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Feature Adaptive Co-Segmentation by Complexity
Awareness

Fanman Meng, Hongliang Li, Senior Member, IEEE, King Ngi Ngan, Fellow, IEEE,
Liaoyuan Zeng, and Qingbo Wu

Abstract— In this paper, we propose a novel feature adaptive
co-segmentation method that can learn adaptive features of dif-
ferent image groups for accurate common objects segmentation.
We also propose image complexity awareness for adaptive feature
learning. In the proposed method, the original images are first
ranked according to the image complexities that are measured
by superpixel changing cue and object detection cue. Then, the
unsupervised segments of the simple images are used to learn
the adaptive features, which are achieved using an expectation-
minimization algorithm combining l1-regularized least squares
optimization with the consideration of the confidence of the
simple image segmentation accuracies and the fitness of the
learned model. The error rate of the final co-segmentation is
tested by the experiments on different image groups and verified
to be lower than the existing state-of-the-art co-segmentation
methods.

Index Terms— Cosegmentation, distance metric learning,
image complexity analysis.

I. INTRODUCTION

IN COMPUTER vision area, image segmentation [1]–[8]
is a process of segmenting objects from images. The goal

of image segmentation is bottom up and unsupervised seg-
mentation of general images. As a key branch of image
segmentation, co-segmentation [9]–[24] is to segment common
objects from an image group. By assuming a group of images
contain common objects, co-segmentation only requires addi-
tional images containing the same or similar target objects for
accurate segmentation.

The co-segmentation methods are generally developed by
adding foreground similarity into single image segmentation
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TABLE I

THE FEATURES USED IN THE EXISTING CO-SEGMENTATION METHODS

models, such as Markov Random Filed (MRF) segmenta-
tion [9]–[12], [17], [22], heat diffusion segmentation [19],
clustering based segmentation [14], [20], and random walker
segmentation [21]. Using the additional foreground similarity
constraints guarantees the segmentation of the common objects
only, which results in more accurate segmentation than single
image segmentation.

The accuracy of co-segmentation is significantly dependent
on the efficiency of the foreground similarities measurement.
Many region features, such as color histogram [9]–[13],
SIFT [14], [20], contour descriptor [18] and local binary pat-
tern descriptor [22], have been used to evaluate the foreground
similarity. Furthermore, �1-norm, �2-norm, reward strategy
and χ2 distance, were usually used for the feature distance
calculation.

However, the existing co-segmentation methods cosegment
different image classes using a fixed foreground similarity
measurement without change. In general, the fixed features are
manually selected or learned from the training data set [18]
before co-segmentation. We display the fixed features used
in the existing co-segmentation methods in Table I. Using
fixed similarity measurement in co-segmentation may lead
to some problems in realistic applications. Firstly, since the
similar features of the common objects vary in different
image groups, the fixed feature can not accurately measure
the foreground similarities of different classes, which results
in the unsuccessful co-segmentation. Secondly, for the images
whose common object varies significantly, a combination of
the general features will be required to accurately measure the
foreground similarity. However, designing the combinational
feature model creates high complexity for the manual selection
manner. Thirdly, the training features from the fixed training
data may lead to low feature accuracy because the fixed
training data cannot accurately represent the similar features
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for a specific class. Hence, to obtain the features that are
adaptive to different image classes is necessary to improve
the accuracy of the co-segmentation.

To obtain the adaptive features, we note that the common
objects in a simple image can be easily extracted by the figure-
ground segmentation methods, such as object detection based
segmentation and saliency detection based segmentation. It is
seen that these simple image segments can be used to learn
the features adaptable to each image group and thus increase
the accuracy of the co-segmentation. Furthermore, when the
original images are collected from various sources, certain
images will contain simple background images. Thus, the
simple image segments can provide adaptive training data for
accurate feature learning.

In this paper, we propose a feature adaptive image
co-segmentation method to improve the accuracy of the
co-segmentation when the similar features are unknown (first
reported in [27]). The simple image segments are used to learn
the adaptive features. The proposed method consists of four
steps. In the first step, we evaluate the image complexities
by the superpixel changing cue and the object detection cue.
We then select simple images and segment the initial segments
by figure-ground segmentation method. In the third step, we
represent the features as a linear combination of the common
features, and we learn the linear combination parameters by
the EM based algorithm. In the last step, the common objects
are segmented according to the learned feature model. We test
the performance of the proposed co-segmentation method in
terms of error rate in different image groups. The results
demonstrate that the lower error rates can be obtained by the
proposed method.

The structure of this paper is organized as follows.
The related work is discussed in Section II. In Section III
and IV, we present the proposed co-segmentation method by
demonstrating the image complexity analysis, the adaptive
feature learning model and the final co-segmentation achieved
by using the learned features. Section V and VI show the
experiment of the proposed method and the discussion of the
results. Finally, in Section VII, the conclusion is given.

II. RELATED WORK

Co-segmentation is usually modeled as an optimization
process with the consideration of the foregrounds similarity
constraints added into the single image segmentation models.
The MRF based co-segmentation method was first presented
by C. Rother et al. [9], which segmented common objects
through adding foreground similarity constraint into traditional
MRF based segmentation methods. �1-norm was used to repre-
sent the foreground similarity, and the co-segmentation energy
was minimized by trust region graph cuts (TRGC) method.
Based on Rother’s work, several MRF co-segmentation meth-
ods deal with the optimization problem using other constraints.
In the work of L. Mukherjee et al. [10], �1-norm was replaced
by �2-norm and the Pseudo-Boolean optimization was used
for the minimization. Instead of penalizing foreground dif-
ference, D. S. Hochbaum and V. Singh [11] rewarded
the foreground similarity, which can result in the tractable

energy function optimization by graph-cuts algorithm. In [12],
S. Vicente et al. modified Boykov-Jolly model as the fore-
ground similarity measurement, and employed Dual Decom-
position to minimize the energy function. Note that in these
co-segmentation methods, the common objects are assumed to
contain similar colors.

