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ABSTRACT

The field of signal processing is replete with exemplary problems where
the measurements amount to time-delayed and amplitude scaled echoes
of some template function or a pulse. When the inter-pulse spacing is
favorable, something as primitive as a matched filter serves the purpose
of identifying time-delays and amplitudes. When the inter-pulse spac-
ing poses an algorithmic challenge, high-resolution methods such as
finite-rate-of-innovation (FRI) may be used. However, in many prac-
tical cases of interest, the template function may be distorted due to
physical properties of propagation and transmission. Such cases can
not be handled well by existing signal models. Inspired by problems
in spectroscopy, radar, photoacoustic imaging and ultra-wide band ar-
rays, on which we base our case studies, in this work we take a step
towards recovering spikes from time-varying pulses. To this end, we
re-purpose the FRI method and extend its utility to the case of phase
distorted pulses. Application of our algorithm on the above-mentioned
case studies results in substantial improvement in peak-signal-to-noise
ratio, thus promising interesting future directions.

Index Terms— Finite-rate-of-innovation, sparsity, spectral estima-
tion, template matching, time-varying pulses.

1. INTRODUCTION

One signal model that is frequently encountered across various disci-
plines of science and engineering assumes form of,

y (t) =
∑K−1

k=0
ckφ (t− tk) ≡ (φ ∗ s) (t) , (1)

where s is a K-sparse signal and φ (t) is a low-pass filter or template.
Given equidistant samples yn = {y (n∆)}N−1

n=0 with sampling rate
∆ > 0, estimating s is a recurrent problem in time-delay estima-
tion [1], resolution of echoes [2,3], sparse deconvolution [4] and super-
resolution [5]. In the context of sampling theory, Vetterli, Blu and
co-workers [6, 7] have demonstrated that a continuous time sparse sig-
nal, which is completely characterized by 2K real-vaued unknowns
{ck, tk}K−1

k=0 , can be uniquely recovered from N ≥ 2Ω + 1 samples
provided that the the maximum frequency of φ satisfies Ω ≥ K. Un-
der the framework of finite–rate–of–innovation (FRI) model [6], that
is, signals that can be specified by countable degrees of freedom, these
results have been extended far and wide [8–16]. FRI signals can broadly
be studied in form of a generalized signal model,

y (t) = (φ ∗ L [s]) (t) , s (t) =
∑K−1

k=0
ckδ (t− tk), (2)
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Fig. 1: Disparate case studies where the measurements are delayed, amplitude-
scaled and distorted versions of the reference pulse φ shown in the inset. (a) Free
electron laser measurements in Electron Paramagnetic Resonance. (b) Photoa-
coustic imaging. (c) Ground penetrating radar. (d) Ultra-wide band array.

where L is some invertible linear operator, such as a derivative or an
integral and L [s] is specified by countable degrees of freedom.

Before the advent of high-resolution estimation methods [17],
matched-filtering and cross-correlation operations were widely used
for estimating {tk}’s in (1). As a rule of thumb, whenever tk’s are
sufficiently far apart (for instance, the Raleigh criterion is met), cross-
correlation provides a reasonable estimate of the time delays. When the
echoes are relatively close, FRI method may be used to super-resolve
(cf. [18]). Be it something as simple as the cross-correlation or some-
thing more sophisticated, like the FRI, the estimation performance
of the algorithms is heavily hindered by model mismatch. While the
versatility of the FRI model (2) allows for representing a large class of
signals, in a variety of problems, the model may take the form of,

y (t) =
∑K−1

k=0
ckDk [φ] (t− tk), (3)

where Dk accounts for the time-varying distortion in pulse φ. Later,
and with ck = |ck|eȷθk , φ ∈ C, we will approximate (3) with,

y (t)≈
∑K−1

k=0
|ck| (cos θk φR (t− tk)− sin θk φI (t− tk)).



