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Sampling Piecewise Sinusoidal Signals With Finite
Rate of Innovation Methods
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Abstract—We consider the problem of sampling piecewise sinu-
soidal signals. Classical sampling theory does not enable perfect re-
construction of such signals since they are not band-limited. How-
ever, they can be characterized by a finite number of parameters,
namely, the frequency, amplitude, and phase of the sinusoids and
the location of the discontinuities. In this paper, we show that under
certain hypotheses on the sampling kernel, it is possible to perfectly
recover the parameters that define the piecewise sinusoidal signal
from its sampled version. In particular, we show that, at least the-
oretically, it is possible to recover piecewise sine waves with arbi-
trarily high frequencies and arbitrarily close switching points. Ex-
tensions of the method are also presented such as the recovery of
combinations of piecewise sine waves and polynomials. Finally, we
study the effect of noise and present a robust reconstruction algo-
rithm that is stable down to SNR levels of 7 [dB].

Index Terms—Annihilating filter method, piecewise sinusoidal
signals, sampling methods, spline functions.

I. INTRODUCTION

M OST digital acquisition systems involve the conversion
of signals from analog to digital. Usually, the device is

modeled with a smoothing kernel and a uniform sampling
period . Following this setup, the observed discrete-time
signal is given by

(1)

with as shown in Fig. 1. The fundamental problem of
sampling is to recover the original continuous-time waveform

using the set of samples . In the case where the signal
is band-limited, the answer due to Shannon is well known [2].
The theorem states that the signal is completely determined by
its samples given that the sampling rate is greater than
or equal to twice the highest frequency component of . The
original signal is recovered with
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Fig. 1. Sampling setup. The continuous-time signal ���� is filtered by the ac-
quisition device and sampled with period � . The observed samples are ���� �
������ � ��� �����.

, where and . The prob-
lems arise when the band of is unlimited—for instance, due
to a discontinuity. From a Shannon point of view, these events
are seen as infinite innovation processes and therefore require an
infinite number of samples. Hence, events concentrated in time
are not precisely measurable.

A sampling scheme has recently been developed by Vetterli
et al. [3], where it is made possible to sample and perfectly
reconstruct signals that are not band-limited but are completely
determined by a finite number of parameters. Such signals are
said to have a finite rate of innovation (FRI). For instance, the
authors derive a method to recover some classes of FRI signals
such as streams of Diracs, differentiated Diracs, and piecewise
polynomials using sinc or Gaussian kernels. Later, in [4] and
[5], it was shown that these signals can also be recovered using
more realistic compact support sampling kernels such as those
satisfying the Strang–Fix conditions [6], exponential splines [7]
and functions with a rational Fourier transform. The case of
nonuniform samples across multiple channels has been studied
in [8]. The reconstruction process for these schemes is based
on the annihilating filter method, a tool widely used in spectral
estimation [9], error correction coding [10], interpolation [11],
and solving inverse problems [12]–[15]. These results provide
an answer for precise time localization (i.e., Diracs and poly-
nomial signals) but in some sense lack frequency localization
capabilities.

In this paper, we extend FRI theory to oscillating functions.
In particular, we investigate the case where the continuous-time
signal is piecewise sinusoidal therefore it contains both time and
frequency components. More precisely, we consider signals of
the type

(2)

where , , and are constant parameters and

where is the Heaviside step function; and study their recon-
struction from the samples given in (1). Such signals are
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notoriously difficult to reconstruct since they are sparse neither
in time nor in frequency. For this reason, the schemes in [3]–[5]
as well as the Shannon-type schemes would not enable an exact
recovery. However, such signals have a finite rate of innovation,
and we demonstrate that it is possible to retrieve the parameters

, and of the sinusoids along with the exact loca-
tions given certain conditions on the sampling kernel .
Note that similar cases have been studied in the FRI context.
For example, in [16], the authors deal with band-limited signals
that are corrupted by additive shot noise (i.e., Diracs). The case
of band-limited signals added to piecewise polynomial signals
was also considered in [17]. These types of signals, however, do
not encompass the piecewise sinusoidal signal defined in (2).

It is also worth mentioning that a lot of attention has recently
been given to the problem of recovering sparse signals from a
nonuniform set of samples [18], [19]. These works deal with
discrete signals that have a sparse representation in a basis or
frame. Extensions to the case of analog signals belonging to a
union of shift-invariant subspaces were considered in [20]–[22].
The signals of interest in this paper, however, are not sparse in
a basis or frame nor lie in a union of shift-invariant subspaces
but have a sparse parametric representation. That is, they can be
represented with a finite number of parameters per unit of time.