A. Joulin et al. [14] segmented common objects using
the clustering strategy, in which a classifier produced by
spectral clustering technique and positive definite kernel was
used as a co-segmentation. The most discriminative classi-
fier was then found as the final co-segmentation by solving
a continuous convex searching optimization problem. Both
color and SIFT features were used in this work. An inter-
active co-segmentation method was proposed in the work of
D. Batra et al. [15], which can segment common objects
through user interaction guided by an automatic recommenda-
tion system to correct the inconsistent segmentation. In [16],
by observing that the rank of the matrix corresponding to the
foreground regions still equals to one even if the common
objects contain the scale variants, L. Mukherjee et al. proposed
a scale invariant co-segmentation method which intended to
find a matrix comprised of common objects with rank of one.
K. Chang et al. [17] designed a novel global energy term
to represent the foreground similarity and background con-
sistency. Combined with the foreground potentials measured
by co-saliency model, the final energy function is submod-
ular which can be minimized by the graph-cut algorithm.
S. Vicente et al. [18] presented an object co-segmentation
method to segment objects of interest. An off-line learning
method was used to select the discriminative features from
the common features through random forest regressor, which
leads to the segmentation of only the interesting common
objects. G. Kim et al. in [19] used anisotropic heat diffusion
segmentation method to segment common objects of multiple
classes from a large scale of images group. In Kim’s work,
the common objects were assumed to contain similar colors,
which will result in unsuccessful co-segmentation when the
common objects contain other similar features. Y. Chai et al.
in [25] proposed a Bi-level co-segmentation method (BiCoS)
for image classification. Chai’s method performs the Grabcuts
based segmentation with the initializations of the linear SVM
based class models and alternately updates the class models
and segmentation until convergence to achieve the image
segmentation and classification. Instead of sharing descriptor
at the level of individual pixels, Chai’s method shares a richer
descriptor at the level of superpixels stacked from multiple
general sub-descriptors which represent the superpixels’ color
distribution, SIFT distribution, size, location within the image,
and shape. The use of the richer descriptor can improve the
co-segmentation accuracy. However, the feature model in the
method in [25] reminds a combination of several existing
features and the features adaptive to each specific class group
is not discussed.

Recently, A. Joulin et al. [20] presented a multi-class
co-segmentation method which extends the discriminative
clustering based co-segmentation [14] to segment the com-
mon objects of multiple image classes. Joulin designed a
new energy function which consists of spectral-clustering
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term and discriminative term. The spectral-clustering term
can divide each image into visually and spatially consistent
labeled regions, and the discriminative term can maximize the
class separability in the image group. The energy function
can be finally optimized by using EM algorithm. In Joulin’s
work, the EM algorithm is to perform image segmentation,
where E-step estimates the label of each pixel, and the
M-step estimates the parameters of the discriminative clas-
sifier. Instead, in our method the EM algorithm is used for the
feature learning, where E-step estimates the confidence of the
initial segmentation, and the M-step estimates the parameters
of the feature model. It is seen that the fixed features are
used in the model in [14], while we use adaptive features for
more accurate co-segmentation. The co-segmentation method
proposed by M. Collins et al. [21] adds foreground consis-
tency into the random walker based segmentation method
which leads to a tractable energy minimization and speeds
up the co-segmentation algorithm compared with the MRF
based co-segmentation. J. Rubio et al. [22] segmented the
common objects by proposing a new graph matching based
foreground similarity measurement and alternatively updat-
ing the saliency detection and the segmentation, which can
enhance the co-segmentation accuracy. In [26], Meng et al.
used the graph theory to segment the common objects from
a large scale image group. A digraph was constructed based
on the local region similarity and the co-saliency values.
The co-segmentation was then formulated as a shortest path
problem, which can be solved by using dynamic program-
ming. In the methods discussed in this paragraph, the fixed
features are used to measure the foreground similarity for
successful co-segmentation, which will cause unsuccessful
co-segmentation when different common objects contain dif-
ferent types of similar features. Hence, in that situation,
features that can adapt to different image classes are needed
to improve the co-segmentation accuracy.

Another related work is the metric learning [28]–[32], which
aims to improve the performance of many applications by
learning more accurate distance metric. In general, an objective
function representing the consistency between the metric and
the training data is first defined. Then, the metric learning is
formulated as maximizing the fitness between the metric and
the data to obtain the best distance metric according to evaluat-
ing the distance parameters. In general, Mahalanobis distance
(d(x, y) = (xy)T A(xy)) with parameter A was usually used
as the basic distance. Other basic distance representation, such
as randomized binary trees, is also employed. The metric
learning has been widely used in many computer vision tasks,
such as image alignment [29], image classification [31], data
clustering, and face recognition. Nguyen et al. [29] introduced
metric learning in parameterized appearance model based
image alignment to overcome the local minima optimization
problem. The convex quadratic programming was used for
the metric learning. Eric Nowak et al. considered the domain
specific knowledge in the metric learning for accurate image
comparing [30]. This method rewarded the distinct knowledge
of the object in the metric learning in terms of a set of
randomized binary trees, which resulted in more accurate
object comparing. In the work of Nakul Verma et al. [31],

a hierarchy metric learning model rather than single metric
leaning was proposed for the image classification. A set of
Mahalanobis distance metrics related to the class taxonomy
were trained in a probabilistic nearest-neighbor classification
framework. By representing metric in a hierarchal way, accu-
rate distinct distance can be learned. Mensink et al. [32] used
metric learning to enhance the Large-scale image annotation.
The Mahalanobis distance based metric was learned for both
k-NN classification and nearest class mean classifier used in
the image annotation. To consider the real-time learning in the
large-scale datasets, a small fraction of the training data were
considered in each iteration by combing stochastic gradient
descend (SGD) algorithms and product quantization.

III. THE PROPOSED CO-SEGMENTATION METHOD

In the proposed method, we learn the adaptive features from
the initial segments of simple images. We first select simple
images from the image group by image complexity analysis.
Then, we use the figure-ground segmentation to extract the
initial segments from the simple images, and learn the adaptive
feature model based on these segments. The learned feature
model is finally used to achieve image co-segmentation.
The flowchart of the proposed co-segmentation method is
shown in Figure 1, which consists of four steps, i.e., image
complexity analysis, simple image segmentation, adaptive fea-
ture learning, and co-segmentation.

A. Image Complexity Analysis

In our method, the simple image selection is to simplify the
initial object extraction. We can observe that the objects can
be easily segmented from the images with simple background,
while it is usually difficult to extract the objects from the
complex backgrounds. Hence, we define a simple image as
the image with homogenous background. On the contrary,
an image with complicated background is treated as complex
image. In this paper, the image complexity is measured by
two cues, i.e., the over-segmentation based image complexity
analysis and the object detection based image complexity
analysis.