We motivate this choice by considering the case studies that follow.
In all of these cases, the measurements account for interaction of the
reference pulse φ with a physical medium which results in shifted,
amplitude-scaled and distorted versions of the reference pulse.

1.1. Case Studies Motivating Time-Varying FRI Samplingy1 Working in the area of Electron Paramagnetic Resonance (EPR)
Edwards et al. [19] observe that the free electron laser (FEL) gen-
erated pulse is consistently distorted in connection with phase cy-
cling. In view of (3), mth laser pulse may be written as: ym (t) =
cmDm [φ] (t). In Fig. 1(a), we plot the reference pulse φ as well
as time aligned measurements ym(n∆),m = 1, . . . , 10.y2 Working in the area of photoacoustic imaging, Lee et al. [20] re-
cently studied wave interference layered media. In view of (3), the
transmitted and reflected waves are annotated asD1 [φ] andD2 [φ]
in Fig. 1(b). Note the difference between D1 [φ] and φ.y3 Working in the area of ground penetrating radar (GPR), Safont
et al. [21] study backscattered pulses from a historical wall with
thickness 20 cm. Here we observe K = 3 echoes and D3 [φ] in
Fig. 1(c) is associated with the back wall.y4 Working in the area of ultra-wide band (UWB) array basedmaterial
identification, Maunder et al. [22] study reflected pulse properties
for material classification and height estimation. Again, note the
difference between D3 [φ] and φ.

From the examples above, it is clear that any attempt to explain the
measurements with usual models discussed in literature [1–7] would be
questionable due to significant model mismatch. Existing methods are
based on:

Over-parametrization: One way to bypass model mismatch is to use
over-parameterization (cf. 3.20, pg. 56 [23]),∑K−1

k=0
ckDk [φ] (t− tk) ≈

∑K′−1

k=0
c′kφ

(
t− t′k

)
,

where K′ > K. However, this workaround may suffer from impre-
cise estimation of innovations {ck, tk} which invariably stem from the
physics of the problem. More precisely, going back to the example of
GPR in Fig. 1(c), it may be hard to accurately measure the location as
well as the thickness of the wall.

Model-based Fitting: Over-parametrization may implicitly be used in
model based approaches [24,25]. This class of methods use a paramet-
ric template φpk (t) = βke

−λk(t−τk)
2

cos (ωk (t− τk) + θk). Lin-
ear combination of basis functionsφpk (t) is used to fit the data with an
unknown parameter vector pk = [βk λk τk ωk θk]. Such methods
are computationally intensive and a global minimum may not be guar-
anteed [25]. FRI based model-fitting for ECG was discussed in [26].

Minimum-phase Deconvolution Using kurtosis as a measure of spar-
sity, recently, Schmelzbach and Huber [27] proposed a decomposition
of φ = w1 ∗ w2 where w2 is a minimum-phase filter and w1 is some
all-pass filter. Exact specification of sparsity can not be handled by such
algorithms and reliable kurtosis estimation requires large sample size.

Blind Super-resolution: Letting Dk [φ] = φk, Yang et al. [28] have
recently proposed to simultaneously estimate {ck, tk, φk (n)}K−1

k=0 as-
suming that {φk}K−1

k=0 share a common, low-dimensional subspace.
While this is certainly an interesting approach in the context of our
problem, {φk}K−1

k=0 may be agnostic to the physics of the problem.

Motivated by the case studies above, we setup the problem of FRI
sampling with time-varying pulses. Unlike previous approaches, our
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Fig. 2: We plot real (red) and imaginary (grey) parts of pulse eȷθkφ (t) , θk =
πk/6, k = 0, . . . 4 where φ is chosen to be a modulated Gaussian function
(Gabor window) such that the real and imaginary parts from a quadrature pair.

work is based on the physical principles of time-varying phenomenon.
In spirit of the FRI philosophy, our key contribution is to define the
distortion with countable degrees of freedom. Experimental validation
of our approach on all of the above mentioned case studies results in
considerable gain in the peak-signal-to-noise ratio (PSNR), thus setting
up a convincing case for much broader applicability of our work.