This paper derives two methods to retrieve exactly contin-
uous-time piecewise sinusoidal signals from their sampled ver-
sion. Sections II and III discuss the sampling kernels that can
be used in our scheme and recall some of the aspects of anni-
hilating filter theory. Using these kernels, Section IV derives a
global method for retrieving the parameters of a general piece-
wise sinusoidal signal. Section V discusses local reconstruction
methods that have a lower complexity. In Section VI, we briefly
discuss some extensions of the algorithm, namely, adding piece-
wise polynomials to piecewise sine waves. Section VII deals
with noisy observations and presents a robust algorithm for sam-
pling piecewise sinusoidal signals in the presence of noise. We
conclude in Section VIII.

II. SAMPLING KERNELS

Many sampling schemes such as the classical Shannon recon-
struction [2] and some of the original FRI schemes [3] rely on
the ideal low-pass filter (i.e., the sinc function). This filter is not
realizable in practice since it is of infinite support. It is there-
fore attractive to develop sampling schemes where the kernels
are physically valid and realizable. It was recently shown that
FRI sampling schemes may be used with sampling kernels that
are of compact support [4], [5]. In this section, we present these
kernels.

A. Polynomial Reproducing Kernels

A polynomial reproducing kernel is a function that, to-
gether with its shifted version, is able to reproduce polynomials.
That is, for a given set of values , it is possible
to have

given the right choice of weights . Strang and Fix [6] proved
that the necessary and sufficient conditions for a function to have
the above property are

where is the Fourier transform of . Perhaps the most
basic and intuitive such kernels are the classical B-splines [23].
The B-spline of degree zero is a function with Fourier transform

The higher order B-splines of degree are obtained through
successive convolutions of such that

, and they are able to reproduce polyno-
mials of degree zero to . This property follows directly from
the Strang–Fix condition above.

B. Exponential Reproducing Kernels

Similarly to the polynomial reproducing kernels, an exponen-
tial reproducing kernel is a function that, together with its
shifted version, is able to reproduce exponentials. That is, for any
given set of values , it is possible to have

(3)

given the right choice of weights . Note that may be
complex. One important family of such kernels is the expo-
nential splines (E-splines) that appeared in early works such
as [24]–[27] and were further studied in [7]. These functions
are extensions of the classical B-splines described above in that
they are built with exponential segments instead of polynomial
ones. The first-order E-spline is a function with Fourier
transform . The E-splines
of degree are constructed by successive convolutions of
first-order ones

(4)

where . A series of interesting properties are
derived in [7]. In particular, it is shown that an E-spline has com-
pact support and can reproduce any exponential in the subspace
spanned by . Furthermore, since the exponen-
tial reproduction property is preserved through convolution [7],
we have that any kernel of the form is also able to
reproduce the same exponentials as above.

III. ANNIHILATING FILTERS AND DIFFERENTIAL OPERATORS

In this section, we recall the notions of annihilating filter and
differential operator that are at the heart of the sampling schemes
developed in this paper. In particular, we recall the annihilating
filter method and show how the annihilating filters in the case
of exponential signals are related to the E-splines. We also show
how a piecewise exponential signal may be converted into a
stream of differentiated Diracs using an appropriate differential
operator.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11, 2010 at 05:22 from IEEE Xplore.  Restrictions apply. 



BERENT et al.: SAMPLING PIECEWISE SINUSOIDAL SIGNALS WITH FINITE RATE OF INNOVATION METHODS 615

A. The Annihilating Filter Method

Assume that a discrete-time signal is made of weighted
exponentials such that with and
assume we wish to retrieve the exponentials and the weights

of . The filter with -transform

(5)

and is called annihilating filter of since
. We can therefore construct the system

of equations:
...

...
...

...
...

. . .
...

...
...

...

...

Notice that equations are sufficient to determine the .
Therefore, we write the system in matrix form as

(6)

where is the appropriate 1 by 1 Toeplitz submatrix
involving 1 samples of . If admits an annihilat-
ingfilter, we have ; hence the matrix is rank de-
ficient. The zeros of the filter uniquely define the
since they are distinct and any filter satisfying the Toeplitz
system in (6) has as its roots. Note that, without loss of gen-
erality, we may pose and solve the system

...
...

. . .
...

...

...
(7)

which only requires 2 samples of . Given the , the
weights are obtained by solving a system of equations using

consecutive samples of . These form the classic Vander-
monde system

...
...

. . .
...

...
...

which also has a unique solution given that the s are distinct.
A straightforward extension of the above annihilating filter is

that a signal is annihilated by
the filter

(8)

which has multiple roots of order in the . For a more
detailed discussion of the annihilating filter method, we refer
to [9].

Let us return to the sinusoidal case. Clearly, a filter of the type
will also annihilate a discrete sinusoidal signal

since it can be written in the form of
a linear combination of complex exponentials. In this case, the
filter is obtained by posing and

(9)

We simplify the notation by expressing as . By
comparing (5) with (4) and using , we see that the
annihilating filter for a linear combination of exponentials can
be expressed with an E-spline as

(10)

where the second term is a differential operator, which is dis-
cussed in the following section.