1) Over-Segmentation Based Image Complexity Analysis:
It can be observed from the realistic images that the homoge-
nous background contained in a simple image will keep
a single local region in the edge based hierarchical over-
segmentation, while a complicated background containing
many different appearances will be separated into many local
regions. We can see that the number of local regions of a
simple image is small and stable in the hierarchical over-
segmentation results. But a complex image will be assigned a
large number of local regions. Motivated by such observation,
we use the local regions number in the edge based hierarchical
over-segmentation to measure the image complexity. In the
measurement, the original image Ii , i = 1, · · · , Ni is first
over-segmented into local regions by the edge based over-
segmentation method with different scales. Then, the sum of
local region numbers over all scales is counted as the score of
the measurement. For Ii , the score of the over-segmentation
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Fig. 1. The flowchart of the proposed method.

based image complexity analysis C1
i is calculated by

C1
i =

K∑

k=1

ni
k (1)

where ni
k is the number of the local regions in the k-th scale

over-segmentation, K is the number of scales. It is seen that
simple image will have small C1

i . Otherwise, large values will
be assigned to the complex images. Based on C1

i , we sort the
image complexity in ascending order and obtain the sorted
order ρ1. Meanwhile, we record Ii by the position (ηi

1) of Ii

in ρ1 and obtain η1 = {η1
1, η

2
1, · · · , η

Ni
1 }.

We use the method in [33]1 to obtain the hierarchical
image over-segmentation. In the method [33], the oriented
watershed transform (OWT) is used to form the initial regions.
Then, the greedy graph-based region merging algorithm is
used to construct the hierarchy of the regions. The hierarchy
of the regions is finally treated as an Ultrametric Contour
Map (UCM). By setting different thresholds (the scale K ) on
the UCM, we can obtain a series of over segmentation results.
In this paper, we set K = 40, 50, 75, 100, 150 and 200 for
the hierarchical over-segmentation.

Fig. 2 shows the hierarchical over-segmentation results of
three images, where the simple image (the top image) and
the complex images (the middle and bottom images) are
displayed for comparison. The original images are shown in
the first column. The rest columns show the over-segmentation
results at different scales. The corresponding scales for the
columns are represented above each column. The number of
the local region for each over-segmentation result is shown

1http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/
resources.html

Fig. 2. The over segmentation results by the method in [33]. The first
column: Original images. The rest columns: the segmentation results under
different K . The C1 for three images are 50, 107 and 124 from first row to
last row, respectively.

below the over-segmentation result. It is seen that the sum
number of the local regions over all scales are 50, 107 and
124 from the top row to the bottom row, respectively. We can
see that the number of the simple image is obviously smaller
than the number of the complex image, which verifies the
validity of the over-segmentation based image complexity
analysis. The sorted images by C1 are shown in the top row of
Fig. 4, where the top 12 simple images of Bottles are shown.
We can see that simple images can be selected by the over-
segmentation based image complexity analysis.

2) Object Detection Based Image Complexity Analysis: It is
observed that the simple images usually contain single object,
while the complex images include many objects, especially the
objects in the backgrounds. By performing the object detection
method on the simple images, the detected windows will focus
on the object, and result in the compact detection. But for
complex images, the detections will locate on different objects,
and result in dispersive detection. To clearly illustrate this



MENG et al.: FEATURE ADAPTIVE CO-SEGMENTATION BY COMPLEXITY AWARENESS 4813

Fig. 3. The detection results of the simple images and the complex images
in [34]. (a)-(c): the detection results of simple images. (d)-(f): the detection
results of complex images.

observation, we show some detection results in Fig. 3, where
the results of the simple images and the complex images are
shown in Fig. 3 (a)-(c) and Fig. 3 (d)-(f), respectively. It can
be seen that compact windows are obtained from the simple
images, such as the apple logo with a simple blue background.
Meanwhile, the scatter windows are detected in the complex
images, such as ducks under the tree.

We use the scatter degree to evaluate the image complexi-
ties. We first perform a sliding window based object detection
method in each image Ii . The best Nw windows are selected
for the complexity measurement. Then, we represent each
window as a binary matrix Mi , i = 1, · · · , Nw , where the size
of the matrix is same to the size of the image, and the pixels
within the window have value one and zero for the pixels
outside the window. Next, we compute M by summing up
all binary matrixes, i.e., M = ∑Nw

k=1 Mk , 0 ≤ M( j, l) ≤ Nw .
The complexity of the image Ii is then measured by

C2
i =

∑
( j,l) π(M( j, l), Tw)

∑
( j,l) π(M( j, l), 1)

−
∑

( j,l) π(M( j, l), 1)
∑

( j,l) π(M( j, l), 0)
(2)

where

π(a, b) =
{

1 i f a ≥ b
0 else

(3)

It can be seen that there are two terms included in (2). The first
term is to evaluate the scatter of the detection by measuring
the ratio of the overlapped regions to the whole detected
region. It prefers a large value when most overlapped regions
focus on an object. In order to avoid the influence of the
unsuccessful detections in the complex images, where most
of the backgrounds are detected and included in the windows,
we introduce the second term by measuring the ratio of the
area of the detection region to the whole image region. It is
seen that the unsuccessful detections will have low scores by
the second term. We sort C2

i in descending order and obtain the
sorted order ρ2. We also record each image Ii by the position
of the image ηi

2 in ρ2 and obtain η2 = {η1
2, η

2
2, · · · , η

Ni
2 }.

The method in [34]2 is used as the object detection. We set
Nw = 10 and Tw = 8 for all image groups. In Fig. 3, we also
display C2

i for each image. The values C2
i are shown below

each image. It is seen that the simple images have larger C2

2http://groups.inf.ed.ac.uk/calvin/objectness/

than the values of the complex images, which demonstrates
that the object detection based image complexity analysis can
describe the complexities of these images. The sorted images
based on the object detection based analysis method are shown
in the middle row of Fig. 4, which shows the successful
selection of the simple images by the object detection based
image complexity analysis.

3) Combination of Image Analysis Methods: We combine
the above two cues to obtain more accurate image ranking.
We believe that the image Ii tends to be a simple image when
the values of ηi

1 and ηi
2 are both small. Thus, we first represent

each image Ii by
ηi = ηi

1 + ηi
2 (4)

where ηi is the sum of the rankings measured by the two
complexity analysis cues. Then, the final sorted order is
obtained by sorting ηi in ascending order. The final sorted
images of Bottles are shown in the bottom row of Fig. 4.
Compared with the results in the top row and the middle row,
we can see the more accurate sorting by the combined method.

B. Object Extraction from Simple Image

Based on the image complexity analysis, we select the
top m simple images, and segment the initial segments
Q = {Q1, Q2, · · · , Qm} from these simple images using
figure-ground segmentation method. In this paper, we use the
saliency extraction based object segmentation method [35]3 to
obtain the initial segments.

IV. FEATURE LEARNING

After initial segment generation, we next learn the adaptive
features of the class. Here, we consider two requirements in the
learning. Firstly, some unsuccessful segments may be obtained
in the above initial object extraction step, which can interfere
the feature learning and result in the inaccurate feature model.
We need to avoid these interferences in the learning. Secondly,
the learned feature model must fit the initial segment data very
well.

