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Abstract—In this paper, we propose an unsupervised salient
object segmentation approach based on kernel density estimation
(KDE) and two-phase graph cut. A set of KDE models are first
constructed based on the pre-segmentation result of the input
image, and then for each pixel, a set of likelihoods to fit all KDE
models are calculated accordingly. The color saliency and spatial
saliency of each KDE model are then evaluated based on its
color distinctiveness and spatial distribution, and the pixel-wise
saliency map is generated by integrating likelihood measures of
pixels and saliency measures of KDE models. In the first phase of
salient object segmentation, the saliency map based graph cut is
exploited to obtain an initial segmentation result. In the second
phase, the segmentation is further refined based on an iterative
seed adjustment method, which efficiently utilizes the information
of minimum cut generated using the KDE model based graph cut,
and exploits a balancing weight update scheme for convergence
of segmentation refinement. Experimental results on a dataset
containing 1000 test images with ground truths demonstrate the
better segmentation performance of our approach.

Index Terms—Color saliency, graph cut, kernel density estima-
tion, saliency model, salient object segmentation, seed adjustment,
spatial saliency.

I. INTRODUCTION

S ALIENT object segmentation plays an important role in a
variety of applications including content-based image re-

trieval [1], object-based image/video adaptation [2], [3], scene
understanding [4], etc. A human observer can effortlessly iden-
tify salient objects even in a complex natural scene, but unsuper-
vised segmentation of salient objects from images is nontrivial
for a computer. In the last decade, many approaches have been

Manuscript received June 17, 2011; revised October 25, 2011 and January 15,
2012; accepted February 21, 2012. Date of publication March 08, 2012; date of
current version July 13, 2012. This work was supported by National Natural
Science Foundation of China under Grant No. 61171144 and No. 60602012,
Shanghai Natural Science Foundation (No. 11ZR1413000), Innovation Program
of Shanghai Municipal Education Commission (No. 12ZZ086), and the Key
(Key grant) Project of Chinese Ministry of Education (No. 212053). The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Prof. Charles D. (Chuck) Creusere.
Z. Liu, L. Shen, and Z. Zhang are with the School of Communication and

Information Engineering, Shanghai University, Shanghai, China, and also with
the Key Laboratory of Advanced Display and System Application (Shanghai
University), Ministry of Education, Shanghai, China (e-mail: liuzhisjtu@163.
com; jsslq@163.com; zhyzhang@staff.shu.edu.cn).
R. Shi and Y. Xue are with the School of Communication and Information

Engineering, Shanghai University, Shanghai, China (e-mail: dnasr@sohu.com;
mhtymhty@163.com).
K. N. Ngan is with the Department of Electronic Engineering, The Chi-

nese University of Hong Kong, ShaTin, N. T. Hong Kong, China (e-mail:
knngan@ee.cuhk.edu.hk).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMM.2012.2190385

proposed for salient object segmentation, but it still remains a
challenging problem up to now.
Salient objects in natural scenes generally stand out relative

to its surrounding regions in terms of some features, and draw
attention from a human observer. Therefore, the mechanism
of human visual attention is useful for devising a feasible
approach for unsupervised salient object segmentation. In
practice, most salient object segmentation approaches exploit
the so-called saliency map, which is generated using a saliency
model, to provide the position and scale information of salient
object as the useful segmentation cues. The quality of saliency
map is a key factor that affects the reliability of salient object
segmentation. In the following, we will first briefly introduce
some related saliency models used for salient object segmen-
tation (a recent comprehensive survey on saliency models for
a wide range of applications can be found in [5]), and then
review salient object segmentation approaches using different
schemes.
Based on a biologically-plausible visual attention architec-

ture [6] and feature integration theory [7], Itti et al. proposed a
well-known saliency model [8], which computes feature maps
of luminance, color and orientation using a center-surround
operator across different scales, and performs normalization
and summation to generate the saliency map. Salient regions
showing high local contrast with their surrounding regions can
be highlighted in the saliency map. Inspired by the centre-sur-
round scheme used in Itti’s saliency model, image saliency
is measured using more features such as local contrast of
color, texture and shape feature [9], multi-scale contrast [10],
ordinal signatures of edge and color orientation histograms
[11], oriented subband decomposition-based energy [12], and
local regression kernel-based self-resemblance [13]. The key
factor for realizing the center-surround scheme is the selection
of surrounding region, which is selected as the whole image
region in the frequency-tuned saliency model [14], and the
maximum symmetric region in [15]. In [16], based on a region
segmentation result, the center-surround differences on five
features including color contrast, size, symmetry, orientation
and eccentricity of regions are fully exploited to generate a
region-level saliency map.
Except for the aforementioned center-surround scheme,

there are various formulations for measuring saliency. In
the frequency domain, both the spectral residual of Fourier
transform [17] and the phase spectrum of quaternion Fourier
transform [18] are exploited to evaluate the saliency at block
level. Based on information theory, the rarity represented using
self-information of local image features [19], and the average
transferring information represented using entropy rate [20]
are exploited to measure saliency. Conditional random field
(CRF) learning is exploited in [21] to integrate a set of feature
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maps including multi-scale contrast, center-surround histogram
and color spatial distribution into the saliency map. Recently,
different statistical models and the global information of the
image are efficiently utilized to improve the quality of the
saliency map. In [22], the global color distribution represented
using Gaussian mixture models (GMM), and both local and
global orientation distribution are fully utilized to selectively
generate the saliency map. In [23], the kernel density estima-
tion (KDE)-based nonparametric model is constructed for each
segmented region, and color and spatial saliency measures of
KDE models are evaluated and exploited to measure the pixel’s
saliency. In [24], the histogram-based global contrast and the
spatially weighted regional contrast are exploited to generate
the saliency map at pixel-level and region-level, respectively.
It should be noted that some of the aforementioned saliency

