Jl =
I0(l∆x) for l = l0 . . . l1 where ∆x is a sampling step. Thus, we
have

Jl = 2�

� K�
k=1

αke
−∆x2

2σ2

�
l− βk

∆x

�2�
. (6)

Multiplying left and right hand sides by e
∆x2

2σ2 (l−m)2 yields

yl = e
∆x2

2σ2 (l−m)2
Jl

= 2�

� K�
k=1

αke
∆x2

2σ2

�
β

∆x
−m

��
2l−m− β

∆x

��

=
K�

k=1

α′
kzl

k +
K�

k=1

α′
k
∗
(z∗k)l (7)

where we have defined α′
k = αke

−∆x2

2σ2

�
β

∆x
−m

��
m+ β

∆x

�
and

zk = e
∆x2

σ2

�
β

∆x
−m

�
. The advantage of the last expression is

that it takes a standard form that can be analyzed using a high-
resolution method [7].

3.1 Finding the zk and α′
k

Let P (z) be the real polynomial that has the roots zk, z∗k

P (z) =

K�
k=1

(z − zk)(z − z∗k) =

2K�
k=0

pkzk.

One can then easily verify that

∀l = l0 + 2K, . . . , l1,
2K�
k=0

pkyl−k = 0.

These linear equations are now written in a matrix form

�
�����

yl0+2K yl0+2K−1 . . . yl0

yl0+2K+1 yl0+2K . . . yl0+1

yl0+2K+2 yl0+2K+1 . . . yl0+2

...
...

...
...

yl1 yl1−1 . . . yl1−2K

�
�����

� �� �
A

�
�����

p0

p1

p2

...
p2K

�
�����

� �� �
P

= 0,

where, A is a matrix having (l1− l0−2K +1) lines and (2K +1)
columns. In particular, we see that, with as few as 4K samples, we
are able to reconstruct the polynomial P (z). Extracting its roots
provides the unknown values zk.

Then, the parameters α′
k are obtained by solving the linear

Vandermonde system of equations obtained from (7)

�
����

zl0
1 z∗1

l0 . . . zl0
K z∗K

l0

zl0+1
1 z∗1

l0+1 . . . zl0+1
K z∗K

l0+1

...
...

...
...

...
zl1
1 z∗1

l1 . . . zl1
K z∗K

l1

�
����

�
�����

α′
1

α′
1
∗

...
α′

K

α′
K

∗

�
����� =

�
����

yl0

yl0+1

...
yl1

�
���� .
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In order to find the values α′
k, we need no fewer than 2K measures

Jl. On the whole, we conclude that we are able to reconstruct
uniquely the 2K complex-valued parameters (α′

k, zk) as soon as
we are provided with 4K real-valued uniform measures Jl. In
the next subsection, we will see how it is possible to exploit the
redundancy of these measures when they are corrupted by noise.

3.2 The Noisy case

Usually, the data are noisy and/or the model does not fit the data
exactly. In this case, we propose first to enhance the signal, and
then to solve the two linear systems of equations above in the least-
square sense—in practice, this involves finding the smallest eigen-
value of the matrix ATA.

Our denoising technique uses the information that yn has the
parametric form (7). In the absence of noise, the matrix

BN =

�
�����

yl0+N yl0+N−1 . . . yl0

yl0+N+1 yl0+N . . . yl0+1

yl0+N+2 yl0+N+1 . . . yl0+2

...
...

...
...

yl1 yl1−1 . . . yl1−N

�
�����

is always of rank 2K when N ≥ 2K. Its decomposition in sin-
gular values BN = Q∆RT therefore involves a diagonal matrix
∆ with only 2K nonzero values. Our direct denoising method can
now be described as follows:

• First, choose a denoising length N . The longer it is, the
larger the reduction of the noise—but also, the more com-
putationally expensive it is.

• Second, perform the decomposition of the noisy measure-
ment matrix BN in singular values.

• Third, build the “denoised” diagonal matrix ∆̂ by keeping
only the 2K largest coefficients of ∆; then reconstruct the
denoised measurement matrix B̂N = Q∆̂RT.

• Last, since every column of BN provides an estimate of the
signal, build a denoised version of the signal by averaging
over the estimates of yl obtained from the N + 1 columns
of B̂N .

This denoising technique has proved extremely efficient on the test
signals that we have analyzed. For instance, with 350 samples, two
Gaussians to retrieve, and a denoising length of N = 50, the signal
to noise ratio increase usually exceeds 16 dB.

4 VALIDATION RESULTS

We have synthetized 353 uniform samples of an OCT signal sim-
ulating the reflection of two interfaces separated by a distance
of 2.66 µm and inducing a wavelength shift from 1300 nm to
1302 nm and 1339 nm, respectively. The coherence length for
the Gaussian source is 20 µm, so the equivalent depth resolution is
10 µm. We have added a Gaussian white noise ranging from 6 dB
to 60 dB and have applied our algorithm to these 353 samples. An
instance of this noisy simulated OCT signal is shown in Fig. 2.

The main retrieved parameters (position and frequency) are
shown in the scatterplots of Figs. 3 and 4. Using these estimated
parameters we reconstructed a signal that is much closer to the
original noise-free signal than to the noisy one. More precisely,
our reconstruction increases the signal to noise ratio by 16 dB on
average as shown in Fig. 5. This gain is identical to

√
redundancy

which is what we would expect from an optimal estimator.
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Fig. 2. Simulated OCT signal—Gaussian light source at 1300 nm
with 20 µm temporal coherence length—composed of two modu-
lated Gaussians and corrupted with 20 dB noise. Here, the “stan-
dard” axial resolution is 20 µm/2 = 10 µm.

5 CONCLUSION

We have presented a new high-resolution signal processing method
for the deconvolution of OCT signals. In particular, we have shown
that the resolution of our method is only limited by the amount of
noise that is present in the measures: less noisy data yield higher
resolved structures. Moreover, our technique is versatile as it re-
quires only a finite number of samples for the exact retrieval of
the parameters that describe the OCT signal. It may be used ei-
ther when few but noise-free data are available, or in the case of
oversampled noisy measurements.
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Fig. 3. Positions of the interfaces as a function of the input noise.
Notice that the depth resolution depends only on the noise level,
not on the coherence length which is here a constant.
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Fig. 4. Retrieved wavelengths as a function of the input noise.
Observe that the frequency resolution does not depend on the co-
herence length—nor, actually, on the length of the signal.
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Fig. 5. Error between the original signal and the reconstruction us-
ing the retrieved noisy parameters (in ordinate) as a function of the
level of input noise (in abscissa). To ease the comparison, we have
drawn the y = x line. Note that the level of output noise is reduced
dramatically (16 dB on average) which shows the efficiency of our
method in exploiting the redundancy of the measures.
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