A. Feature Model

In our method, the similarity between two initial segments
Qi and Q j is measured by a linear feature model, i.e., a linear
combination of the general region features. Assuming there
are n general features, such as the features of color, shape and
texture, we evaluate the similarity si j between two segments
Qi and Q j by

si j = ω1(1 − xi j
1 ) + ω2(1 − xi j

2 ) + · · · + ωn(1 − xi j
n ) (5)

where xi j
k = d( f i

k , f j
k ) is the distance between the k-th

features ( f i
k and f j

k ) of the segments Qi and Q j , f i
k denotes

the k-th general feature of Qi , ω1, · · · , ωn are the weighting
coefficients of the features. In our method, we use five features
such as color histogram, inner shape descriptor [36], SIFT
descriptor [37], [38], self-similarity descriptor [39] and pHOG
descriptor [40] as the general features. Chi-square distance is

3http://cg.cs.tsinghua.edu.cn/people/∼cmm/Saliency/Index.html
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Fig. 4. The ranking of images using the proposed method. The top row: the ranking by the over-segmentation based image complexity analysis. The middle
row: the ranking by the object detection based image complexity analysis. The bottom row: the final ranking by the proposed method.

used as the feature similarity evaluation. From (5), we can see
that xi j

k is calculated only by the k-th features, i.e., f i
k and f j

k .
The measurement of the feature distance is only performed by
the same feature types. Hence, the model is available although
the dimensions of different type of features are not equal to
each other.

Setting parameters θ = (ω1, ω2, · · · , ωn)T and

Xi = E −

⎛

⎜⎜⎜⎜⎝

xi1
1 xi1

2 · · · xi1
n

x i2
1 xi2

2 · · · xim
n

...
...

...
...

xim
1 xim

2 · · · xim
n

⎞

⎟⎟⎟⎟⎠
(6)

i = 1, · · ·, m, we obtain

S(X1, · · · , Xm, θ)

= (s11, · · · , s1m, s21, · · · , s2m , · · · sm1, · · · , smm)T

=

⎛

⎜⎜⎜⎝

X1
X2
...

Xm

⎞

⎟⎟⎟⎠ θ = Xθ (7)

where E is a matrix with all elements 1.
Assuming initial segments are accurately segmented from

the simple images, the distance between any pair of the
initial segments approximately equals to 0. Hence, the target
matrix S′ of S is a m2 × 1 vector with all elements one.
However, the feature self-similarities cannot provide useful
discriminative information to distinguish the useful features
from the other features. Furthermore, the feature learning
is based on the feature similarities. The self-similarities of
unsuccessful segmentation will interfere the feature learning
and result in inaccurate feature model. Hence, we do not
consider the self-similarities, and set the values corresponding
to the self-similarities to 0 in X and S′ such as the i -th row
in Xi and the ((i − 1)m + i)-th element in S′, i = 1, · · ·, m.
Then, the parameters θ of the feature model that best fits X
can be calculated by

arg min
θ

‖S−S′‖2
2+α·‖θ‖1 = arg min

θ
‖Xθ−S′‖2

2+α·‖θ‖1 (8)

where α is the scale factor. However, there may have unsuc-
cessful initial segments. Next, we learn the feature parameters
by considering these bad segments.

B. Parameters Learning

Our goal is to find the parameter θ of the feature model
that best fits the training data X and also discover the
confidences of the initial segments to discard the bad seg-
ments. We achieve our goal in the probability framework.
We set Xi as the observed data corresponding to the initial
segment Qi . The unknown segmentation confidences for the
initial segments are denoted by the unobserved latent variables
Z = {z1, z2, · · · , zm} where zi is the segmentation confidence
of the segment Qi . The complete data set is denoted by {X, Z}.
The goal is to find the maximum posteriori estimation of θ and
Z given X , which can be represented by

θ̂M AP = arg max
θ∈


p(θ |X) = arg max
θ∈


p(X |θ) · p(θ)

= arg max
θ∈


m∏

i=1

∫
p(Xi , zi |θ)dzi · p(θ) (9)

We solve the problem in (9) by the EM algorithm which
seeks to find the MAP iteratively applying the following
two steps: E-step and M-step. In E-step, we generate the
expectation Q(θ, θold) of the complete-data evaluated using
the observed data X and the current parameter θold , which is
represented as

Q(θ, θold)

=
m∑

i=1

∫
p(zi |Xi , θ

old) ln p(Xi , zi |θ)dzi + ln p(θ) (10)

In M-step, the parameter θnew is updated by maximizing
the expectation Q(θ, θold), which can be represented by

θnew = arg max
θ

Q(θ, θold) (11)

The E-step and M-step are iterated alternately until the conver-
gence of θ and Z . In what follows, we detail the calculation
of p(θ), p(zi |Xi , θ

old ), p(Xi , zi |θ), respectively.
1) The Distribution of p(θ): From (8), we can see that

the model is designed to be a sparse representation since
‖θ‖1 is minimized. A value of θ with small ‖θ‖1 refers to
large probability. Otherwise, a small probability will be given.
Hence, we set p(θ) as

p(θ) = 1

Nθ
exp−α‖θ‖1 (12)

where Nθ is the normalized constant.
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2) The Posterior Distribution of p(zi |Xi , θ
old ): Given the

observed data Xi of the segment Qi and feature model para-
meters θold , the similarities between Qi and other segments
τi = (τi (1), · · · , τi (m))T can be obtained by

τi = Xiθ
old (13)

Since the initial segments are obtained from the simple
images, most of the initial segments can be considered as
successful segments. It is seen that a successful segmentation
will be similar to most of the segments and have large
sum of the similarities, i.e., a large value of ‖Xiθ

old‖1.
Otherwise, unsuccessful segmentation refers to a small value
of ‖Xiθ

old‖1. We can see that p(zi |Xi , θ
old) is related to

‖Xiθ
old‖1, and we set p(zi |Xi , θ

old ) as

p(zi |Xi , θ
old) = N (

‖Xiθ
old‖1

N1
, 1) (14)

where N1 are the normalized constants. We set
N1 = maxi ‖Xiθ

old‖1, i = 1, · · · , m.
3) The Posterior Distribution of p(Xi , zi |θ): In our model,

we assume that θ independents to Z . Given a feature model
parameter θ , we can measure p(Xi , zi |θ) = p(zi )p(Xi |θ, zi )
by two terms, i.e., p(zi ) and p(Xi |θ, zi ).

a) p(Xi |zi , θ): In our model, we measure p(Xi |zi , θ) by
the fitness between the observed data corresponding to Xi and
zi and the target matrix related to zi and θ . A large p(Xi |zi , θ)
prefers a good fitness. Otherwise, a small p(Xi |zi , θ) will be
assigned.

