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ABSTRACT
We consider physical fields induced by a finite number of in-
stantaneous diffusion sources, which we sample using a mo-
bile sensor, along unknown trajectories composed of multiple
linear segments. We address the problem of estimating the
sources, as well as the trajectory of the mobile sensor. Within
this framework, we propose a method for localizing sources
of unknown amplitudes, and known activation times. The re-
construction method we propose maps the measurements ob-
tained using the mobile sensor to a sequence of generalized
field samples. From these generalized samples, we can then
retrieve the locations of the sources as well as the trajectory
of the sensor (up to a linear geometric transformation).

Index Terms— Diffusion fields, finite rate of innovation
(FRI), field and trajectory reconstruction, sampling theory.

1. INTRODUCTION

Estimation of physical fields from sensors’ measurements has
attracted a lot of interest recently. We refer for example to the
recent papers [1–5]. With the exception of [5], these papers
assume sensor locations are known. Moreover sensors are
at fixed locations. Sampling physical fields along trajecto-
ries using mobile sensors was considered in [6,7], but in both
cases the trajectories are known.

In this paper, we consider the problem of estimating the
physical field of a finite number of instantaneous diffusion
sources, from samples taken along unknown trajectories. We
assume that the sampling trajectory consists of multiple lin-
ear segments, and that the activation times of the sources are
known. Moreover, we leverage the assumption that the obser-
vation window is sufficiently short, such that the fluctuations
in the observed field are negligible.

Some of the real-life applications of efficient sampling
and reconstruction of such fields are the following. Consider
for instance, the retracing of nuclear or chemical leakages [8],
or detecting flames and smoke generated by forest fires. In
these environmental monitoring applications, the use of un-
manned aerial vehicles (UAVs) such as drones, is becoming
increasingly popular. These vehicles are typically equipped
with GPS sensors in order to track their position, which may
not accurately work in inaccessible areas. It is therefore es-

sential to develop algorithms that would allow the vehicle to
estimate its position in space, without relying on GPS, whilst
at the same time being able to estimate the physical field being
monitored.

In order to develop an algorithm for estimation of the field
sources as well as the sampling trajectory, we leverage the
method in [9]. Here, the authors consider the problem of es-
timating a physical sampling field, e.g. an image, using sam-
ples from a moving sensor whose location is unknown. The
algorithm proposed in [9] achieves reconstruction of both the
sampling trajectory (up to a linear transformation and a shift),
as well as the 2D image being sampled.

In this paper, we extend this method to the case of instan-
taneous diffusion sources, and show that we can retrieve the
sampling trajectory composed of linear segments, as well as
the locations of the diffusion sources, up to a linear geometric
transformation.

2. PROBLEM FORMULATION

Let us consider the diffusion field induced by an instanta-
neous source (localized in both space and time), within a
two-dimensional region. The diffusion field will propagate
according to the Green’s function [1], as follows:

f(x, t) =
1

4πµ(t− τk)
ake
− |x−Sk|

2

4µ(t−τk)H(t− τk), (1)

where:

ak = amplitude of the diffusion source,
τk = activation time of the diffusion source,
Sk = coordinates of the source in R2 space,
H(t) = unit step function,
µ = diffusivity of the medium.

Furthermore, suppose that within the time interval of ob-
servation, the evolution of the diffusion field is imperceptible,
and that we know the activation time τk of the source. Under
these assumptions, the reconstruction problem is equivalent
to retrieving the location Sk and intensity ak, from the spatial
measurements:

f(x) =
1

πC
ake
− ||x−Sk||

2

C ,
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where C is a constant equal to C = 4µ(t − τk), and t is the
start time of the observation.