2. PROBLEM FORMULATION

Wave propagation in a physical medium is a complex-valued phe-
nomenon [19–22, 29] as opposed to the de-facto model assumptions
in (1). Consequently, any inversion recipe pivoted on (1) (cf. [1–7] as
well as [25,27,28]) fails to capture the underlying physics of reflection,
transmission and scattering.

By design, all measurement devices capture real-valued informa-
tion. Recovering complex-valued information given its real-valued
proxy is an ill-posed problem. Let z0 ∈ C be a complex number. A
real-valued measurement is either obtained by the absolute operation
(|z0|) or the conjugate operation ((z0 + z∗0) /2). When dealing with
absolute information, phase-retrieval algorithms are used for recovering
the underlying complex-valued information. In our work, we focus on
the second type of complex-to-real mapping.

2.1. The Forward Model

Letting φ and s to be complex-valued functions, we have,

y (t) = (s ∗ φ) (t) = (yR + ȷyI) (t) , (4)

where the real and imaginary parts of y are,

yR = (sR ∗ φR − sI ∗ φI) and yI = (sR ∗ φI + sI ∗ φR) . (5)

To this end, our complex-valued FRI signal representative of sparse re-
flectors/scatterers or response of layered media, may be modeled as,

s (t) =
∑K−1

k=0
ckδ (t− tk), ck = |ck| eȷθk . (6)

With (5) and (6), real-valued sensor measurements are now explained
by a linear combination of real and imaginary parts of s and φ, that is,

yR (t) =
∑K−1

k=0
|ck| (cos θkφR (t− tk)− sin θkφI (t− tk)). (7)



Consequently, the time-varying distortion Dk is explained as a com-
bination of real and imaginary parts of the complex-valued pulse φ as
shown in Fig. 2. The physical significance of complex-valued ck lies in
the interpretation of the Fresnel equations for reflection, refraction and
transmission (cf. [30]). Next, we discuss how to estimate φ so that the
innovations {ck, tk}k may be recovered from yR (n∆).

Knowing φ is important for uniqueness of our representation. In-
dependent of the context of discussion, the usual approach is to assume
a parametric model for φR and fit it with some calibrated, real-valued
pulse obtained experimentally [24, 25, 31]. Due to electro-optical and
physical constraints of the measurement systems, it is reasonable to as-
sume that φ is a smooth function [16, 18]. For this purpose, we resort
to the idea that φ can reproduce upto M trigonometric moments,

φ (t) ≈
∑

m∈Z
pmeȷω0mt, (8)

where ω0 = 2π/T , T = |tK − t0| assuming that tk+1 > tk and
pm = 0,m /∈ [0,M ]. In practice, this is a reasonably good choice for
approximatingφ. In fact, inmany cases, it turns out thatφ is a bandpass
function. This is true of all the cases discussed in Section 1.1 (cf. [19–
22] as well as ultrasound [24] and seismic imaging where wavelets are
used. Keeping this bandpass nature of φ in mind, we will use,

pm ≡ |pm| eȷξm = 0, m /∈ [M0,M1] , M0 > 0. (9)

To give the reader an idea about the approximation using (8), in Fig. 3,
we plot the real and imaginary parts of φ obtained via measurement to-
gether with its approximation (8) for the case study of GPR.The PSNR
between the measurements and its approximation (8) was 40.68 dB.

2.2. Measurements

Note that property (9) in conjunction with (8) implies that φR and φI
co-exist as a quadrature pair, that is, φI = H [φR] where H defines
the Hilbert transform. This relation is of consequence to our work as
it translates to the fact that the complex-valued measurements can be
obtained from its real-valued counterparts.

Proposition 1 Let y ∈ C be as defined in (5). Then, we have.

φI = H [φR] ⇔ yI = H [yR] .