Given zi , we train our model by only considering the good
segment Qi with large zi . Two data adjustments are used to
select the good segment. The first is to adjust the data Xi

according to Z . The j -th data row of Xi with large z j need
to be selected. Otherwise, the data row should be abandoned.
We achieve the adjustment by multiplying the values of k-th
row of Xi by zi , i.e.,

Xnew
i = �zi Xi (15)

and

�zi =

⎛

⎜⎜⎜⎝

min(z1, zi ) 0 · · · 0
0 min(z2, zi ) · · · 0
...

...
...

...
0 0 · · · min(zm , zi )

⎞

⎟⎟⎟⎠ (16)

where Xnew
i is the adjusted observed data for Qi . The value

min(zk, zi ) represents the confidence of a pair of segments
(Qk , Qi ). Here, these zk, k �= i are considered as fixed values
for Xi . It is seen that the confidence of a pair of segments Qk

and Qi is represented by the smaller confidence of zk and zi ,
since we believe that the value referring to any bad segment
should be abandoned. Hence, by multiplying min(zk, zi ), the
data in Xi corresponding to the successful segment pairs will
be retained, while the date of the unsuccessful segmentation
pairs tends to be zeros and to be abandoned.

We next adjust the target S′
i with respect to Z . The original

target vector is m × 1 vector S′
i = (1, 1, · · · , 0, · · · , 1)T with

only one zero element S′
i (i) = 0. Similar to observed data Xi ,

the target value corresponding to a pair of good segments need

to be retained and approximately equal to 1. For unsuccessful
segment pairs, the corresponding target value should be close
to 0. In our method, we adjust S′ by

S′′
i = �zi S′

i (17)

where S′′
i is the adjusted target vector. We can see that the

observed data of the successful segment pairs has the value
S′′

i (k) that is close to one. For the unsuccessful segment, S′′
i (k)

tends to be zero.
Based on Xnew

i and S′′, the fitness between Xi , θ and latent
variable zi is evaluated by

�i (Xnew
i , θ, zi ) = ‖Xnew

i θ−S′′
i ‖2

2 = ‖�zi Xiθ−�zi S′
i‖2

2 (18)

where �i (Xnew
i , θ, zi ) (use �i for short) is the loss func-

tion measuring the difference between the similarity matrix
�zi Xiθ and the target similarity matrix S′′

i . A good fitness
prefers small �i . Based on �i (Xnew

i , θ, zi ), we formulate
p(Xi |θ, zi ) as

p(Xi |θ, zi ) = 1

Nx
exp(−�i (Xnew

i , θ, zi )) (19)

and Nx is the normalized constant.
b) The distribution of p(zi ): Since the initial segments

are obtained from the simple images, we believe that most of
the initial segments are successfully segmented. Hence, zi ≈ 1
for most of segments. In our method, we set p(zi ) as

p(zi ) = 1

Nz
exp(−β|1 − zi |) (20)

with the normalized constant Nz .
c) The distribution of p(Xi , zi |θ): Based on the distri-

bution of p(Xi |θ, zi ) and p(zi ) above, p(Xi , zi |θ) can be
represented by

p(Xi , zi |θ) = 1

Nx Nz
exp(−�(Xnew

i , θ, zi ) − β|1 − zi |) (21)

4) The Minimization of the Expectation Q: By (14) and
(21), Q in(10) can be represented as

Q(θ, θold)

=
m∑

i=1

∫
p(zi |Xi , θ

old) ln p(Xi , zi |θ)dzi + ln p(θ)

=
m∑

i=1

[− ln(Nx Nz) −
∫

p(zi |Xi , θ
old )�i dzi (22)

−
∫

p(zi |Xi , θ
old)β(|1 − zi |)dzi ] − γ ‖θ‖1

where γ = α
Nθ

. The derivation of (22) can be found in the
appendix. It is seen from (22) that only

∫
p(zi |Xi , θ

old )�i dzi

and γ ‖θ‖1 are related to θ . Hence, maximizing Q in
M-step (11) with respect to θ changes to solve the following
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minimization problem, i.e.,

θnew

= arg max
θ

m∑

i=1

∫
−p(zi |Xi , θ

old )�i dzi − γ ‖θ‖1

= arg max
θ

m∑

i=1

∫
−p(zi |Xi , θ

old )‖�zi Xiθ − �zi S′
i‖2

2dzi

−γ ‖θ‖1

= arg max
θ

m∑

i=1

∫
−p(zi |Xi , θ

old )‖�zi (Xiθ − S′
i )‖2

2dzi

−γ ‖θ‖1

= arg max
θ

m∑

i=1

∫
−p(zi |Xi , θ

old )(Xiθ − S′
i )

T �T
zi
�zi

(Xiθ − S′
i )dzi − γ ‖θ‖1

= arg max
θ

m∑

i=1

−(Xiθ − S′
i )

T
∫

p(zi |Xi , θ
old )�T

zi
�zi dzi

(Xiθ − S′
i ) − γ ‖θ‖1

= arg max
θ

m∑

i=1

−(Xiθ − S′
i )

T �T
ui

�ui (Xiθ − S′
i ) − γ ‖θ‖1

= arg max
θ

−
m∑

i=1

‖�ui Xiθ − �ui S′
i )‖2

2 − γ ‖θ‖1

= arg min
θ

‖Xnewθ − S′′)‖2
2 + γ ‖θ‖1 (23)

where �T
ui

�ui = ∫
p(zi |Xi , θ

old)�T
zi
�zi dzi , Xnew =

((Xnew
u1 )T , · · · , (Xnew

um )T )T , and S′′ = ((S′′
u1)

T , · · · , (S′′
um)T )T

are the adjusted data of X and S′ based on �ui . It is seen that
the problem in (23) is a l1-Regularized Least Squares problem.
We use the method in [41]4 for the minimization.

5) Implementation: The E-step and M-step are iteratively
executed until the convergence. We can see from (23) that �zi

consists of m different matrixes over all zi . Hence, �ui can be
calculated by the sum of these piecewise matrixes combined
with cumulative distribution function of Gaussian distrib-
ution (by

∫
p(zi |Xi , θ

old )dzi ). For simplicity, we directly

use �zi , zi = ‖Xi θ
old ‖1

N1
to approximate �ui , i.e., Xnew =

((Xnew
1 )T , · · · , (Xnew

m )T )T , and S′′ = ((S′′
1 )T , · · · , (S′′

m)T )T

to reduce the computational cost. We set the iteration number
(the stop number is 50) as the EM stop condition. We set
m = 10 for the simple image selection. In (23), γ = 0.01.
Note that these parameters are fixed among different image
datasets. The algorithm of the proposed learning method is
shown in Algorithm 1.