B. Differential Operators

Let be a differential operator of order

(11)

with constant coefficients . This operator can also be
defined by the roots of its characteristic polynomial

Using the same notation as in [7], we express the operator as
, where . Posing , we have in

the frequency domain

The null space of the operator, denoted , contains all the so-
lutions to the differential equation . It is shown
in [7] that span . It is therefore said that
the operator has exponential annihilation properties. Moreover,
the operator has sinusoidal annihilation properties when is
defined as in (9). This follows naturally from the fact that sinu-
soids are linear combinations of complex exponentials. There-
fore, given the right , the operator will produce a zero
output for the corresponding sinusoidal input. It is also relevant
to mention here that the Green function of the operator

is a function such that , where is
the Dirac distribution. In this case, the Green function is given
by [7], where is the Heaviside step
function. Consequently, we have that

(12)

Finally, by combining (12) with (11), it follows that

(13)
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where is a differentiated Dirac of order and are
weights that depend on the . Hence, the appropriate differen-
tial operator applied to a piecewise exponential signal will pro-
duce a stream of differentiated Diracs in the discontinuities .

Note that in [3] and [5], where piecewise polynomial sig-
nals are considered, the signal is differentiated with .
This differentiation of the piecewise polynomial signal leads to
a stream of differentiated Diracs that can be retrieved from their
samples using signal moments. A similar method can be used in
the piecewise sinusoidal case. However, as shown above, the dif-
ferential operator that produces a stream of differentiated Dirac
impulses requires the knowledge of the frequencies of the sine
waves [i.e., is as defined in (9)]. Therefore, the methods in [3]
and [5] cannot be directly applied.

IV. RECONSTRUCTION OF PIECEWISE SINUSOIDAL SIGNALS

USING A GLOBAL APPROACH

All the necessary tools to sample piecewise sinusoidal signals
have now been laid down. For mathematical convenience, we
write the continuous-time signal as

(14)

which is made of pieces containing a maximum of si-
nusoids each. Assume now that this signal is sampled with a
kernel that is able to reproduce exponentials with

, where and . Fol-
lowing previous FRI methods [5], weighting the samples with
the appropriate coefficients gives

(15)

where we have used (1) and (3) and set the sampling period
to . Note that is an exponential moment of the
original continuous-time waveform . In particular, when

, we retrieve the coefficients of
the Fourier transform of . Plugging (14) into (15) gives

(16)

where . These moments are a sufficient rep-
resentation of the piecewise sinusoidal signal since the frequen-
cies of the sinusoids and the exact locations of the discontinu-
ities can be found using the annihilating filter method.

Let us define the polynomial
of degree 2 . Multiplying both sides of (16), we find the

expression

(17)

where is a polynomial of maximum degree
2 1. Recall that we impose , which
means that the right-hand side of (17) is equivalent to

, where are weights that
depend on but do not need to be computed here. Therefore,
a filter of the type

with will annihilate (17),
as shown in (8). It follows that

(18)

with . Since is a polynomial in , it
can be written as

where . Using this notation, the system in (18) be-
comes

for . For clarity, we write the system in ma-
trix form, which gives (19) as shown at the bottom of the page,
where . Solving this
system with enables us to find the . Subsequently,

...
. . .

...
. . .

...
. . .

...

...

...

...

(19)
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we find the . The roots of the filter and the poly-
nomial give the locations of the switching points1 and
the frequencies of the sine waves, respectively. The number
of exponential moments required to build a system with
enough equations to find the parameters of the piecewise sinu-
soidal signal is

.
At this point, we have determined all the frequencies of the

sinusoids and the locations of the discontinuities. However, the
polynomial does not enable us to distinguish which fre-
quencies are present in which piece. This information, along
with the amplitudes and phases of the sinusoids, is found by
building a generalized Vandermonde system

(20)

which requires 2 1 moments and enables us to
determine the . This system provides a unique solution
since the exponents are distinct. The full algorithm is summa-
rized in Algorithm 1. The derivation above shows that it is pos-
sible to reconstruct the piecewise sinusoidal signal in (2) from
the set of samples in (1). We therefore have the following result.

Theorem 1: Assume a sampling kernel that can repro-
duce exponentials and . A piecewise
sinusoidal signal with pieces having a maximum of si-
nusoids in each piece is uniquely determined by the samples

if
.

Algorithm 1: Global Recovery of a Piecewise Sinusoidal
Signal

1: Compute moments in (15).
2: Build the system in (19) and retrieve the annihilating filter

.
3: Set and retrieve the . Compute the
4: Compute the roots of the and in order to find the

and the , respectively.
5: Build the system in (20) using the as well as the

and computed in the previous step.
6: Retrieve the and compute the and the .