models generate spotlight saliency maps [8]–[13], [17]–[20],
which generally can only highlight the center portion and/or
the high-contrast boundaries of salient objects, but cannot sup-
press the high-contrast background regions. The other saliency
models [14]–[16], [21]–[24] can highlight the salient regions
more completely and suppress the background regions more
sufficiently, and generally improve the quality of the generated
saliency maps. Undoubtedly, the latter class of saliency maps is
more suitable for salient object segmentation. If simple thresh-
olding operations are performed on the saliency maps, the ob-
tained salient objects using the latter class of saliency maps are
generally better. In [25] and [26], convex hull analysis is per-
formed on several binary object masks, which are generated by
thresholding different feature-based saliency maps, to select the
one with the most compact shape to represent the salient ob-
ject. However, the thresholding operation is only sufficient for
those clear saliency maps, in which the complete salient object
is highlighted with well-defined boundaries and background re-
gions are totally suppressed, to accurately extract the salient ob-
ject. Therefore, more elaborate salient object segmentation ap-
proaches are needed for improving the segmentation quality and
enhancing the applicability on various images.
Region segmentation can be used as a post-processing step

to improve the accuracy of the segmented salient object bound-
aries. In [10], [12], and [14], region saliency is computed as the
average saliency of all pixels in each segmented region, and is
exploited to select some high-saliency regions to constitute the
salient object. On the other hand, region segmentation can also
be used as a pre-processing step for salient object segmenta-
tion. In [1], the contrasts of color and texture features are ex-
ploited to evaluate the saliency measures of segmented regions,
and region combinations are iteratively popped out as salient
objects by maximizing a global saliency index. However, the
quality of salient object segmented using these approaches is
highly dependent on the region segmentation result, and is se-
verely degraded due to the problem of under-segmentation or
over-segmentation.
Diverse methods from statistics, pattern recognition, and

graph theory have been introduced into different salient object
segmentation approaches. In [27], the attention GMM for
salient object and background GMM are constructed on the
image clustering result, and pixels are classified under the
Bayesian framework to obtain the salient object. In [28], the

saliency map generated using Itti’s model is exploited to select
seed pixels for salient objects, and a Markov random field that
integrates the features of color, texture and edge is utilized to
grow salient object regions. In [29], a support vector machine is
trained to select regions for clustering into the salient object. In
[30], random walks on the weighted graph are exploited to se-
lect salient nodes and background nodes, and semi-supervised
learning is further used to determine the labels of unlabelled
nodes. However, its main limitation is that the generated binary
mask of salient object only has block-level accuracy.
Generally, any problem of object segmentation can be for-

mulated as a pixel-level binary labeling problem, which can be
solved under the framework of graph cut [31]. In the context
of salient object segmentation, the key issue is how to use the
information of saliency map for graph cut. In [32] and [33], by
performing binarization on the saliency map using the manu-
ally set threshold, the seeds for salient object/background are
selected inside/outside a region with a pre-defined distance to
the image center, and are exploited to define the data term for
the graph. Differently, for constructing the graph in [15], the
saliency map generated based on the maximum symmetric sur-
rounding region is directly exploited to define the data term,
and the smoothness term is defined to promote the label coher-
ence among neighboring pixels with similar colors. However,
as stated in [15], the quality of the segmented salient object
strongly depends on the quality of the saliency map. Therefore,
it is not desirable to obtain an acceptable quality of salient object
segmentation if the salient object is not sufficiently highlighted
or the background is not effectively suppressed in the saliency
map. In [34], the saliency map is generated using the statis-
tical formulation on the feature distribution contrast between
the center and surrounding window. For constructing the graph,
both saliency map and color similarity are used to define the
two complementary data terms, and CRF learning is exploited
to determine the weights for the two data terms and the smooth-
ness term. However, the pre-determined scales for surrounding
window, the manually set prior probability in statistical formu-
lation, and the weights pre-determined using CRF learning may
be not appropriate for some complicated images to achieve an
acceptable segmentation quality.
Although various approaches mentioned above have been

proposed for salient object segmentation, the segmentation
quality achieved on complicated images, including cluttered
background, highly textured regions, and low contrast between
object and background, is severely degraded in most cases.
In order to enhance the segmentation reliability especially for
complicated images and improve the overall segmentation
quality, we propose an efficient salient object segmentation
approach using a KDE-based saliency model and a two-phase
graph cut framework. Our approach, which is extended from
our previous work [23], provides more appropriate saliency
maps for salient object segmentation, and achieves a higher
segmentation quality for a wide range of images using the
proposed two-phase graph cut framework. Compared with
previous salient object segmentation approaches, the main
contributions of our approach are threefold. First, we propose
to evaluate color saliency and spatial saliency of a set of KDE
models, which are constructed based on the pre-segmentation
result of the input image, and then generate the pixel-wise
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Fig. 1. Illustration of KDE modeling and saliency evaluation. (a) Original image. (b) Pre-segmentation result. (c) Normalized color saliency values of KDE
models. (d) Normalized spatial saliency values of KDE models.

saliency map based on saliency measures of KDE models.
Second, we propose a two-phase graph cut framework, in
which the saliency map based graph cut in the first phase
is generally sufficient to obtain a visually acceptable salient
object segmentation result for some saliency maps, and the
segmentation refinement based on the iterative seed adjust-
ment in the second phase is exploited to further refine the
unsatisfactory initial segmentation result. Third, we efficiently
utilize the information of minimum cut obtained using the
KDE model based graph cut for reasonable adjustments of
object/background seeds, and ensure the convergence of seg-
mentation refinements with the introduction of the balancing
weight update scheme for graph cut. Experimental results show
that our approach achieves considerable improvements on
segmentation quality compared to two state-of-the-art salient
object segmentation approaches [15], [34].
The rest of this paper is organized as follows. Section II de-

scribes the KDE-based saliency model, and Section III details
the two-phase graph cut framework for salient object segmenta-
tion. Extensive experimental results are presented in Section IV,
and conclusions are given in Section V.