Proof 1 The proof follows from two basic properties of the Hilbert
transform. Let f and g be two given function, then, (1) Convolu-
tion: H [f ∗ g] = H [f ] ∗ g = H [g] ∗ f and, (2) Anti-involution:
H [H [f ]] = −f . (⇒) Let φI = H [φR] hold. Then, from (5),

H [yR] = sR ∗ H [φR]︸ ︷︷ ︸
=φI

−sI ∗ H [φI]︸ ︷︷ ︸
=−φR

= yI.

Similarly, for (⇐), by letting yI = H [yR] we obtain the desired result.

Using this proposition, we can safely assume the knowledge of y ∈ C,

C : yR → y = C [yR]
def
= yR + ȷH [yR] , (10)

provided that H [yR] can be accurately computed using continuous
and sampled data. Given N–samples yR (n∆), we first estimate the
complex-valued vector of measurements y ≈ C [yR] (n∆) by using the
discrete Hilbert transform. By using (8) and (6) in (4) the measurements
in vector-matrix notation take form of:

y (n∆) =
∑M1

m=M0

pm
∑K−1

k=0
cke

ȷω0m(n∆−tk) ⇔ y = VDp ŝ

(11)

Real Part Imaginary Part
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Fig. 3: Approximation of kernel used for ground penetrating radar experiment
via finite Fourier series. The measured data is shown in grey ink. Dashed blue
lines show its approximated version. Here T = 10.14 ns andM0 = 0.19GHz
and M1 = 3.15 GHz.

where,
• y ∈ CN is a vector of sampled measurements.

• V ∈ CN×(M1−M0+1) is aDFTmatrix with elements
[
eȷmω0n∆

]
n,m

.

• Dp ∈ C(Ω×Ω) is a diagonal matrix with diagonal elements pm in (8).
These are the Fourier-series coefficients ofφ andΩ = M1−M0+1.

• ŝ ∈ CΩ is a vector of sampled Fourier transform of the FRI signal,
that is, ŝ (ω) =

∑K−1
k=0 cke

−ȷω0mtk , ω = mω0.

2.3. Recovery Procedure

The first part of the recovery procedure relies on the usual FRI method-
ology. Given y, we first estimate the vector of sum of complex expo-
nentials. This is done by least-squares inversion of the linear system of
equation in (11). More precisely, ŝ = D−1

p V+y where (·)+ denotes
matrix pseudo-inverse. Having estimated ŝ, provided that Ω > 2K,
unknowns {tk}K−1

k=0 can be estimated using any of the spectral estima-
tion methods [6, 7]. Nonetheless, complex-valued {ck}K−1

k=0 are esti-
mated by relying onφ = φR+ȷH [φR]. For this purpose, we construct
the matrix Φ ∈ CN×K with elements

[
φ
(
n∆− t̃k

)]
n,k

where t̃k’s
are the estimated innovations. Finally, we estimate, c̃ = Φ+y.

3. EXPERIMENTAL VALIDATION

In the last decade, a number of papers have analyzed the performance of
FRI methods. This has lead to interesting recoverability results [32] as
well as robust algorithms for estimation of the innovations (cf. [33,34]
and references therein). Here, our goal is to establish the effectivity
of the FRI model for time-varying pulses. Inspired by the case studies
discussed in the introductory section, we will now demonstrate the flex-
ibility of our proposed approach by revisiting each of those problems.