Fig. 2 illustrates the sampling and perfect reconstruction of a
truncated sine wave. In this case, and , and we
need to compute exponential moments up to order 18. Note that
the method is based on the rate of innovation of the signal only.
That is, there are no constraints, for instance, on the frequencies
of the sine waves. In particular, we are not limited by the Nyquist
frequency. It also means that the locations of the discontinues
and may be arbitrarily close. In fact, the piecewise sinusoidal
signal defined in (2) has a limited number of degrees of freedom
since it is zero for . For this reason, the sampling
interval can, in theory, be arbitrarily large.

1Note that in the case where � � �� is purely imaginary, the � has to be
chosen such that � � ����� in order to avoid ambiguities.

Fig. 2. Sampling a truncated sine wave. (a) The original continuous-time wave-
form. In this example, we have � � ������ [s] and � � ������ [s]. The
frequency of the sine wave is � � 	�	� [rad/s] and the sampling period is
� � 	�
� [s]. (b) The observed samples. The sampling kernel is an exponen-
tial spline with parameters 	 � � and � � �������. (c) The reconstructed
signal. Note that the signal is not band-limited, and the frequency of the sine
wave itself is higher than the Nyquist rate for the given sampling period.

V. RECONSTRUCTION OF PIECEWISE SINUSOIDAL SIGNALS

USING A LOCAL APPROACH

In the previous section, we saw that it is possible to retrieve
the parameters of a sampled piecewise sinusoidal signal given
that the sampling kernel is able to reproduce exponentials of
a certain degree. This degree, however, increases very rapidly
with the number of sinusoids and pieces. In this section, we
show that the complexity can be reduced by making further as-
sumptions on the signal and imposing constraints on the sam-
pling period . These assumptions will allow us to locally re-
construct the signal by retrieving the parameters of two or more
consecutive pieces at a time. In the first case, we assume that
the frequencies of the sine waves are known and we retrieve
the exact locations of the discontinuities. In the second case,
we assume that the discontinuities are sufficiently far apart such
that a classical spectral estimation method can be run in each
piece in order to estimate the frequencies independently of the
discontinuities.

A. Local Reconstruction With Known Frequencies

Consider a piecewise sinusoidal signal as defined in (14)
and assume the frequencies are known at the reconstruc-
tion. This can be the case, for instance, when information is
transmitted using the switching points (or the discontinuities)
and we wish to retrieve these locations exactly. The samples

are again given by (1). Since the frequencies of the sine
waves are known, we can construct the annihilating filter

with coefficients and
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Assume now that we apply this filter to the samples . As-
suming , the expression for the annihilated signal
gives

(21)

where (a) follows from Parseval’s identity, (b) from (10), and
(c) from integration by parts and the fact that is of fi-
nite support. This means that the coefficients represent the
samples given by the inner product between a modified
that we call and a new sampling kernel

. Now assume that the sampling kernel
has compact support . Then the equivalent kernel is of
compact support . Furthermore, according to
(13), is made only of differentiated Diracs of maximum
order 2 1 in the discontinuities. That is, we are left with
a signal of the type
for which a sampling theorem exists [4], [5]. Hence, given that
the hypotheses of the theorem are met, we are able to perfectly
reconstruct and retrieve the exact locations . The the-
orem states that an infinite-length signal made of differentiated
Diracs of maximum order 1 can be sampled and perfectly
reconstructed given that the sampling kernel is of compact sup-
port , it can reproduce exponentials or polynomials

with , and there are at most Diracs with
weights in an interval of length 2 . Since this reproduction
capability is preserved through convolution [7], the equivalent
kernel is able to reproduce the same exponentials or poly-
nomials as . Therefore, or

given the right choice of coefficients
. Hence the classes of kernels used in [4] are also valid in

this context.
Similarly to the previous approach, the retrieval of the loca-

tions and the weights of is based on the annihi-
lating filter method. As shown in [4] and [5], these parameters
can be found using appropriate linear combinations of the sam-
ples . Indeed, using an exponential reproducing kernel, we
have the moments

(22)

that are made of weighted exponentials. Therefore, a filter of the
type will annihilate ,
and the problem of finding the locations is reduced to that of
finding the multiple roots of . This filter can be determined
using the Toeplitz matrix in (23) as shown at the bottom of the
page, which follows directly from (6). Note that similarly to (7),
we may pose and use only 4 1 1 samples
of . A more detailed description of the location retrieval
can be found in [5]. The above discussion is summarized as
follows.

Theorem 2: Assume a sampling kernel that can
reproduce exponentials or polynomials with

and of compact support . A piecewise si-
nusoidal signal with a maximum of sinusoids in each piece is
uniquely determined by the samples
if the frequencies are known and there are at most

1 sinusoidal discontinuities in an interval of length
2 1 2 and .

Therefore, given that the sampling kernel satisfies the above
properties, a piecewise sinusoidal signal with at most sinu-
soidal discontinuities in an interval of length can be retrieved
if it is sampled at a rate of ,
where is the maximum number of sinusoids in each piece
and is the support of the sampling kernel .