II. KDE-BASED SALIENCY MODEL

For the purpose of efficient salient object segmentation, we
expect to obtain a suitable saliency map that can effectively
highlight salient object regions with well-defined boundaries
and suppress background regions. In this section, we present a
KDE-based saliency model, which first constructs KDE models
based on pre-segmentation result, then evaluates the saliency
measures of KDE models, and finally generates the pixel-wise
saliency maps. The following three subsections will detail the
KDE-based saliency model.

A. KDE Modeling Based on Pre-Segmentation

The original color image in the RGB color space is first trans-
formed into the Luv color space, and then partitioned into a set
of regions using the mean shift algorithm [35], in which the pa-
rameters of spatial bandwidth and range bandwidth are set to
their default values. We only adjust the parameter of minimum
allowable region area to control the degree between over-seg-
mentation and under-segmentation, and set it to , where
and denotes the image width and height, respectively. We

set to 0.03 for the following examples in Sections II and III,
and we will show experimental analysis on how the parameter
affects the quality of saliency maps and salient object segmen-
tation results in Section IV. For the example image in Fig. 1(a),
the pre-segmentation result using the mean shift algorithm is

shown in Fig. 1(b), in which each segmented region is repre-
sented using its mean color.
The pixels in each segmented region are

then used as the samples to construct a KDE-based nonpara-
metric model . As a nonparametric technique,
which estimates the density function directly from the sample
data without any assumptions about the underlying distribution,
KDE can asymptotically converge to any density function [36].
This property makes KDE quite general and applicable to mod-
eling the pixel samples from either homogenous region or tex-
tured region segmented using the mean shift algorithm. Specif-
ically, for each pixel , its likelihood to fit each KDE model
is defined as

(1)

where denotes the number of pixels in , i.e., the number of
samples in . denotes the color feature of the pixel , and
denotes the color feature of any pixel in . Specifically,

Gaussian distribution is selected as the kernel function for
each KDE model due to its continuity, differentiability and
locality properties [36], and is defined as

(2)

where is the bandwidth matrix, and is the color
difference vector between and .
Since the chrominance channels are decoupled from the lumi-

nance channel in the Luv color space, we assume that the band-
width for each channel has no correlation with the other two
channels. Therefore, is simplified as a 3-D diagonal matrix,
and (2) is simplified as

(3)

where denotes the bandwidth of the th channel in , and
denotes the th component of the color difference vector

. The bandwidth for each channel is independently estimated
using the fast binned kernel density estimator [37]. It can be seen
from (1)–(3) that the likelihood measure is higher when
the color differences between the pixel and the sample pixels
in the KDE model are smaller, and vice versa.

B. Saliency Evaluation of KDE Models

The saliency of each KDE model is then evaluated based on
its color distinctiveness and spatial distribution, and the color
saliency and spatial saliency of KDE models are calculated in
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turn. The color distance vector and the spatial distance vector
between each pixel and each KDEmodel are, respectively,
defined as

(4)

(5)

where is the mean color of sample pixels in is
the spatial position of the pixel , and is defined as the
weighted spatial center position of the color distribution repre-
sented by

(6)

where denotes the set of all pixels in the image. Using (6),
the contribution of the pixels that show similar colors with the
sample pixels in is substantially considered over the whole
image.
Since the colors of salient objects are distinctive from back-

ground colors in natural images, the pixels belonging to salient
objects have larger distances to other pixels in the color domain.
Therefore, if the colors covered by a KDE model are far
away from the colors covered by other KDE models in the color
domain, the colors covered by are such distinctive colors.
Between any pair of KDE models, and , the color dis-
tance with symmetrical form is defined in a probabilistic manner
as follows:

(7)

where the former (resp. latter) term in the square bracket rep-
resents the color distance to (resp. ) normalized over all
pixels by considering the pixels’ likelihoods to fit (resp. ).
The average of such two normalized color distances is then used
to reasonably measure the color distance between and .
The color saliency for is then defined as the sum of

weighted color distances between and all the other KDE
models

(8)

where the weight is the ratio of the number of samples in
to the total number of samples in all KDE models, and

. The normalized color saliency values of all KDE
models calculated for the example image
in Fig. 1(a) are shown in Fig. 1(c), in which each KDE model
is represented using a bar with its mean color. We can see from
Fig. 1(c) that the two KDE models (the 11th and 12th bar) have
higher color saliency values, and they cover the colors of salient

object (the flower). On the other hand, the color saliency values
of other KDE models that cover background colors are effi-
ciently suppressed in Fig. 1(c).
Based on the center-surround scheme, which has been in-

tensively explored using different representations in previous
saliency models, salient objects are generally surrounded by
background regions, and thus in the spatial domain, the colors of
background regions usually have a wider distribution over the
whole image than the colors of salient objects. In the following,
the spatial distribution of KDE models is used to distinguish
those models covering the colors of salient objects from other
models. Similarly as (7), the spatial distance between any pair
of KDE models, and , is defined as