For simplicity, we assume C = 1. Then, suppose we
sample a field induced by K diffusion sources, and take mea-
surements along a trajectory made up of L lines. Assume also
that the measurements are taken at uniform points, with a step
size equal to T , and that the length of each line is known and
equal to lj . Let us denote the start point of each line j with
bj ∈ R2 (see Fig. 1), and describe the equation of this line as
follows:

Pj = bj + y(bj+1 − bj), (2)

where y ∈ [0, 1].
Then, the measurements along line j, due to a number K

of sources with coordinates Sk are given by:

f(Pj) =
1

π

K∑
k=1

ake
−||Pj−Sk||2 , (3)

where we can express ||Pj − Sk||2 as follows:

||Pj − Sk||2 = ||bj − Sk + y(bj+1 − bj)||2

= ||bj − Sk||2 + 2y(bj − Sk)T (bj+1 − bj)

+ y2||(bj+1 − bj)||2

(a)
= (ljy +

(bj − Sk)T (bj+1 − bj)

lj
)2

+ ||bj − Sk||2 − (
(bj − Sk)T (bj+1 − bj)

lj
)2,

(4)

where (a) follows from the assumption that the length of seg-
ment j is ||(bj+1 − bj)|| = lj .

Therefore, the cumulative measurements along line j
from all sources given in Eq. (3), become:

f(Pj) = fj(y) =
1

π

K∑
k=1

ake
−||Pj−Sk||2

=
1

π

K∑
k=1

ake
−||bj−Sk||2+(

(bj−Sk)T (bj+1−bj)

lj
)2

× e−(ljy+
(bj−Sk)T (bj+1−bj)

lj
)2

:=

K∑
k=1

Ak,je
−(ljy−Yk,j)2 ,

(5)

where:

Ak,j = ake
−||bj−Sk||2+(

(bj−Sk)T (bj+1−bj)

lj
)2

,

Yk,j =
(Sk − bj)

T (bj+1 − bj)

lj
. (6)

At discrete uniform points y = nT with n ∈ N, this be-
comes:

fj(nT ) =

K∑
k=1

Ak,je
−(ljnT−Yk,j)2 . (7)

Fig. 1: Measurements at discrete time along linear trajectories, of
the physical field created by two diffusion sources.

In order to localize the sources and estimate the trajectory
of the mobile sensor, we need to first estimate the parameters
Yk,j and Ak,j from the measurements in Eq. (7), and one
method to solve this problem is presented in Appendix A.

3. SIMULTANEOUS SOURCE LOCALIZATION AND
MAPPING

Let us assume that the diffusion field is induced by K ≥
3 sources of unknown amplitudes, and that the trajectory is
composed of L ≥ 2 lines. Under this assumption, we will
show that the locations of the sources and the lines that form
the sampling trajectory can be correctly estimated, up to a
geometric rotation and reflection. We first estimate the lines
of the trajectory. Then, we recover the locations of the in-
stantaneous sources, by ensuring these are consistent with the
measurements we obtain. This guarantees that the locations
of the sources are correct, relative to the estimated trajectory.

3.1. Frequency Pairing

In order to be able to use the parameters Yk,j (estimated as
described in Section 2) for source localization, we need to first
ensure these are paired across different lines. In other words,
we need to identify whether two parameters Yk,j and Yk′,i
estimated using measurements on line j and i respectively,
correspond to the same source Sk, i.e. whether k = k′.

Using the derivations in Eq. (6), we get:

log

(
πAk,j
ak

)
= Y 2

k,j − ||bj − Sk||2, (8)

which gives:

log

(
Ak,j
Ak,j+1

)
= Y 2

k,j − Y 2
k,j+1 + ||bj+1 − Sk||2 − ||bj − Sk||2

(b)
= Y 2

k,j − Y 2
k,j+1 − 2ljYk,j + l2j = (Yk,j − l)2 − Y 2

k,j+1,

where (b) follows from:

−2ljYk,j = ||bj − Sk + bj+1 − bj ||2

− ||bj − Sk||2 − ||bj+1 − bj ||2

= ||bj+1 − Sk||2 − ||bj − Sk||2 − l2j
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In general, we match two frequencies Yk,j and Yk′,i with
corresponding amplitudes Ak,j and Ak′,j respectively, if

log
(
Ak,i
Ak′,j

)
= (Yk,i− lj)2−Y 2

k′,j . If this holds, then k = k′.

