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Abstract:
We provide a method for constructing regular sampling
lattices in arbitrary dimensions together with an integer
dilation matrix. Sub-sampling using this matrix leads to a
similarity-transformed version of the lattice with a chosen
density reduction. These lattices are interesting candidates
for multi-dimensional wavelet constructions with a limited
number of sub-bands.

1. Introduction to sampling lattices and re-
lated work

A sampling lattice is a set of points{Rk : k ∈ Zn} ⊂ Rn

that is closed under addition and inversion. The non-
singular generating matrixR ∈ Rn×n contains basis vec-
tors in its columns. Lattice points are uniquely indexed
by k ∈ Zn and the neighbourhoods around all sampling
points are identical. This makes them suitable sampling
patterns for the reconstruction of shift-invariant spaces.
Sub-sampling schemes for lattices are expressed in terms
of a dilation matrixK ∈ Zn×n forming a new lattice with
generating matrixRK. The reduction rate in sampling
density corresponds to

detK = αn = δ ∈ Z+. (1)

Dyadic sub-sampling discards every second sample along
each of then dimensions resulting in aδ = 2n reduc-
tion rate. To allow for fine-grained scale transitions we
are particularly interested in low sub-sampling rates, such
asδ = 2 or 3.
As discussed by van de Ville et al. [8] the 2D quincunx
sub-sampling is an interesting case permitting a two-scale
relation. With the implicit assumption of only considering
subsets of the Cartesian lattice it is shown that a similarity
two-channel dilation may not extend forn > 2.
We show that by permitting more general basis vectors
in Rn the desired fixed-rate dilation becomes possible
for any n. Our construction produces a variety of lat-
tices making it possible to include additional quality cri-
teria into the search as they may be computed from the
Voronoi cell of the lattice [9] including packing density
and expected quadratic quantization error (second order
moment). Agrell et al. [1] improve efficiency for the com-
putation by extracting Voronoi relevant neighbours. An-
other sampling quality criterion appears in the work of Lu

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

  R = [0 −0.33;1 −0.37]
 K = [2 −1;4 −1] θ=69.3

Figure 1: 2D lattice with basis vectors and sub-sampling
as given byR and K in the diagram title. The spiral
shaped points correspond to a sequence of fractional sub-
samplingsRKs for s = 0..1 with the notable feature that
for s = 1 one obtains a subset of the original lattice sites
shown as thick dots. This repeats for any further integer
power of K, each time reducing the sample density by
|detK| = 2.

et al. [4] in form of an analytic alias-free sampling condi-
tion that is employed in a lattice search.

2. Lattice construction

We are looking for a non-singular lattice generating matrix
R that, when sub-sampled by a dilation matrixK with re-
duction rateδ = αn, results in a similarity-transformed
version of the same lattice, that is, it can be scaled and ro-
tated by a matrixQ with QT Q = α2I. An illustration of a
sub-sampling resulting in a rotation byθ = arccos 1

2
√

2
is

given in Figure 1. Formally, this kind of relationship can
be expressed as

QR = RK (2)

leading to the observation that sub-samplingK and scaled
rotationQ are related by a similarity transform

R−1QR = K. (3)



Using a matrixJ2 =

[

1 j

1 −j

]

it is possible to diago-

nalize a 2D rotation matrix by the following similarity
transform
[

cos θ − sin θ

sin θ cos θ

]

= J−1
2

[

ejθ 0
0 e−jθ

]

J2 = J−1
2 ∆J2.

(4)
Using this observation to replace the scaled rotation matrix
Q in Equation 3 leads to

K = R−1QR

K = αR−1J−1
n S∆S−1JnR

K = αP∆P−1
(5)

with
R = J−1

n SP−1

Q = αJ−1
n ∆Jn.

(6)

Thus, given a matrixK that has an eigen-decomposition
corresponding to that of a uniformly scaled rotation ma-
trix, we can compute the lattice generating matrixR as
in Equation 6. The elements of the diagonal matrixS in-
serted in the construction ofR scale the otherwise unit
eigenvectors in the columns ofP. Below, we will refer to
this construction as function formRQ(K,S) usingS = I

by default.

2.1 Constructing suitable dilation matricesK

The eigenvalues ofK,∆ and Q impose restrictions on
their shared characteristic polynomiald(λ) = det(K −
λI) =

∑n
k=0 ckλk as discussed in the appendix. For

the casen = even with the only non-zero coefficients
c0 = δ, c2

n/2 < 4δ, cn = 1 this leaves a finite number
of different options forcn/2. The casen = odd permits
a single possible polynomial with non-zero coefficients
c0 = −δ, cn = 1. For these monic polynomials it is
possible to directly construct a candidateK via the com-
panion matrix ([6], p. 192)

K =

















0 −c0

1 0 −c1

1 0
...