(9)

Based on the above analysis, KDE models that mainly cover
the colors of salient objects have shorter spatial distances to
other KDE models. The spatial saliency for is thus defined
as the reciprocal of the sum of weighted spatial distances be-
tween and all KDE models

(10)

For the example image in Fig. 1(a), the normalized spatial
saliency values for all KDE models are
shown in Fig. 1(d), in which the two KDE models (the 11th
and 12th bar) also have higher spatial saliency values, while the
spatial saliency values of other KDE models are suppressed.
By comparing (8) with (10), it should be noted that the intra-

distance is included in (10), while (8) only includes
inter-distances . The reason for such a dif-
ference is described as follows. The intra-distance ac-
tually represents the spatial distribution of colors covered in ,
and thus it is considered for the evaluation of spatial saliency.
However, the intra-distance actually reflects the color
homogeneity of the samples in . For the evaluation of color
saliency, it is not reasonable to introduce such a bias that one
KDE model covering more colors is more salient than another
KDEmodel covering fewer colors, and thus is excluded
from the color saliency evaluation for KDE models.

C. Saliency Map Generation

Based on the color saliency values and spatial saliency values
of KDE models, the pixel-wise color saliency map and spa-
tial saliency map are generated as follows:

(11)

(12)
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Fig. 2. Examples of saliency map generation. (a) Color saliency map. (b) Spa-
tial saliency map. (c) Final saliency map.

Fig. 3. More examples of saliency map generation. (a) Original images.
(b) Color saliency maps. (c) Spatial saliency maps. (d) Final saliency maps.

Equation (11)–(12) indicates that the color/spatial saliency
for each pixel is the sum of color/spatial saliency values of
all KDE models weighted by its likelihoods to fit these KDE
models. In this sense, the global color information of the image
is actually incorporated into the saliency calculation for each
local pixel. Based on Fig. 1(c) and (d), the pixel-wise color
saliency map and spatial saliency map are, respectively, shown
in Fig. 2(a) and (b), which are normalized into the range of [0,
255] for display. By integrating color saliency map with spatial
saliency map, the final saliency map is generated as follows:

(13)

For the example image in Fig. 1(a), its final saliency map is
shown in Fig. 2(c), which is also normalized into the range of [0,
255] for display. Compared with Fig. 2(a) and (b), we can see
that the salient object is completely highlighted, and background
regions are more effectively suppressed in Fig. 2(c). Based on
our observations on the saliency maps generated for a variety
of images, we have found that color saliency map and spatial
saliency map can complement each other to generate a more
reasonable final saliencymap, which can highlight salient object
regions and suppress background regions more effectively (see
more examples shown in Fig. 3).

III. TWO-PHASE GRAPH CUT

The saliency map generated using our KDE-based saliency
model can provide useful cues for segmentation of salient
objects, and a simple thresholding operation seems enough
to extract the salient objects with acceptable quality for some
saliency maps, in which salient object regions are sufficiently

highlighted and background regions are completely suppressed.
Nonetheless, for segmentation reliability on a wide range of
saliency maps and a higher segmentation quality, we propose
a two-phase graph cut-based salient object segmentation ap-
proach. In the first phase, the saliency map based graph cut
is exploited to efficiently obtain the initial salient object seg-
mentation result. In the second phase, the object/background
seeds are initialized using the initial salient object segmenta-
tion result, and the iterative seed adjustment-based graph cut
is exploited to refine the salient object segmentation result
using the gradually improved object/background seeds. Some
basic terminologies of graph cut will be briefly reviewed in
Section III-A. The first phase and the second phase of the
proposed approach will be detailed in Section III-B and III-C,
respectively.

A. Basic Terminologies of Graph Cut

Salient object segmentation is explicitly formulated as a bi-
nary pixel labeling problem, which can be solved under the
framework of graph cut [31]. The input image is represented
using an undirected graph , where is a set of nodes
and is a set of undirected edges connecting these nodes. Each
node in the graph represents each pixel in the image, and there
are two additional terminals in the graph, i.e., object terminal
and background terminal . There are two types of edges in

the graph. Specifically, edges between neighboring nodes are
called -links where stands for “neighbor”, and edges con-
necting nodes to terminals are called -links where stands for
“terminal”. All graph edges including -links and -links are as-
signed with some nonnegative costs. Formally, let denotes
the set of all pairs of neighboring pixels in , which denotes
the set of all pixels in the image. The two sets, and , are rep-
resented as follows:

(14)

(15)

where all -links are included in , and and de-
note the -link connecting with and , respectively.
A cut is defined as a subset of edges , and nodes in the

graph are separated by this subset of edges. Graph cut seeks to
minimize a cost function with the following form to determine
the optimal label configuration:

(16)

where is a binary vector denoting any possible label
configuration of all pixels, can be assigned with the label
“bkg” for background or “obj” for salient object, and the Kro-
necker delta is defined as

(17)

is the data term based on the label is
the smoothness term for neighboring pixels , and is the
weight for balancing the two terms. The data term pe-
nalizes the inconsistency between a label and the observed
data such as saliency value and color feature of a pixel , and
the smoothness term penalizes the label discontinuity



1280 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 14, NO. 4, AUGUST 2012

of neighboring pixels . The minimum cut of the graph can
be efficiently solved using the max-flow algorithm [38], and the
corresponding binary labels of pixels are used to represent the
salient object segmentation result.