C. Co-Segmentation

Based on the learned feature model, we use our previous
work in [26] to achieve the co-segmentation task. In the
method, the original images are segmented into over-lapping
local regions using object detection method, saliency detection
method and hierarchy over-segmentation method. Then, the
similarities between the local regions are represented by a

4http://www.stanford.edu/∼boyd/l1_ls/

Algorithm 1 The Algorithm for EM Based Feature Learning
Method

directed graph structure. The co-segmentation is formulated as
a shortest path searching problem and is solved by dynamic
programming.

Several improvements are used to achieve adaptive fea-
ture learning based co-segmentation. Firstly, in edge weight
calculation, we calculate the region term by the learned
feature model rather than the original features. Secondly, the
initial segments referring to large confidences are used as the
co-segmentation results. The co-segmentation result is then
treated as the only local region of the related image in the
process of the digraph construction.

V. EXPERIMENTAL RESULTS

In this section, we verify the proposed co-segmentation
method on many images groups. The subjective and objective
assessments of the segmentation results are given.

A. Co-Segmentation Results

1) Test Images Dataset: In the experiments, we collect
image groups from well-known image databases such as
MSRC database [42],5 ETHZ shape database [43],6 and
ICoseg database [15]7. We select 16 classes among the total
20 classes in MSRC dataset and the classes that have more
than 20 images in ICoseg dataset for the verification. The total
five classes in ETHZ shape database are all used. To com-
pletely verify our method, we use all images in each class.
We use the ground truth given by [15] and [42] for the ICoseg

5http://research.microsoft.com/en-us/um/people/antcrim/data_objrec/
msrc_objcategimagedatabase_v2.zip

6http://www.vision.ee.ethz.ch/∼calvin/ethz_shape_classes_v12.tgz
7http://chenlab.ece.cornell.edu/projects/touch-coseg/CMU_Cornell_iCoseg

_dataset.zip
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Fig. 5. The segmentation results of the proposed method. From top to bottom: the rows 1, 3, 5, 7 and 9 show the original images. The rows 2, 4, 6, 8 and
10 display the segmentation results.

and the MSRC database, respectively. For ETHZ shape dataset,
we obtain the ground truth by the contour based ground truth
in [43].

2) The Co-Segmentation Results: The co-segmentation
results of ten classes are shown in Fig. 5. For each image
class, six original images and the co-segmentation results are
presented. From Fig. 5, we can see that the original images
have many variations, such as color, shape and texture. It is
also seen that the proposed co-segmentation method success-
fully segments the common objects from these images. For
example, the ‘cats’ in Cats vary significantly. The proposed
co-segmentation method successfully segments these ‘cats’,
which benefits from the adaptive feature learning.

We also show the results of the feature learning method.
The confidences of the initial segments are shown in Fig. 6(a),
where the results of six classes are shown. For each class, the
original images are shown in the first row. These images are
selected by the proposed image complexity analysis method.
We can see that simple images can be selected by the proposed
method. The initial segments obtained by the unsupervised
segmentation method are shown in the second row. It is seen
that most of the objects can be successfully segmented from
the simple images. Meanwhile, there are a few unsuccessful
segments, such as the second image in Cheetah and the fifth
image in Mugs. The learned confidence of each initial segment
is shown below the image. It can be seen that the learned
confidences fit the human judgments. For example, in Mugs,
the fifth initial segment is the unsuccessful segmentation.
The learned confidence is small (0.0869). Meanwhile, for the
first segment which is a successful segmentation, the learned
confidence is close to one (0.9634).

Furthermore, the learned feature model corresponding to the
classes in Fig. 6(a) are shown in Fig. 6(b). Each feature model
is represented by a color-bar, where each color describes a gen-
eral feature. These colors represent the features of color, shape,
SIFT, Self-similarity and pHog from left to right, respectively.
The amplitude of each color represents the learned weight
coefficient of the corresponding feature. We can see that the
learned feature model can represent the similarities between
the objects. For example, the class Mugs contains similar
shape. The weight coefficient of the shape feature is large in
the learned model, which indicates that the shape feature plays
an important role in the foreground similarity measurement.
For the class Bear, the weight coefficient of color is large,
which fulfills the fact that the ‘bears’ contain similar colors.

B. Objective Evaluation

We evaluate the proposed co-segmentation method by the
error rate which is defined as the ratio of the number of
wrongly segmented pixels to the total number of pixels.
A small error rate refers to a successful segmentation.
The mean error rate over all images is used to evaluate
the performance of a class. The error rates of the proposed
co-segmentation method are shown in Table II. We can see
that the proposed co-segmentation method achieves low error
rates in most of the classes. It is also seen that there are
unsuccessful segments, such as Panda and Stonehenge. The
unsuccessful segments are caused by the fact that there are no
simple images in these classes. The complex images lead to
unsuccessful initial segments and further result in inaccurate
learning of the feature model.
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Fig. 6. (a): The confidences of initial segments. For each block, the first row shows the simple images obtained by complexity analysis. The second row shows
the initial segments obtained by method in [35]. The confidences obtained by the proposed learning method are shown under the images. (b): The learned
feature models corresponding to the classes in (a). The color in the model represents the features. They are color, shape, SIFT, Self-similarity and pHog from
left to right respectively.

In Table II, we also compare our method with the
existing co-segmentation methods such as the methods in
[14], [19] and [26]. Joulin et al. in [14] proposed a
co-segmentation model using the discriminative clustering
method and the spectral clustering method. In the experiment,
the source code given by the authors8 is used. To improve the
co-segmentation results, we adjust the parameter μ for each
class. Color feature (for ICoseg dataset and ETHZ dataset)
and SIFT feature (for MSRC dataset) suggested by the author
are employed. The superpixels are generated by the over-
segmentation method in [33] (by setting k = 100). The results
referring to the method in [14] are shown in the second
row of Table II. It is seen that the common objects are
successfully segmented from several classes, such as Liberty
and Airshows2. Meanwhile, there are unsuccessful segments,
such as Cheetah and Pandas. The unsuccessful segments are
caused by the fact that the classes contain different similar
features.