B. Local Reconstruction With Unknown Frequencies

In the previous section, we saw that the exact locations of
the switching points of a piecewise sinusoidal signal can be
estimated from its sampled version. The number of moments
required in this case was less than in the global method pre-
sented in Section IV since, in essence, the estimation of the
breakpoints is separated from that of the sine waves.2 In this
section, we show how the local method presented above may
be applied even if the frequencies of the sine waves are un-
known. The basic idea is to impose that the discontinuities are
sufficiently far apart such that a classical spectral estimation
method can be run in each piece to estimate the frequencies
first.3

Assume, for the moment, an original continuous-time signal
that is purely sinusoidal with a maximum of sinusoids. The

2For example, in the case where � � �� � � �, we have � � � instead
of � � ��.

3This case was also presented in [1].

...
...

...
...

(23)
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signal is sampled with a sampling kernel , and the samples
are given by

(24)

From Section III-A, we know that 4 1 samples are sufficient
to construct the matrix in (6) and solve the system of equations
in order to determine the annihilating filter . The s are
found using the roots of the filter. Note that as in (7), we may
pose and use the fact that the annihilating filter in this
case is symmetric. Using these constraints, only 3 samples
are necessary to determine the annihilating filter. Note that, in
this case, the roots of the annihilating filter are in pairs

and . It is therefore necessary to limit
the frequencies to in order to avoid ambiguities. This
constraint becomes when the sampling period is
not unity. In order to find the amplitudes and the phases ,
we use 2 consecutive samples of in order to construct a
Vandermonde system. For example, in the case where ,
we have the following system:

where the unicity of the solution is guarantied since the expo-
nents are distinct. Notice that determining the parameters of the
sinusoids is a classical spectral estimation problem [9].

In the piecewise sinusoidal case, the discontinuities influence
the samples. Indeed, if the kernel has compact support , the
samples in the interval 2 2 are not pure
discrete sinusoids as defined in (24). Hence, the sampling period

must be such that there are at least 4 1 samples that are not
influenced by the discontinuities in each interval . This
enables us to use the annihilating filter method to estimate the

. The only apparent difficulty lies in finding the right sam-
ples in each piece that are not perturbed by the breakpoints.
Recall from Section III-A that the 2 1 by 2 1 matrix
admits an annihilating filter when Rank . However,
the rank is full when is constructed with samples that are in-
fluenced by the discontinuities. It follows that the samples that
contain purely a sinusoidal contribution can be found by running
a window along the -axis constructing successive matrices and
looking at the rank of . Fig. 3 illustrates the sliding window. In
Fig. 3(c), the window contains samples that are influenced by the
discontinuity, and the rank of is full. However, in Fig. 3(d), the
matrix is rank deficient and the annihilating filter method is run
to retrieve the parameters of the sinusoids. Once the frequencies
have been estimated, the locations of the discontinuities may be
found using the method in Section V. Note that in this case,
we impose that the discontinuities are sufficiently far apart to
retrieve each separately. We therefore have . The dis-
cussion above is summarized with the following statement.

Theorem 3: Assume a sampling kernel of compact sup-
port that can reproduce exponentials or polynomials

with . A piecewise sinusoidal signal is
uniquely determined by the samples
if there are at most sinusoids with maximum absolute fre-
quency in a piece of length
and .

Fig. 3. Determining the sinusoidal part of the pieces. (a) illustrates a truncated
sinusoid. Assume, for example, a B-spline sampling kernel ���� � � ��� that
is of compact support� � � as is depicted in (b). Since the kernel has a certain
support, the samples in the vicinity of the discontinuities are not pure discrete
sinusoids. Therefore, the rank of matrix � is full when � is constructed with
the samples in the dashed window depicted in (c). However, � is rank deficient
when the window is chosen as shown (d) since the samples are not influenced
by the discontinuities.

Therefore, given that the sampling kernel satisfies the prop-
erties of the statement above, a piecewise sinusoidal signal with
pieces of minimum length can be retrieved if it is sampled at a
rate of , where is
the maximum number of sinusoids per piece, is the max-
imum absolute frequency of the sinusoids, and is the support
of the sampling kernel .

An overview of the algorithm for the local recovery of piece-
wise sinusoidal signals is presented in Algorithm 2. A simula-
tion recovering a piecewise sinusoidal signal with three pieces
containing one sinusoid per piece is illustrated in Fig. 4. We use
a classical B-spline sampling kernel , as it is capable of
reproducing polynomials of maximum degree . A
numerical simulation for the case is shown in Fig. 5. In
both simulations, the reconstructed signal is exact within ma-
chine precision.