B. Saliency Map Based Graph Cut

We observe that a considerable portion of saliency maps gen-
erated using our saliency model can generally highlight salient
object regions and suppress background regions. Therefore, we
first exploit the saliency map to define the cost function of graph
cut, and obtain the initial segmentation result of salient objects.
Based on the saliency map , for each pixel , the confidence
belonging to the salient object is defined as

(18)

where is the average saliency value of . In (18), the former
term is used as the basic measure to estimate for each pixel
the confidence belonging to the salient object, i.e., a pixel with
a higher saliency value is more likely to belong to the salient ob-
ject. The latter term in (18) is introduced as an adjusting factor
to reasonably enlarge the differences of the evaluated confi-
dences between high-saliency pixels and low-saliency pixels in
the saliency map with lower contrast. Based on the saliency map
, for each pixel , the confidence belonging to the background

is similarly defined as

(19)

Based on (18) and (19), the data term for each pixel is de-
fined as

(20)

where the subscript may denote “obj” or “bkg”, and its com-
plement denotes “bkg” or “obj”, accordingly.
Based on the general observation that neighboring pixels with

similar saliency values are highly likely to belong to the same
salient object or background, the smoothness term for any pair
of neighboring pixels is defined as

(21)

where the coefficient is defined as

(22)

The coefficient is actually used as a local balancing
weight on the basis of neighboring pixels, to replace the role
of the global balancing weight . Specifically, is set to 1 in
the first phase. With the introduction of , the smoothness
term is further increased for those neighboring pixels that both
have higher/lower saliency values, and thus the label smooth-
ness, i.e., the probability that the neighboring pixels should be
assigned with the same label, is increased reasonably.
The graph is constructed based on the above defined data

term and smoothness term, and then graph cut is performed

Fig. 4. Initial salient object segmentation results obtained using the saliency
map based graph cut. The corresponding saliency maps are shown in Figs. 2(c)
and 3(d).

to obtain the initial salient object segmentation result. For
the saliency map in Fig. 2(c) and the three saliency maps
in Fig. 3(d), the initial salient object segmentation results
are shown in Fig. 4(a)–(d). It can be seen from Fig. 4 that the
saliency map based graph cut can accurately segment the salient
objects using the saliency maps with high contrast between
salient objects and background regions, and can overcome the
negative effect of some falsely highlighted/suppressed small
background/object regions in the saliency map [see the bottom
row in Fig. 3(d), and Fig. 4(d)].
However, for some images shown in Fig. 5(a), whose saliency

maps in Fig. 5(b) show relatively low contrast between parts
of the salient objects and the surrounding background regions,
some redundant background regions are erroneously contained
in the initial salient object segmentation results as shown in
Fig. 5(c). We can see from Fig. 5 that only saliency map in-
formation may be insufficient to obtain an acceptable segmen-
tation of salient objects. Therefore, in Section III-C, we will
present the iterative seed adjustment-based segmentation refine-
ment method to refine such unsatisfactory initial segmentation
results.

C. Segmentation Refinement Based on Iterative Seed
Adjustment

In the second phase, we refine the segmentation result based
on the iterative seed adjustment, which efficiently utilizes the
information of minimum cut with the introduction of balancing
weight update scheme. The proposed segmentation refinement
method consists of the following four steps.

Step 1) The object/background pixels in the initial salient
object segmentation result is used as the object/background
seeds, which will be updated in the following iterative
seed adjustment process. TwoKDEmodels are constructed
based on object seeds and background seeds, respectively.
For clarity of description, we use a trimap to represent the
object seeds (white), background seeds (black), and un-
certain pixels (gray), which are denoted by the three sets

, and , respectively (Section III-C1).
Step 2) For each pixel, the confidence belonging to the ob-
ject/background is calculated using the KDE model con-
structed based on object/background seeds. The graph is
then constructed by redefining the cost terms and the bal-
ancing weight, and graph cut is performed to obtain the
minimum cut (Section III-C1).
Step 3) Based on the analysis of minimum cut, the ob-
ject/background seeds are adjusted and used to update the
trimap (Section III-C2), and the balancing weight is also
adaptively updated (Section III-C3).
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Fig. 5. Illustration of salient object segmentation process for the image postbox and parachute jump. (a) Original images. (b) Saliency maps. (c) Initial salient
object segmentation results. (d)–(g) Updated trimaps representing object seeds (white), background seeds (black), and unknown pixels (gray) during the iterative
seed adjustment process (from the 1st to the 4th iteration). (h) Final salient object segmentation results.

Step 4) The information of minimum cut is exploited
to determine whether the iteration process from Step 2)
to 3) should be repeated or not. If the iteration process
is terminated, the graph is constructed based on the fi-
nally refined object/background seeds, and graph cut is
performed to obtain the final salient object segmentation
result (Section III-C4).