Kim et al. in [19] propose multiple class co-segmentation
method, which is achieved by the linear anisotropic diffusion
based segmentation method. Color feature is used. In the

8www.di.ens.fr/∼joulin

experiment, the code released by the author is used9. The intra-
image Gaussian weights and the number of segments (K )
are adjusted for accurate co-segmentation. The results by
the method in [19] are shown in the third row of Table II.
We can see that Kim’s method can successfully segment
common objects in several classes, such as Liverpool and
Goose. Meanwhile, unsuccessful segments are also achieved,
such as Dogs and Chairs. The unsuccessful segmentations are
caused by the fact that many classes contain other similar
features rather than color.

Meng et al. in [26] achieves common objects segmenta-
tion by graph theory. The co-segmentation is formulated as
the shortest path searching, and the shortest path is found
by dynamic programming. In the experiment, we adjust the
scaling parameter α for each classes to achieve accurate
co-segmentation. We use color feature for ICoseg dataset and
MSRC dataset and shape feature for ETHZ dataset. The results
by the method in [26] are shown in the fourth row of Table II.
We can see that the method in [26] can successfully extract
common objects from several images, such as Soccer and
Kite1. Meanwhile, there are unsuccessful segments, such as

9http://www.cs.cmu.edu/∼gunhee
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TABLE II

RESULTS COMPARISON BETWEEN THE PROPOSED CO-SEGMENTATION METHOD AND THE EXISTING METHODS IN TERMS OF ERROR RATE.

CLASSES IN ICoseg, MSRC AND ETHZ DATASETS ARE USED

Cats and Cheetah. These unsuccessful segments are mainly
caused by the fact that the given features cannot fully represent
the similarities between the common objects.

The comparison results show that the proposed
co-segmentation method achieves the lowest error rates
for most of the image pairs. For ICoseg dataset, the mean
error rates over all classes are 0.2484, 0.2065, 0.1397 and
0.1245 for the methods in [14], [19], [26] and the proposed
method, respectively. We can see that the proposed method
achieves the smallest error rate. It is also seen that the other
comparison methods achieve good performance in the ICoseg
dataset, since the common objects contain similar colors in
the ICoseg dataset. For MSRC dataset, the mean error rates
over all classes are 0.3560, 0.3145, 0.2720 and 0.2200 for
the methods in [14], [19], [26] and the proposed method,
respectively. It is seen that the error rates are obviously
decreased by the proposed method which is caused by the
adaptive learning of the feature model. For ETHZ dataset,
the mean error rates are 0.2093, 0.4470, 0.1216 and 0.1263
for the method in [14], [19], [26] and the proposed method,
respectively. We can see that the method in [26] achieves
the smallest error rate in this dataset. The reason is that
the shape feature can accurately represent common objects
similarity for the classes. By using the shape feature, the
method in [26] can achieve accurate co-segmentation. Note
that the differences between the method in [26] and the

proposed method are small (the difference is 0.0047). Hence,
the performance of the proposed method is comparable to
the method in [26] in ETHZ dataset. The error rates over all
classes are 0.2920, 0.2902, 0.1976 and 0.1684 for the methods
in [14], [19], [26] and the proposed method, respectively. It is
seen that the proposed method achieves the smallest error
rate, which demonstrates the effectiveness of the proposed
method.

To further verify our proposed method, we display the
results of the initial segment method [35] in Table II.
The method in [35] is to first detect the saliency regions
by global contrast and then perform grab-cuts to obtain the
salient regions. It focuses on the salient regions in each single
image instead of the common objects in multiple images.
From Table II, we can see that the method in [35] can obtain
successful object segmentation in some classes, such as Air1
and Planes. The reason is that the salient objects in these
classes are also the common objects. When the images contain
other multiple salient regions, these salient regions may be also
obtained by the method in [35], such as “Logos” and “Dogs”,
which results in unsuccessful segmentation. It is also seen from
Table II that the mean error rate (0.1684) of the proposed
method is smaller than the one (0.1918) in the method [35].

We also show the results of the proposed method by
selecting different number of simple images m on the three
datasets. We show the results in Fig. 7, where the results of the
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Fig. 7. The results of the proposed with different m. The three datasets
(ICoseg, MSRC and ETHZ) and seven m values (m = 4, 8, 12, 16, 20,
24 and 28) are shown.

three datasets (ICoseg, MSRC and ETHZ) and seven m values
(m = 4, 8, 12, 16, 20, 24 and 28) are displayed. We can see that
small error rates can be obtained when m ∈ [10, 22] for the
ICoseg and MSRC datasets. Meanwhile, the small and large
m can result in the increase of the error rates. The reason is
that a small m may not provide enough initial segments for the
accurate feature learning, while a large m can introduce more
segment noises to interfere the feature learning. Note that the
error rates of ETHZ dataset decrease along the considered m.
The reason is that the number of the images in the ETHZ
classes is large (about average 50 image per class), which
leads to a larger m to obtain the small error rates. In our
experiments, we set m = 10 by considering the small error
rate and the low computational cost of the learning.

VI. DISCUSSION

We first discuss the motivation of using simple images to
learn the feature model. It is known that the success of a learn-
ing scheme is directly associated with an appropriate input data
selection [44]. Inaccurate learning will be obtained when the
training samples contain many wrong samples. The proposed
method adaptively learns the useful features for accurate
co-segmentation. In the feature learning, the accurate learning
depends on the accuracy of the initial segments. Successful
segments can provide useful information to accurately learn
the feature model. On the contrary, unsuccessful segments
will interfere the feature learning and lead to inaccurate
feature model. Hence, it is required to accurately extract the
initial objects as much as possible. As we known, extracting
the objects from the simple image is much easier than the
complex image, which guarantees the requirement of our
feature learning. This property motivates us to use the image
analysis to select the simple images to achieve the initial
segmentation. For the complex images, we believe that the
feature learning will be difficult from the complex images
because many unsuccessful segments will be generated and
used in the feature learning. These incorrect training samples
will result in inaccurate learning of the feature model and lead
to unsuccessful co-segmentation.