Algorithm 2: Local Recovery of a Piecewise Sinusoidal Signal

1: If frequencies of sinusoids are not known:
2: Run window along -axis and construct successive
matrices using the samples .
3: Find rank-deficient windows .
4: For each window:
5: Estimate on where is rank
deficient.
6: end for
7: end if
8: For each pair of consecutive pieces:
9: Apply annihilating filters for consecutive windows

.
10: Compute moments in (22) and build system in (23).
11: Locations are given by the roots of .
12: end for
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Fig. 4. Sequential recovery of a piecewise sinusoidal signal using the local re-
construction method with unknown frequencies. The observed discrete signal
is illustrated in (a). In this example, we have one sine wave per piece and fre-
quencies � , � , and � in the first, second, and third piece, respectively.
The frequencies are determined using the annihilating filter method. The anni-
hilated signal � ��� � �� �� �� ����, where �� � ��� ���� � and
�� � ��� ���� �, is shown in (b). The nonzero samples in the vicinity
of the discontinuity are sufficient to recover the first breakpoint. The second
breakpoint can be found by looking at � ��� � �� � � � � ����, where
�� � ��� ���� � and �� � ��� ���� �, which is depicted in (c).
The recovered continuous-time signal is shown in (d).

VI. JOINT RECOVERY OF PIECEWISE SINUSOIDAL AND

POLYNOMIAL SIGNALS

Sampling piecewise sinusoidal signals using the schemes pre-
sented above is based not on the fact that the signals of interest
are band-limited but on the fact that they can be represented with
a finite number of parameters. It is worth mentioning here that
signals that are a combination of piecewise sinusoidal and poly-
nomials pieces are also defined by a finite number of parame-
ters, and they can also be recovered from their sampled versions
using the same algorithms. These signals are of the type

where for , is as previously defined, and

That is, we have a maximum of sinusoids and polynomials
of maximum degree 1 in each piece. In the following, we
will briefly discuss the basic steps to recover the parameters, as
they are analogous to the piecewise sinusoidal cases presented
in Sections IV and V.

Fig. 5. Numerical simulation of the recovery of a truncated piecewise sinu-
soidal signal with 	 � � sine waves. (a) The continuous-time waveform. (b)
The observed samples using the 
 ��� sampling kernel. (c) The reconstructed
signal.

Clearly, the th order derivative of is

which is a piecewise sinusoidal signal with differentiated Diracs
in the discontinuities. Both the global and the local schemes pre-
sented above are able to cope with these signals. Therefore, if
we are able to relate the observed samples with the samples

that would have been obtained from , we will be
able to recover . The will then be obtained by inte-
gration, which is uniquely defined since we assume that

for . The relation between the samples and
is related to B-spline theory and was demonstrated in [5]. As-
sume we apply the finite difference to
the observed samples. The new set of samples is equiva-
lent to , where
is the B-spline of degree zero and where we assume that .
Similarly, the th-order finite differences lead to the samples

which means the obtained samples are equivalent to those that
would have been observed from sampling with the
kernel . Moreover, since the polynomial and
exponential reproduction capability are preserved through con-
volution, the new kernel is able to reproduce the polynomials
or exponentials as well. Hence the sampling schemes presented
above are also valid for piecewise sinusoidal and polynomial
signals. An example of the sampling of the piecewise polyno-
mial and sinusoidal case is depicted in Fig. 6.
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Fig. 6. Sampling a combination of piecewise polynomials and sinusoids. The
observed samples are depicted in (a). In the first step, we annihilate the polyno-
mial part by applying the finite difference operator. As shown in (b), we are left
only with a piecewise sinusoidal part. The parameters characterizing the sinu-
soid are retrieved, and the annihilating filter is applied. The samples depicted in
(c) contain all the information necessary to find the discontinuity. The recovered
continuous-time signal is shown in (d).

Fig. 7. Sampling setup in the presence of noise. The scenario is identical to
the noiseless case. However, we assume that the observed samples ����� are the
noiseless samples ���� corrupted by digital additive i.i.d. white Gaussian noise
����.

VII. DEALING WITH NOISE: PROBLEM SETUP,
ISSUES, AND SOLUTIONS

In the first part of this paper, we showed that in the noise-
less case, we are able perfectly to reconstruct a continuous-time
piecewise sinusoidal signal from its sampled version. In the
following, we study the noisy scenario. Reconstruction of fi-
nite rate of innovation signals in the presence of noise also has
been considered in [28]–[31]. However, these papers concen-
trate mostly on streams of Diracs and piecewise polynomial sig-
nals. Piecewise sinusoidal signals are not considered. In order
to study the effect of noise on the estimation of the parameters
that define the piecewise sinusoidal signal, we consider additive
noise on the samples as illustrated in Fig. 7. Under this model,
the observed samples are given by

(25)

where we assume that the sampling period is unity and that the
are independent identically distributed (i.i.d.) and follow a