1) KDE Model Based Graph Cut: Using the seed pixels in
and as samples, two KDE models are constructed for

salient object and background, respectively. For each pixel ,
the confidence belonging to the object/background is redefined
as

(23)

where the subscript “ ” may denote “obj” or “bkg”, and
may denote for the set of object/background seeds.
Gaussian distribution is used as the kernel function , and the
estimation of its bandwidth matrix is the same as that described
in Section II-A.
Based on the redefined confidence belonging to the object/

background, the data term is recalculated using (20). The
smoothness term is redefined as

(24)

The global balancing weight is used in the graph cut during
the segmentation refinement process, and is iteratively up-
dated based on the minimum cut obtained in each iteration (see
Section III-C3). The initialization of is based on the analysis
of the histogram with 256 bins generated for the saliency map
. Let denote the number of bins whose values are greater

than the average value of all bins, and denote the standard
deviation of . The balancing weight is initialized as

(25)

where the superscript “1” denotes the initialization of used
in the first iteration. For saliency maps that sufficiently high-
light salient objects and suppress background regions, a smaller
value of and a larger value of result in a smaller value
of , which puts relatively more confidence on the data term

for salient object segmentation. Therefore, the initial balancing
weight is set adaptive to the quality of saliency map. The con-
stant coefficient is set to 128, the possibly achieved maximum
value of , for a reasonable range of the balancing weight.
The graph is constructed based on the updated data term,

smoothness term and the balancing weight, and graph cut is per-
formed to obtain the minimum cut, which is exploited to adjust
the object/background seeds in the following subsection.
2) Seed Adjustment: The objective of seed adjustment

process is to gradually refine object/background seeds by
utilizing the information of minimum cut for a reliable seg-
mentation of salient objects. The seed adjustment process in
one iteration is detailed as follows. In the th iteration, the
possibly inaccurate background/object seeds are removed from

and considered as temporary object/background
seeds, which are added into the temporary seed set
for further determination

(26)

where denotes the minimum cut obtained using the KDE
model based graph cut, in which the KDE model for object/
background is constructed using the seed pixels in in
the th iteration. The rationality for (26) is explained as follows.
For a background/object seed pixel in the th iteration, if
its -link with the background/object terminal is cut off,
it is likely that such a pixel is not a reliable background/object
seed, and thus is removed from and correspondingly
added into .
These temporary seeds in are used to update each

pixel’s confidence belonging to the object/background using
(23). Then the graph is re-constructed by only updating the
data terms, and graph cut is performed again to obtain a new
minimum cut . The object/background seeds for the next
iteration are determined based on the adjustment rules listed
in Table I. In the case of , the rationality for the
listed rules is explained as follows. If its -link with the object
terminal is not cut off, it further enhances the possibility that

should be used as an object seed and added into in
the next iteration. However, if its -link with the object terminal
is cut off, it indicates that is not a reliable seed and
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TABLE I
RULES FOR SEED ADJUSTMENT

should be put into the set in the next iteration. The similar
explanation is also applicable to the case of .
Starting from the inaccurate initial segmentation results

shown in Fig. 5(c), the seed adjustment processes are shown in
Fig. 5(d)–(g). There are a total of 4 iterations for the two exam-
ples. We can observe from the trimaps in Fig. 5(d)–(g) that the
object/background seeds become more and more suitable for
salient object segmentation during the seed adjustment process.
3) Balancing Weight Update: The balancing weight used

in each iteration is an important factor to control seed adjust-
ments. Based on the balancing weight in the th iteration, the
balancing weight used in the next iteration is adaptively updated
as follows:

(27)

where denotes the number of -links belonging to the
minimum cut . The coefficient is used to maintain a
suitable range of the balancing weight, and is set to 10 by the
experiments.
The form of (27) ensures that the balancing weight mono-

tonically decreases during the whole iteration process. Using
the max-flow algorithm for graph cut, a larger value of the bal-
ancing weight indicates that the capacity of -links is easily sat-
urated and likely to be cut off, while a smaller value indicates
that the -links are unlikely to be cut off. Therefore, will
decrease during the whole iteration process, and it can be seen
from (26) that the temporary object/background seeds selected
in each iteration will become fewer and fewer. In this sense, the
object/background seeds will becomemore andmore stable. Be-
sides, it can be seen from (27) that the degressive trend of the
balancing weight is further enhanced due to the decrease of
during the whole iteration process. Therefore, theoretically, the
balancing weight update scheme can guarantee the convergence
of the iterative seed adjustment process. Experimentally, we can
observe from Fig. 5(d)–(g) that inaccurate seeds are gradually
corrected as either accurate seeds or unknown pixels during sev-
eral iterations. More examples of iterative seed adjustment are
shown in Fig. 11.
4) Final Segmentation: By combining the seed adjustment

with the adaptive update of balancing weight, we can obtain
more reliable object/background seeds. We exploit the value of

to determine whether the iteration process should be ter-
minated or not. If the initial segmentation result obtained using
saliency map based graph cut is already acceptable, the refine-
ment only slightly improves the segmentation quality by seed

adjustments and not absolutely necessary. Therefore, we termi-
nate the seed adjustment process after the 1st iteration if
is less than 7.5% of the total number of -links, a relatively
larger value, which is effective to timely terminate the iteration
process starting from an initial segmentation result with accept-
able quality such as the examples in Fig. 4. The subsequent it-
erations are exploited to gradually refine the seeds for a reliable
segmentation, and thus a rather smaller value, 0.5% of the total
number of -links, is used as the termination condition.
For the two examples in Fig. 5, their seed adjustment pro-

cesses are terminated after 4 iterations, and the finally refined
object/background seeds and the uncertain pixels are repre-
sented using the trimaps in Fig. 5(g). Based on the finally
refined object/background seeds, the KDE model based graph
cut is performed to obtain the binary labeling result, which is
used as the final salient object segmentation result. As shown
in Fig. 5(h), we can see that single or multiple salient objects
can be accurately extracted with well-defined boundaries. A
visual comparison between Fig. 5(h) and (c) obviously demon-
strates the effectiveness of the iterative seed adjustment-based
segmentation refinement method.