—• Electron Paramagnetic Resonance (K = 1) In [19], the authors
acquire complex-valued pulses by recording ∼ 45 ns long pulses in
quadrature. While the pulses are time-aligned, they are mismatched
to the reference due to phase distortion (see Fig. 1(a)). Consider the
mth laser pulse measurements y(m)

R (n∆) , N = 4096,∆ = 0.2
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Fig. 4: With the exception of (a), for each case study we plot the measured data in grey ink, the reconstructed data in cyan ink and we mark the recovered spikes
{|ck|, tk} in —▶. The inset in each figure shows the polar-plot for ck ∈ C. In black ink, we plot the cumulative increase in ℓ2-norm as each FRI component, that
is, |ck| cos θkφR (t− tk) is added to reconstruction. Since the cumulative increase is relative to the ℓ2–norm of yR, when this value reaches 1, it implies that data is
perfectly reconstructed. (a) Phase-distorted pulses together with FRI correction. (b) Time-varying pulse estimation in photoacoustic imaging. (c) Time-varying pulse
estimation for thickness estimation in ground penetrating radar. (d) Time-varying pulse estimation in multi-layered UWB array.

ns. Given reference pulse, the FRI solution in this case is simply,
cmC [φR]

+ C[y(m)
R ]. Experiments conducted with 14 realizations of

pulses consistently validated the effectivity of our approach with an
average enhancement of ∼ 8.65 db PSNR (when compared to the
model in (1)). The results are plotted in Fig. 4(a).

Remaining experiments are based on the usual FRI setup and we
use Cadzow’s method as discussed in [7]. The kernel φ for each case is
extracted from the data (cf. inset in Fig. 1). For the case of K = 2, we
use exhaustive search to compare our method. For cases whereK > 2,
we rely on experimental settings for validation of our results.
—• Two-pulse Experiment (K = 2) In the context of photoacoustic
imaging, we compare the performance of our method with exhaustive
search. The experimental parameters are as follows: N = 5003,∆ = 1
ns, Ω = 25. Our method resulted in PSNR of 30.13 db compared to
exhaustive search which resulted in 30.24 db. The error in estimation
of tk, k = 1, 2 was 0.003µs each. In the inset of Fig. 4(b), we compare
ck estimated from FRI method (red ink) with the result of exhaustive
search (black ink). PSNR due to model (1) was 16.39 db. The results
are plotted in Fig. 4(b).
—• Backwall measurement (K = 3) In context of ground penetrat-
ing radar, our method resulted in 35.84 db PSNR which was about
3.15 db higher when compared to (1). With N = 1015 samples
and ∆ = 10 ps we used Ω = 25 frequency samples for estimating
tk = {2.37 3.92 6.59} ns. Given the speed of pulse in the material is
ν = 92.56× 106 m/s, the backwall echo with respect to the frontwall
echo, that is t2 − t0 = 4.22 ns translates to 19.53 = (t2 − t0)/2ν
cm thickness. The ground truth thickness for this experiment was 20
cm [21]. The results are plotted in Fig. 4(c).

—• UWB Material Classification (K = 5) Our method resulted in
31.28 db PSNR which was about 9.3 db higher when compared to (1).
With N = 1799 samples and ∆ = 10 ps we used Ω = 86 frequency
samples for estimating tk = {6.57 7.67 7.95 9.66 10.00} ns.
Calibration of the antenna [22] suggested a reference offset of tc = 3.0
ns. Estimation of tk’s are consistent with the experimental setup. For
example, with c = 3 × 108, (t0 − tc)c/2 translates to about half
a meter which was the distance between the UWB antenna and the
first reflector (cf. Table II, [22]). Furthermore, with ε1 = 2.5 and
ε2 = 8.4, the estimates of height h1 = c (t1 − t0) /2

√
ε1 ≈ 0.104

m and h2 = c (t3 − t1) /2
√
ε2 ≈ 0.103 m are consistent with the

experiments in [22]. The results are plotted in Fig. 4(d).

4. CONCLUSION

The problem of recovering spikes from time-varying pulses is discussed
in this paper. For this purpose, we adapted the finite-rate-of-innovation
signal model. The proposed approach was discussed in context of four
case studies: (1) spectroscopy, (2) photo-acoustic imaging, (3) ground-
penetrating radar and (4) ultra-wide band arrays. Our preliminary in-
vestigation demonstrates the effectivity of our proposed approach with
a substantial boost in PSNR.
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