Gaussian distribution with zero mean and variance .
For clarity, we consider retrieving parameters of a truncated

sine wave using the local
method with unknown frequency presented in Section V-B. In
this context, we are estimating the locations , and the fre-
quency from the observed samples in (25). We will also
assume that the locations and are sufficiently far apart
such that they can be retrieved independently. The sampling
kernel is a polynomial spline with Fourier transform

. The first step in the reconstruction
algorithm consists in estimating the frequency of the sine
wave. However, we will not delve into this problem here since
it is a classical spectral estimation problem, which has been well
researched and can be solved using a variety of algorithms. For
a detailed view, we refer to [9]. Rather, we will focus on the
retrieval of the switching points and . Note that the sam-
ples that contain only the sine information may be located in
a similar fashion to that of Section V-B. However, in this case,
we compare the largest and the smallest eigenvalues of the suc-
cessive matrices using the samples . The regions where
the ratio of the smallest over the largest eigenvalue is smaller
than a threshold are chosen to estimate the frequency of the
sine wave. In order to be more robust to noise, we may choose

.
Following the method in Section V-B, we apply the annihi-

lating filter in order to obtain the annihilated samples

and compute the moments with which we recover the
switching points. This straightforward application, however, be-
comes unstable in the presence of noise. The reason for this issue
is that the signal-to-noise ratio (SNR4) of , which is used
for the estimation of and , is usually lower than that of .
Indeed, by applying the annihilating filter , we are effec-
tively killing most of the power of the signal without reducing
the noise.5 This effect is particularly visible in Fig. 8(b), where
the equivalent Dirac is buried in the noise. There is there-
fore a need to design an algorithm to find the locations of
and that preserves at least some of the energy of the original
waveform .

A. A Polyphase Reconstruction Algorithm

In this section, we show that by applying an additional filter
to the samples before computing the moments in (22), we are
able to improve the estimation of the switching points.

Consider the filter and as-
sume we apply it to the B-spline . The resulting function
becomes

(26)

4We define the SNR as 20��� ������ ������� , where � � � is the � -norm.
5The noise in this case is no longer white but is a filtered noise � � � .
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Fig. 8. Applying the annihilating and polyphase filters to noisy samples at
SNR� � [dB]. (a) The observed noisy samples �����. (b) The annihilated sam-
ples �� ��� � � � ��. In this case, the equivalent signal � ��� is buried in noise.
(c) The annihilated samples �� ��� � � � � � � � �� using the two-phase
annihilating filter. (d) The annihilated samples �� ��� � � �� �� � �� using
the four-phase annihilating filter. Note that the location of the switching points
becomes more distinct when the additional filters are applied.

which is a scaled version of the original B-spline. Similarly, con-
sider the filter ,
where . This filter together with the original
annihilating filter gives

(27)

That is, the new annihilating filter can be related to a scaled
E-spline and a differential operator. Applying both filters to the
samples, we have

where we have used the same derivation as in (21) together with
(26) and (27). The new noisy samples are given by

where . Thus, these observed samples are
equivalent to those that would have been observed if the signal

was sampled with the scaled kernel
. Therefore, we may write the samples as

Since the new kernel is an E-spline scaled by a factor of two and
remains the same, we have two times more samples than are

necessary to recover . The samples can therefore be decom-
posed into their polyphase components

Each polyphase component is treated independently, and the
corresponding coefficients and are obtained
using the kernel . The location is estimated sepa-
rately from the even and odd samples, and the final estimate
is given by the average of the two obtained locations. This
procedure may be iterated in order to create four, eight, or
more polyphase components. For instance, the filters in the
four-phase case are and

.
In the general case of phases, we denote the samples as

, and the equivalent sampling kernel
is with compact support .

Note that this polyphase reconstruction is somewhat reminis-
cent of the scenario used in [5] for recovering Diracs in noise.
However, while in that paper the polyphase components are ob-
tained through oversampling, the method presented here does
not require increase of the sampling rate.

B. Further Denoising With Hard Thresholding

The sampling kernels assumed in the context of this paper are
of finite support (i.e., B-splines or E-splines). We may therefore
use this property to reduce the noise in the samples. Indeed, if
we assume that the discontinuities are sufficiently far apart, we
expect to have only nonzero samples of , where is
the support of the equivalent sampling kernel . This is due
to the fact that the equivalent signal is a sum of differenti-
ated Diracs. Our hard thresholding approach therefore consists
in obtaining an initial estimate of the switching location and
setting to zero all the nonzero samples that are not in the interval

since they are assumed
to be purely generated by the additive noise. Assuming the in-
tervals in between switching points have been determined, we
obtain the initial estimate of the location by averaging the lo-
cations of the maximum and minimum values of the annihilated
signal . An example of the annihilated signals for different
numbers of phases is depicted in Fig. 8(b)–(d). The overall al-
gorithm is described in Algorithm 3.
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Fig. 9. Retrieval of the switching point of a step sine (� � ������ [rad/s] and � � ������ [s]) in 128 noisy samples. (a) Scatter plot of the estimated location.
(b) Standard deviation (averages over 1000 iterations) of the location retrieval compared to the Cramér–Rao bound.