IV. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed salient object
segmentation approach on an image test set [14] with manually
segmented ground truths for salient objects in 1000 images
(publicly available at http://ivrg.epfl.ch/supplementary_mate-
rial/RK_CVPR09/GroundTruth/binarymasks.zip), which are
selected from MSRA SOD (Microsoft Research Asia Salient
Object Database, Image Set B) containing 5000 high-quality
images [21]. First, we generate the saliency maps for all
test images using the proposed KDE-based saliency model,
and compare the saliency detection performance with five
state-of-the-art saliency models, i.e., the most well-known Itti’s
model [8] and four recent saliency models including Zhang’s
model [19], Cheng’s model [24], Achanta’s model [15], and
Rahtu’s model [34] in Section IV-A. Then, we perform salient
object segmentation using the proposed two-phase graph cut
approach, and compare the segmentation performance with two
state-of-the-art salient object segmentation approaches, i.e.,
Achanta’s approach [15] and Rahtu’s approach [34]. Subjective
evaluation and objective evaluation of salient object segmen-
tation are presented in Section IV-B and IV-C, respectively.
Besides, we analyze how the performance of pre-segmentation
using mean shift directly affects the quality of saliency maps
in Section IV-A and finally affects the quality of salient object
segmentation results in Section IV-C. Finally, we discuss some
possible extensions based on our approach in Section IV-D.

A. Performance Evaluation of Saliency Models

For performance evaluation of different saliency models,
we use the implementation code of Saliency Toolbox [39] for
Itti’s saliency model, and the authors’ implementation codes
for the other four saliency models. For comparison with other
saliency models, the only parameter in our saliency model
is set to 0.03. Using the six saliency models, we generate six
classes of saliency maps for all 1000 test images. A subjec-
tive comparison of saliency maps generated using different
saliency models is shown in Fig. 6. Compared with the other
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Fig. 6. Subjective comparison of saliency maps generated using different
saliency models. (a) Original images. (b) Ground truths. Saliency maps gener-
ated using (c) Itti’s model, (d) Zhang’s model, (e) Cheng’s model, (f) Achanta’s
model, (g) Rahtu’s model, and (h) our model, respectively.

five saliency models, we can see from Fig. 6 that salient object
regions can be more completely highlighted with well-defined
boundaries, and background regions can be more effectively
suppressed in the saliency maps generated using our saliency
model. Therefore, we can anticipate that our saliency maps are
generally more applicable to salient object segmentation.
In order to objectively evaluate the saliency detection perfor-

mance of the six saliency models, we adopt the two commonly
used objective measures, i.e., precision and recall, and plot the
precision-recall curves for comparison. For each test image, the
binary ground truth is denoted by , and the binary salient ob-
ject mask generated by thresholding the saliency map is denoted
by . In both and , each object pixel is labeled as “1” and
each background pixel is labeled as “0”, the precision and recall
are defined as

precision (28)

recall (29)

All the six classes of saliency maps are first normalized into
the same range of [0, 255]. Then we use a series of fixed integer
thresholds from 0 to 255, and obtain 256 binary salient object
masks for each saliency map. At each threshold, the precision/
recall measures for all 1000 saliency maps are averaged, and
as shown in Fig. 7, the precision-recall curve of each saliency
model plots the 256 average precision measures against the 256
average recall measures. The precision-recall curves present a
robust comparison of saliency detection performance. These
curves indicate how well different classes of saliency models
can highlight salient objects and suppress background regions.
We can see from Fig. 7 that the precision-recall curve of our
saliency model is the highest one, and thus we can conclude that

Fig. 7. Precision-recall curves of the six saliency models.

Fig. 8. Precision-recall curves generated using our color saliency maps, spatial
saliency maps, and final saliency maps.

the quality of our saliencymaps is generally better than the other
five classes of saliency maps for salient object segmentation.
As stated in Section II-C, in our saliency model, the comple-

mentary effect of color saliency map and spatial saliency map
contributes to the generation of more reasonable final saliency
map. Similarly as Fig. 7, three precision-recall curves generated
using our color saliency maps, spatial saliency maps, and final
saliency maps are shown in Fig. 8. We can observe from Fig. 8
that the precision-recall curve generated using our final saliency
maps is obviously higher than the other two precision-recall
curves. Therefore, Fig. 8 objectively demonstrates the comple-
mentary effect of color saliency map and spatial saliency map.
We further evaluate how the pre-segmentation performance

of the mean shift algorithm affects the quality of our saliency
maps. We adjust the only parameter to control the degree
between over-segmentation and under-segmentation in the
pre-segmentation result, and generate a set of saliency maps
with different values of . Similarly as Fig. 7, five preci-
sion-recall curves generated by setting from 0.008 (the finest
pre-segmentation) to 0.07 (the coarsest pre-segmentation) are
shown in Fig. 9. We can see from Fig. 9 that the quality of our
saliency maps generally degrades with the increase of , but the
three precision-recall curves with not greater than 0.03 are
very close. Therefore, we can conclude that the performance of
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Fig. 9. Precision-recall curves generated using our saliency model with dif-
ferent values of .

our saliency model is consistently robust to with a value not
greater than 0.03.