. . .
. . . −cn−2

1 −cn−1

















. (7)

This allows to construct a lattice fulfilling the self-similar
sub-sampling condition for any dimensionalityn, one for
every possible characteristic polynomial.
With this starting point it is possible to construct additional
suitable dilation matrices via a similarity transform witha
unimodular matrixT

KT = TKT−1 = PT ∆P−1
T . (8)

Using a unimodular rather than any non-singularT guar-
antees thatT−1 is also unimodular following from the fact
thatT−1 can be constructed from the adjugate (the trans-
posed co-factor matrix) ofT. Thus,KT remains an inte-
ger matrix by this transform. Possible generators for this
unimodular group are discussed in ([5], pp. 23). Our im-
plementation, referred to as function genUnimodular(n),

uses a construction ofT = LU from several random in-
teger lower and upper triangular matrices having ones on
their diagonal.
It is not guaranteed that all possibleK for a given charac-
teristic polynomial can be generated through a similarity
transform with someT. However, formRQ(KT ) provides
numerous non-equivalentRT lattice generators. Among
them it is possible to apply further criteria to select the
“best” lattice.
An alternative to transformingK is the eigenvector scal-
ing by diagonal matrixS in Equation 6. Using non-unit
scaling allows to produce further lattices for any givenK

resulting in ann-dimensional continuous search space.

2.2 Construction Algorithm

The steps for constructing lattices with the desired
sub-sampling matrices are summarized in algorithm 1.

The function compoly(n, α,C) is defined in the

Algorithm 1 genLattices(n, δ)

1: Llist ← {}
2: Ks← genKompans(n, δ)
3: Ts← genUnimodular(n) ∪{I}
4: for all K ∈ Ks do
5: for all T ∈ Ts do
6: KT = TKT−1

7: (RT ,QT )← formRQ(KT )
8: Llist← Llist∪{(KT ,RT ,QT )}
9: end for

10: end for
11: return Llist

Algorithm 2 genKompans(n, δ)

1: Ks = {}
2: if n is eventhen
3: for all C ∈ Z : C2 < 4δ do
4: Ks← Ks∪ compoly(n, δ

1
n , C)

5: end for
6: else{n is odd}
7: Ks← {compoly(n, δ

1
n )}

8: end if
9: return Ks

appendix. A possible implementation for the func-
tion genUnimodular(n) is described in Section 2.1 and
formRQ(K) is defined near Equation 6.
It should be noted that the list of lattices returned by
genLattices may contain several equivalent copies of the
same lattice. A Gram matrix implicitly represents angles
between basis vectors asA = RT R. Two latticesR1

andR2, scaled to same determinant, are equivalent if their
Gram matrices are related viaA1 = TT A2T with a uni-
modular matrixT ∈ Zn×n and|detT| = 1. Determining
this unimodular matrix is known to be a difficult problem,
as it for instance also occurs when relating the adjacency
matrices of two supposedly isomorphic graphs. Hence,
our current method employs a simpler necessary test for
equivalence by comparing the first few elements of the set
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1:   R = [0.71 −0;−0.71 1.4]
 K = [2 −2;1 0] θ=45
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2:   R = [0 0.58;−1.7 0.65]
 K = [2 −1;4 −1] θ=69.3
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3:   R = [0 0.84;−1.2 0]
 K = [0 −1;2 0] θ=90

Figure 2: Three non-equivalent 2D lattices obtained for a design with dilation matrices having|detK| = 2. The lattice
on the left is the well known quincunx sampling with aθ = 45◦ rotation. The other two are new schemes with different
rotation angles. The black markers show the sample positions that are retained after sub-sampling byK.
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1:   R = [−0 0.93;1.1 −0.54]
 K = [−1 2;−2 1] θ=90
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2:   R = [0 0.84;−1.2 0]
 K = [1 −1;2 1] θ=54.74
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3:   R = [0 0.74;−1.3 0.22]
 K = [1 −1;3 0] θ=73.22
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4:   R = [0.66 0;1.1 −1.5]
 K = [−3 4;−3 3] θ=90

Figure 3: Three non-equivalent 2D lattices obtained for a design with dilation matrices having|detK| = 3. The lattice
on the left is the well known hexagonal lattice atθ = 30◦ rotation. The other three are new schemes with different rotation
angles.

q(A) = {kT Ak : k ∈ Zn} using the Gram matrices of
the respective lattices. If the sorted listsq(A1) andq(A2)
disagree in any element,R1 andR2 are not equivalent
([5], p. 60). It is possible to restrict the set of indices
k ∈ Zn to the Voronoi relevant neighbours [1]. Further,
since these neighbours determine the hyperplanes bound-
ing the Voronoi polytope of the lattice, they can also be
used for a sufficient test for equivalence.