3.2. Estimation of the Trajectory of the Mobile Sensor

Using the method in Section 2, we obtain the parameters:

Yk,j =
(Sk − bj)

T (bj+1 − bj)

lj

= (
bj+1 − bj

lj
)T (Sk − bj) := cTj (Sk − bj).

(9)

Using the parameters Yk,j = cTj (Sk − bj), we can also
obtain the difference Ωj,q = Yk,j − Yq,j for each line j and
any two different sources k and q:

Ω =


cT1 (S2 − S1) cT1 (S3 − S2) . . . cT1 (S1 − SK)
cT2 (S2 − S1) cT2 (S3 − S2) . . . cT2 (S1 − SK)

...
...

. . .
...

cTL(S2 − S1) cL
T (S3 − S2) . . . cTL(S1 − SK)



=


cT1
cT2
...

cTL


︸ ︷︷ ︸
L×2

[
S2 − S1 S3 − S2 . . . S1 − SK

]︸ ︷︷ ︸
2×K

:= CS

The rank of matrix Ω satisfies rank(Ω) ≤ 2. This means
that we need K ≥ 3 sources and L ≥ 2 to retrieve the matrix
of line parameters C, and the matrix of distances between
sources S, up to a linear transformation Q: C̃ = CQ−1 and
S̃ = QS.

Since parameter cj of any line j satisfies ||cj || = 1, we
normalize the rows of the estimated matrix C̃. Once we find
the parameters c̃j , we can then sequentially retrieve the start
points of all lines using bj+1 = bj + lj c̃j , for j ≥ 1, where
b1 is arbitrarily set, and lj is the length of each line j.

The linear transformation Q can be estimated from the
equations of two lines i and j, by solving:[

c̃Ti
c̃Tj

]
Q =

[
cTi
cTj

]
In other words, if two lines of the trajectory are known, we
can perfectly retrieve the parameters of all other lines.

3.3. Localization of Sources

We leverage the results in Section 2 to retrieve the parameters
Yk,j , corresponding to source Sk and line j. Moreover, we
arbitrarily set b1 and c1 and retrieve the parameters bj and
cj of all other lines as in Section 3.2.

Then, the location of the source Sk can be retrieved using
the estimated parameters Yk,i and Yk,j , corresponding to lines
i and j respectively, as follows.

Fig. 2: Estimating the location of source Sk, using measurements
along two different lines i and j.

First, the parameter Yk,j =
(Sk−bj)T (bj+1−bj)

lj
represents

the scalar projection of vector (Sk−bj) onto vector (bj+1−
bj). Then, the vector projection (Pk,j − bj) of (Sk − bj)
onto vector (bj+1 − bj) can be computed as:

Pk,j − bj = Yk,j
bj+1 − bj

lj
, (10)

where Pk,j is the point where the perpendicular from Sk to
line j, intersects line j, as seen in Fig. 2.

Hence, the inner product between vectors Pk,j − bj and
Sk −Pk,j must be zero:

(Pk,j − bj)
T · (Sk −Pk,j) = 0. (11)

Similarly, for segment i, we obtain:

(Pk,i − bi)
T · (Sk −Pk,i) = 0. (12)

Since the source Sk is located both on the perpendicular to
line i, as well as on the perpendicular to line j, its coordinates
must satisfy both Eq. (11) and (12), as depicted in Fig. 2. We
can therefore uniquely retrieve the location of any source Sk,
by solving the system of Eq. (11) and (12).

Finally, once the location Sk has been estimated, we can
compute the intensity of the source from the parameters Ak,j ,
retrieved using the method in Section 2.