Algorithm 3: Recovery of a Piecewise Sinusoidal Signal in
Noise

1: Run window along -axis and construct successive
matrices using the samples .

2: Perform singular value decomposition of .

3: Estimate on where smallest
eigenvalue over biggest eigenvalue of is smaller than
threshold .

4: For each pair of consecutive pieces:

5: Apply annihilating filters where
represents the number of phases.

6: Estimate switching point using the average of
and .

7: Keep only the samples .

8: For each polyphase component:

9: Compute moments in (22) and build system in (23).

10: Locations are given by the roots of .

11: end for

12: Average locations obtained from each polyphase
component.

13: end for

C. Performance Evaluation

It is of interest here to evaluate the performance of the re-
construction algorithm in the presence of different noise levels.
Therefore, we consider the Cramér–Rao bound that provides an
answer to the best possible performance of an unbiased esti-
mator. The derivation of the Cramér–Rao bound in the case of
additive white Gaussian noise is presented in Appendix A. In

this experiment, the acquisition device observes 128 noisy sam-
ples with [s] of a truncated sine wave with frequency

[rad/s] and switching points [s] and
[s]. Since we assume that the switching points are suffi-

ciently far apart, their locations can be estimated independently.
We therefore show the results only for the first discontinuity.
The frequency of the sine wave is estimated using Matlab’s root-
music function, and the location of the switching point is esti-
mated using a four-phase approach and additional hard thresh-
olding. Note that we have also experimented with other fre-
quency estimation methods as well as using the ground truth fre-
quency. Similar results are obtained in all cases. Fig. 9(a) shows
the scatter plot for the reconstruction of the switching point
for different SNR levels. The standard deviation of the error (av-
erages over 1000 iterations) of the location retrieval is shown
in Fig. 9(b). These simulations show that the proposed recon-
struction algorithm behaves well down to noise levels of about
7 [dB]. Fig. 10 illustrates an example of the recovery of a con-
tinuous-time piecewise sinusoidal signal (with [s],

[s], and [rad/s]) given 128 noisy sam-
ples at an SNR of 8 [dB]. Note that despite the small error in the
estimation of the frequency of the sine wave, the estimation of
the switching points is accurate.

VIII. CONCLUSION

We have set out to show that piecewise sinusoids belong to
the family of signals with finite rate of innovation and can be
sampled and perfectly reconstructed using sampling kernels that
reproduce exponentials or polynomials. These classes of kernels
are physically realizable and are of compact support. Moreover,
combinations of piecewise sinusoids and polynomials also have
a finite rate of innovation and can be dealt with using similar
sampling schemes.

Since the sampling scheme is limited by the rate of innovation
rather than the actual frequency of the continuous-time signal,
we are, in theory, capable of retrieving piecewise sine waves
with an arbitrarily high frequency along with the exact location
of the switching points. We believe, therefore, that the sampling
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Fig. 10. Recovery of a truncated sine wave at SNR� � [dB]. (a) The observed
noisy samples. (b) The reconstructed signal along with the ground truth signal
(dashed).

scheme presented may find applications, for example, in spread-
spectrum and wide-band communications.

Finally, we studied the effect of noise on the performance
of the estimation of the switching points. In doing so, we de-
rived a polyphase reconstruction algorithm that, together with
hard thresholding, behaves well with respect to the Cramér–Rao
bounds down to SNRs of 7 [dB].

APPENDIX

DERIVATION OF THE CRAMÉR–RAO BOUNDS

The piecewise sinusoidal signal we consider in (2) is defined
by the parameter vector

These parameters are estimated using the observed samples

where is i.i.d. additive white Gaussian noise with zero mean
and variance . For clarity, we denote as a function of the
parameter vector with

The performance of any unbiased estimator is lower
bounded by the Cramér–Rao bound var ,
where is the Fisher information matrix defined as

and is the log-likelihood
function of the data, i.e., a function of conditioned on the
measured samples . Recall that the noise follows the
Gaussian distribution

Therefore, we have

Hence the log-likelihood function is given by

where we have used the independence of the noise samples .
The partial derivative of the log-likelihood function is given by

where the operator denotes the gradient of with re-
spect to the signal parameters . Finally, we determine the
Fisher information matrix as

where we have used the fact that the noise is independent (i.e.,
uncorrelated). The Cramér–Rao bound is thus given by

CRB (28)

with .
These bounds are complicated to compute for a general piece-

wise sinusoidal signal. However, we can look at the simpler case
where we assume that the observed signal is a single truncated
sine wave with known amplitude and phase .
The signal is therefore given by

which is characterized by three parameters: .
Computing the partial derivatives gives
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Using these three relations enables to evaluate numerically the
Cramér–Rao bound in (28).
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