3. Constructions for different dimensions
and sub-sampling ratios

For the 2D case we have created lattices permitting a re-
duction rate2 in Figure 2 and rate3 in Figure 3. In both
cases, familiar examples arise in the quincunx and the hex
lattice for the respective ratios.
A search of 3D lattices enjoying the self-similar sub-
sampling property with rate2 dilations resulted in53 non-
equivalent cases. These lattices were compared in terms of
their dimensionless second order moments, corresponding
to the expected squared vector quantization error ([2], p.
451). When performing the continuous optimization men-
tioned at the end of Section 2.1, all of these cases con-
verged to the same optimum lattice shown in Figure 4.
The dimensionless second order moment for the Voronoi
Cell of this lattice isG = 0.081904. For comparison, the
Cartesian cube hasGcc = 0.0833 and the truncated octa-
hedron of the BCC lattice hasGbcc = 0.0785.

4. Discussion and potential applications

The current formation of candidate matricesK based on
similarity transforms of one valid example is not guaran-
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Figure 4: The best 3D lattice obtained for a design with
dilation matrices havingdetK = 2.

teed to produce all possible solutions. For 2D and 3D we
also employed an exhaustive search over a range of integer
matrices with values in[−3, 3] resulting in the same num-
ber of non-equivalent 2D cases as the construction viaKT .
However, for dimensionalityn > 3 the exhaustive search
had to be replaced by a random sampling of integer matri-
ces ultimately rendering the method infeasible forn > 5.
In that light the current construction via scaled eigenvec-
tors of the companion matrix is a significant improvement
as it allows to produce a large number of non-equivalent
lattices for any dimensionality.

Our sub-sampling schemes may have applications for
multi-dimensional wavelet transforms [7]. Another direc-
tion for possible investigation is the construction of sparse
grids that are employed in the context of high-dimensional
integration and approximation adapting to smoothness
conditions of the underlying function space [3].



Appendix: Characteristic polynomial of a ro-
tation matrix in Rn

The similarity relationship betweenK and Q in Equa-
tion 2 implies that they share the same characteristic poly-
nomiald(λ) = det(K − λI) = det(Q − λI) leading to
an agreement in eigenvaluesd(λk) = 0 and determinant
d(0) ([6], p. 184). Further, sinceK is an integer matrix
the polynomiald(λ) ∈ Z[λ] has integer coefficientsck.
In order to find integer matricesK with the eigenvalues
of a scaled rotation matrix, it will be important to distin-
guish the two different forms of the diagonal matrix∆ in
Equation 5 and 4 for the casen = even

∆ = diag[ejθ1 e−jθ1 . . . ejθn/2 e−jθn/2 ]

and the casen = odd

∆ = diag[1 ejθ1 e−jθ1 . . . ejθ(n−1)/2 e−jθ(n−1)/2 ]

with analogue block-wise constructions forJn.
For dimensionalityn = even the characteristic polyno-
mial fulfills

d(λ) =

n/2
∏

k=1

(αejθk − λ)(αe−jθk − λ)

=

n/2
∏

k=1

(α2 − 2λα cos θk + λ2)

=

n/2
∏

k=1

[

(
α4

λ2
− 2

α3

λ
cos θk + α2)

λ2

α2

]

= d

(

α2

λ

) (

λ

α

)n

(9)

Thus, if

d(λ) =

n
∑

k=0

ckλk

=
n

∑

k=0

ck

(

α2

λ

)k (

λ

α

)n

=
n

∑

k=0

cn−kαn−2kλk

⇔ ck = αn−2kcn−k = δ1− 2k
n cn−k.

(10)

If ck 6= 0 andck, δ ∈ Z thenδ1− 2k
n ∈ Q. This is impos-

sible for 0 < 2k < n, assuming small values ofδ, such
as2, 3 or any simple product of primes. This implies that
ck = cn−k = 0 for k = 1, 2, . . . n

2 − 1. Fork = n
2 theck

can be non-zero leading to

d(λ) = λn + Cλ
n
2 + αn (11)

with the requirement thatC2 < 4αn so that the complex
eigenvaluesd(λk) = 0 are evenly distributed on the com-
plex circle of radius|λk| = α.
For dimensionalityn = odd the polynomial fulfills

d(λ) = (α− λ)

(n−1)/2
∏

k=1

(αejθk − λ)(αe−jθk − λ)

⇒ d(λ) = −

(

λ

α

)n

d

(

α2

λ

)

(12)

Thus, if

d(λ) =

n
∑

k=0

ckλk

= −

n
∑

k=0

ck

(

α2

λ

)k (

λ

α

)n

= −

n
∑

k=0

cn−kαn−2kλk

⇔ ck = −αn−2kcn−k = −δ1− 2k
n cn−k.

(13)

By the same reasoning as for the even case,ck = 0 for all
k = 1, 2, . . . n−1

2 resulting in only one possible character-
istic polynomial

d(λ) = λn − αn. (14)

To refer to the above procedure we will invoke a function
compoly(n, α,C) that returns a companion matrix with a
characteristic polynomial as in Equation 7 or 14.
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