4. EXPERIMENTAL RESULTS

We consider the case of three diffusion sources of unknown
amplitudes, whose field we sample along multiple lines. We
estimate the sources and the sampling trajectory using the
method presented in Section 3. The results in Fig. 3 show
that we can retrieve the locations of the sources and the lines
up to a linear transformation (translation, reflection, orthog-
onal rotation, and scaling), when we arbitrarily set the start
point of the trajectory. The results in Fig. 4 show that we can
exactly retrieve the locations of the sources, when the first two
segments of the trajectory are known.

In many practical situations, the field measurements may
be corrupted by noise, and this may lead to errors in the pa-
rameters Yk,j and Ak,j estimated using the method in Ap-
pendix A. In this case, we can use Procrustes analysis [10]
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Fig. 3: Estimation of the locations of 3 sources and the sampling
trajectory composed of 3 linear segments, when the starting point of
the trajectory is arbitrary.

Fig. 4: Estimation of the locations of 3 sources and the sampling tra-
jectory composed of 3 linear segments, when the first two segments
of the trajectory are known.

to estimate a linear transformaton between the estimated and
actual trajectories and source locations respectively. For ex-
ample, for the setting depicted in Fig. 5, when the field mea-
surements are corrupted by white, additive Gaussian noise of
SNR= 20dB, the average squared error between the linearly
transformed points of the estimated trajectory and those of the
true trajectory is dL = 0.7144, whereas the average error of
the source locations is dS = 4.37× 10−4.

We can further account for possible inaccuracies in the es-
timated parameters Yk,j andAk,j as follows. First, we can in-
crease the number L of lines in the trajectory, and choose the
location of each source S̃k which agrees with most of the es-
timated parameters Yk,j , for j = 1, 2, ..., L, using the method
described in Section 3.3. In addition, we could adjust the
estimated location S̃k and amplitude ãk of each source such
that the estimated measurements 1

π

∑K
k=1 ãke

−||Pj−S̃k||2

agree to the actual measurements in Eq. (7), along all lines
j = 1, 2, ..., L.

5. CONCLUSIONS

In this paper, we have presented an algorithm for estimat-
ing the locations of multiple diffusion sources, from sam-
ples taken along unknown trajectories. When the activation
times of the sources are known, the algorithm retrieves their

Fig. 5: Linearly transformed source locations and trajectory to
best fit the true source locations and trajectory respectively, when
the samples are corrupted by additive white Gaussian noise of
SNR=20dB.

locations, as well as the sampling trajectory, up to a linear
transformation. Simulations performed on synthetic data val-
idate the proposed reconstruction method. In future work, we
would like to understand the behaviour of the algorithm for
source localization and trajectory mapping under noisy con-
ditions. We also hope to extend this to the case when the
activation times of the sources are unknown.

A. ESTIMATING THE CENTERS OF GAUSSIAN
FUNCTIONS FROM THEIR SUM

The measurements we obtain from K sources are:

fj(nT ) := fj,n =

K∑
k=1

Ak,je
−(ljnT−Yk,j)2 . (13)

Leveraging the results in [11,12], we can find coefficients
cm,n that allow us to approximately reproduce exponentials,
as follows: ∑

n∈N
cm,ne

−(t−nT )2 ≈ ejωmt, (14)

for ωm = ω0(1− 2
2K−1m), m = 0, 1, ..., 2K−1, whereK is

the number of sources we aim to estimate and ω0 is arbitrary.
Then, we can multiply the measurements fj,n by the co-

efficients cm,n, to obtain the signal moments:

sm =
∑
n

cm,nfj,n =
∑
n

cm,n

K∑
k=1

Ak,je
−(ljnT−Yk,j)2

=

K∑
k=1

Ak,j
∑
n

cm,ne
−(ljnT−Yk,j)2

(a)
≈

K∑
k=1

Ak,je
jωmYk,j ,

(15)

where (a) follows from Eq. (14).
Finally, we use Prony’s method [13] on sm, to obtain the

frequency components Yk,j , as well as the terms Ak,j , for
each line j and source Sk.
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