Approximation Order: Why the Asymptotic Constant Matters

Thierry Blu, Michael Sühling, Philippe Thévenaz and Michael Unser

Biomedical Imaging Group DMT/IOA Swiss Federal Institute of Technology Lausanne CH-1015 Lausanne EPFL, Switzerland

Abstract

We consider the approximation (either interpolation, or least-squares) of \mathbf{L}^2 functions in the shift-invariant space $\mathcal{V}_T = \operatorname{span}_{k \in \mathbb{Z}} \{ \varphi(\frac{t}{T} - n) \}$ that is generated by the single shifted function φ . We measure the approximation error in an \mathbf{L}^2 sense and evaluate the asymptotic equivalent of this error as the sampling step T tends to zero. Let $f \in \mathbf{L}^2$ and f_T be its approximation in \mathcal{V}_T . It is well-known that, if φ satisfies the Strang-Fix conditions of order L, and under mild technical constraints, $||f - f_T||_{\mathbf{L}^2} = O(T^L)$ [4].

In this presentation however, we want to be more accurate and concentrate on the constant C_{φ} which is such that

$$||f - f_T||_{\mathbf{L}^2} = C_{\varphi} ||f^{(L)}||_{\mathbf{L}^2} T^L + o(T^L).$$

We showed previously how to compute this constant [2, 3, 5, 6]. We showed that the numerical values associated to specific, widely-used kernels φ exhibit substantial variations. This important observation motivates our presentation, because the asymptotic approximation constant is a very good indicator of performance. Letting φ_1 and φ_2 be two generators of order L, we define the "sampling gain" of φ_1 over φ_2 by

$$\gamma_{\varphi_1/\varphi_2} = \left(\frac{C_{\varphi_1}}{C_{\varphi_2}}\right)^{-\frac{1}{L}}.$$

This quantity is interpreted as the factor by which the approximation using φ_2 has to be over/down-sampled in order to exhibit the same asymptotic

E-mail address: thierry.blu@epfl.ch

error as that using φ_1 . For instance, we will prove that, when the approximation order tends to ∞ , Daubechies' scaling functions require π -times more coefficients than the same-order spline-approximation, asymptotically [3].

Given an approximation order L, we will also give explicit expressions of the smallest-support kernels whose approximation constant is minimal. These functions are called "OMOMS" [1]. We will see that our new kernels bring a huge gain over splines of same order, and, typically, that this gain increases linearly as the order increases: $\gamma_{\text{OMOMS/spline}} \approx \frac{2}{\pi e}L$. Finally, we will shift the kernel $\varphi(t) \rightsquigarrow \varphi_{\tau}(t) = \varphi(t-\tau)$ which yields a new

Finally, we will shift the kernel $\varphi(t) \rightsquigarrow \varphi_{\tau}(t) = \varphi(t-\tau)$ which yields a new interpolation space that has the same least-squares approximation constant $C_{\varphi_{\tau}}^{\text{LS}} = C_{\varphi}^{\text{LS}}$, but a different interpolation constant $C_{\varphi_{\tau}}^{\text{I}} \ge C_{\varphi_{\tau}}^{\text{LS}}$. We will prove that it is always possible to choose τ so that $C_{\varphi_{\tau}}^{\text{I}} = \min_{\tau'} C_{\varphi_{\tau'}}^{\text{I}} = C_{\varphi}^{\text{LS}}$. For example, we will see that, for the linear spline, one has $\tau = \frac{1}{2}(1-\frac{1}{\sqrt{3}}) \approx 0.21$, and that this optimal value gets closer to $\frac{1}{4}$ as higher-order splines of odd degree are considered.

All our theoretical claims will be substantiated with computer experiments, some of which are already available as Java demos on our web site [7].

References

- T. BLU, P. THÉVENAZ, AND M. UNSER, MOMS: Maximal-order interpolation of minimal support, submitted to IEEE Trans. Image Process., (2000).
- [2] T. BLU AND M. UNSER, Approximation error for quasi-interpolators and (multi-) wavelet expansions, Appl. Comput. Harmon. Anal., 6 (1999), pp. 219– 251.
- [3] —, Quantitative Fourier analysis of approximation techniques: Part I— Interpolators and projectors; Part II—Wavelets, IEEE Trans. Signal Process., 47 (1999), pp. 2783–2806.
- [4] G. STRANG AND G. FIX, A Fourier analysis of the finite element variational method, in Constructive Aspect of Functional Analysis, Cremonese editions, Rome, 1971, pp. 796–830.
- [5] P. THÉVENAZ, T. BLU, AND M. UNSER, Interpolation revisited, IEEE Trans. Med. Imag., 19 (2000), pp. 739–758.
- [6] M. UNSER, Approximation power of biorthogonal wavelet expansions, IEEE Trans. Signal Process., 44 (1996), pp. 519–527.
- [7] http://bigwww.epfl.ch/demo/rotation/index.html