We next discuss the generalization of the proposed model.
In order to guarantee the fairness of the comparison, all
parameters and the general features used in the feature learning
are fixed for different datasets in our experiments. Meanwhile,

the original feature pool contains much type of features, such
as the color, texture and shape. These features are usually
shared by most of the common objects in the realistic images.
Hence, the feature learning method can be generalized to
other datasets. We verify the generalization of the proposed
method on other different image datasets, such as Caltech-
UCSD Birds 200-2011 dataset, Stanford Dogs, and Oxford
Flowers 102. The segmentation results and the error rates
are shown in Fig. 8 and Table III, respectively. It is seen
that the proposed method can be successfully generalized to
these image classes. Furthermore, we verify the generalization
of the learned feature model in Caltech 101 datasets. In the
experiments, we use the feature model learned from MSRC or
ETHZ to implement the co-segmentation on the same class in
the Caltech 101 dataset. The segmentation results and error
rates are shown in Fig. 9 and Table III, respectively. The
results of Mugs and Aeroplanes are displayed. We can see
that the learned feature model also achieves successfully co-
segmentation on a new dataset. The reason is that the images
of a class tend to contain the same similar features in different
datasets. The feature model learned from a image group can
also be used to achieve co-segmentation in the other image
groups. The results of the methods in [14], [19] and [26]
are also proposed in Table III for comparison. It is seen that
the proposed method can also achieve the lowest error rates
on most of the classes shown in Table III, which demon-
strates that the proposed method can be generalized to other
datasets.

In our method, we use the method in [34] to detect the
windows, where the initial windows are generated by sliding
windows at many scales. Different sizes of windows are
generated and are uniformly distributed over the entire image.
In the detection, each initial window is first scored based
on four cues, such as saliency, color contrast, edge density
and superpixels straddling. The best top Nw windows are
then selected for the image complexity analysis based on the
scores. After windows selection, the overlap regions among the
selected windows are extracted using threshold Tw. We can see
that the choices of Nw and Tw mainly depend on the scores
of the windows instead of the window size.

In our method, we impose the sparsity constrain on the θ
as shown in (8). The existing sparsity constrains usually used
in the sparse representation, such as �1-norm [45], �2-norm
and elastic net formulation [46] can be used as the constrain.
In our model, �1-norm is selected based on its natural to
obtain both the shrinkage and the variable selection in the
regression [46]. Also, the �1-norm has been successfully used
in many computer vision tasks compared with l2-norm, such
as face recognition [47]. Moreover, compared with elastic net
formulation, �1-norm can sufficiently represent the sparsity
here, since we intend to select one or small number of features
to represent the foreground similarities.

It is seen from (5) that we use a linear model to learn the
adaptive feature. The reason is that linear model is simple
and can lead to the easy parameters estimation of the model.
The other and also the most important reason is that the
linear model is able to capture the foreground similarity
consistency. As our method is based on the assumption of
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Fig. 8. The results of the proposed method on the other datasets. (a): Caltech-UCSD Birds 200-2011 dataset. (b): Stanford Dogs dataset. (c): Oxford Flowers
102 dataset.

Fig. 9. The segmentation results by generalizing the learned model to the other image datasets. The classes Aeroplanes and Mugs in Caltech 101 dataset are
used. The feature models learned in MSRC datasets (Aeroplanes) and ETHZ shape datasets (Mugs) are used for the co-segmentation in the Caltech classes.

TABLE III

THE ERROR RATE ON THE OTHER DATASETS WITH THE SAME PARAMETERS, SUCH AS CALTECH-UCSD BIRDS 200-2011 DATASET (Black AND

Laysan), STANFORD DOGS (Maltese AND coonhound), OXFORD FLOWERS 102 (Petunia AND Barbeton) AND CALTECH 101 (Mugs AND Aeroplanes).

THE RESULTS OF THE METHODS IN [14], [19] AND [26] ARE ALSO PROPOSED FOR COMPARISON

the sparsity of the features, it is seen that selecting single
feature or linearly combing a few of features as used in
our linear model is enough to represent the sparsity of the
features. Note that non-linear feature selection methods, such
as kernel based support vector regression [48] and kernel
based logistic LASSO regression [49], can also be used in
our feature learning. Since the linear model is a specific case
of the no-linear model, the no-linear model may result in
better co-segmentation results. Meanwhile, it also leads to
more complex analytical and computational properties than
the linear model [50]. Hence, linear model is selected in
our method.

In our method, the successful feature learning depends
on the accuracy of the initial segmentation, as discussion
in Section VI. Successful initial segmentation will result in
accurate feature learning, while incorrect feature model can be
learned from the wrong initial segments. To achieve accurate
feature learning, we combine the image complexity evaluation
and the saliency based foreground extraction ( [35]). It is noted
that although it is still difficult to extract the saliency regions

from complex scenes, the object foregrounds can fortunately
be well extracted from the simple backgrounds by the saliency
detection method (such as [35]), which can help the initial
segmentation of the common objects.

In the feature learning, we introduce the segmentation
confidence to select the success of a segment for the feature
learning. The segments with large confidences are used to
learn the feature model. Furthermore, we directly use these
segments as the co-segmentation results of the corresponding
image for simplicity. Hence, some of these results in Fig. 6 are
shown as the final results in Fig. 5. Note that these segments
will not be cosegmented in the following co-segmentation.
For the selected images with small confidences in Fig. 6, they
are the bad initial segments and are not used in the feature
learning. Hence, we return these images to the rest image
group and perform the co-segmentation to obtain the accurate
object extraction.

The proposed method and the method in [26] all require
the similar features to generate the edge weights in the graph
construction. The indeed different is that we automatically
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learn the similar features, while the method in [26] manually
selects the feature for each class [26]. Compared with manual
selecting manner in [26], our model can easily handle more
features (5 features) and learn the best feature combinations
(by linear model), which results in the improvement of the
co-segmentation as shown in Table II. But the improvement is
not significant, since the manual selection can also select the
similar feature of each class. However, compares with [26],
our method is more reasonable due to the automatic feature
learning by the computer and the wide applications in realistic
computer vision tasks.

VII. CONCLUSION

In this paper, we proposed a new feature adaptive co-
segmentation model to segment common objects from multiple
images. We proposed a new image complexity analysis method
to rank the images and extract the objects from the simple
images by using unsupervised segmentation method. An accu-
rate feature model is learned from the objects by using an EM
algorithm combining l1-regularized least squares optimization.
The feature model is combined with the initial segmentation to
extract the common objects. The experiments demonstrate that
the error rate of the proposed method is lower than the existing
methods when the feature is unknown. In the future, we will
extend the proposed feature learning method for images with
high complexity and nonlinear model.

APPENDIX A

THE DERIVATIONS OF THE EQUATION (22)

Q =
m∑

i=1

∫
p(zi |Xi , θ

old ) ln p(Xi , zi |θ)dzi + ln p(θ)

=
m∑

i=1

[
∫

p(zi |Xi , θ
old )(− ln(Nx Nz) − �i − β|1 − zi |)dzi ]

− α

Nθ
‖θ‖1

=
m∑

i=1

[− ln(Nx Nz) −
∫

p(zi |Xi , θ
old )�i dzi

−
∫

p(zi |Xi , θ
old)β(|1 − zi |)dzi ] − α

Nθ
‖θ‖1 (24)
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