B. Subjective Evaluation of Salient Object Segmentation

In order to evaluate the performance of salient object segmen-
tation, we perform experiments on all 1000 test images using
the proposed two-phase graph cut approach, and compare the
segmentation performance with Achanta’s approach [15] and
Rahtu’s approach [34].We use our saliencymaps generated with

in our two-phase graph cut approach for the following
comparisons with the other two approaches in Section IV-B.
The results for some test images are shown in Fig. 10, in

which both saliency maps and salient object segmentation re-
sults generated using the three approaches are shown for sub-
jective comparison. For images with obvious contrast between
the salient object and a simple background (the 1st–4th rows
in Fig. 10), the salient objects are highlighted with well-de-
fined boundaries in the three classes of saliency maps, and the
salient objects segmented using the three approaches are visu-
ally acceptable. However, for images with relatively low con-
trast between some parts of salient objects and the surrounding
background regions (the 5th–7th rows in Fig. 10), the quality
of both Achanta’s and Rahtu’s saliency maps is obviously de-
graded. For images with more complex backgrounds, which
may contain strong structures and texture patterns (the 8th–10th
rows in Fig. 10), the center-surround scheme exploited in both
Achanta’s and Rahtu’s saliency model cannot effectively sup-
press such background regions with higher local contrast.
In contrast, our saliency model efficiently utilizes the global

information of the image to evaluate the saliency measures of
KDE models, and thus can efficiently suppress background
regions in such images (the 5th–10th rows in Fig. 10). There-
fore, the salient object segmentation results obtained using
Achanta’s approach and Rahtu’s approach contain irrelevant
background regions and/or incomplete salient objects, while
our approach can completely segment the salient objects with
well-defined boundaries due to the relatively high-quality
saliency maps. From the observation of the two-phase graph
cut performed on these images in Fig. 10, we have found that
the initial segmentation results obtained in the first phase are

Fig. 10. Subjective comparison of some salient object segmentation re-
sults. (a) Original images. (b) Ground truths. (c) Achanta’s saliency maps.
(d) Achanta’s segmentation results. (e) Rahtu’s saliency maps. (f) Rahtu’s
segmentation results. (g) Our saliency maps. (h) Our segmentation results.

sufficiently accurate, and the seed adjustment processes in the
second phase terminate after the first iteration. Therefore, we
can conclude that a high-quality saliency map can generally
guarantee a quick convergence of segmentation refinement.
More segmentation results on some complicated images

with various scenes are shown in Fig. 11, which illustrates the
iterative seed adjustment process of our approach, and also
shows the saliency maps and segmentation results obtained
using Achanta’s approach and Rahtu’s approach for subjec-
tive comparison. Compared with Fig. 10, the quality of our
saliency maps in Fig. 11 is lower, i.e., the complex background
regions cannot be efficiently suppressed and/or some parts of
complex salient objects cannot be efficiently highlighted, and
our initial segmentation results are not visually satisfactory.
We can observe from the former four examples in Fig. 11 that
the iterative seed adjustment method can gradually refine the
object/background seeds, and guarantees the acceptable quality
of final segmentation results. For these examples, we can see
that Achanta’s segmentation results are highly dependent on
the saliency maps, and thus the relatively low-quality saliency
maps significantly degrade the quality of segmentation results.
Rahtu’s approach also cannot efficiently overcome the insuf-
ficiency of their saliency maps, and some background regions
that are highlighted in their saliency maps appear in their
segmentation results. Therefore, with relatively low-quality
saliency maps, it is not reliable that the one-shot graph cut
used in Achanta’s approach and Rahtu’s approach guarantees
acceptable segmentation results, while our two-phase graph cut
approach can exploit the iterative seed adjustment process to
obtain possibly refined segmentation results.
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Fig. 11. Subjective comparison of salient object segmentation using Achanta’s approach, Rahtu’s approach, and our approach with the illustration of the iterative
seed adjustment process. The symbol N/A (Not Available) in the top two examples and the bottom three examples indicates that the iterative seed adjustment
process performs less than 4 iterations. For these five examples, the total number of iteration is 3, 3, 1, 1, and 3, respectively, from top to bottom.
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Fig. 12. Salient object segmentation results on some complicated im-
ages. (a) Original images. (b) Ground truths. (c) Achanta’s saliency maps.
(d) Achanta’s segmentation results. (e) Rahtu’s saliency maps. (f) Rahtu’s
segmentation results. (g) Our saliency maps. (h) Our segmentation results.

However, we also find that the proposed iterative seed adjust-
ment method cannot achieve substantial segmentation refine-
ments for some complicated images as shown in the latter three
examples of Fig. 11. In such images, some background regions
are visually salient against the main part of background (the
5th example), salient objects contain multiple heterogeneous re-
gions (the 6th example), or there are very similar colors between
some parts of the salient object and background regions (the
last example). For such images, the main part of background is
sufficiently suppressed, but such visually salient background re-
gions are also highlighted and/or some regions of salient objects
are also effectively suppressed in our saliency maps. It is un-
feasible for the iterative seed adjustment method to effectively
correct unsuitable object/background seeds in such cases, and
thus the refinements on our initial segmentation results are not
noticeable.
Fig. 12 shows more results on such complicated images with

visually salient background regions (the 1st and 2nd examples),
heterogeneous salient object (the 3rd and 4th examples), and
similar colors between salient object and background regions
(the 5th and 6th examples). We can see from Fig. 12 that our
approach achieves a better segmentation quality for the 1st, 3rd,
and 5th examples, while Rahtu’s approach outperforms our ap-
proach on the other three examples.We can further observe from
Fig. 12 that the contrast between salient object and background
in the saliency map is the major factor to affect the segmenta-
tion quality for the three approaches.
Salient object segmentation results on more test images are

shown in Fig. 13 for subjective comparison. We can see from
Fig. 13 that the quality of Achanta’s segmentation results is
generally lower than Rahtu’s results and our results. Compared
with Rahtu’s approach, our approach can generally segment
the more complete salient objects with well-defined bound-
aries. The segmentation results shown in Fig. 13 as well as
Figs. 10–12 demonstrate that our approach achieves an overall
better subjective segmentation quality than Achanta’s approach
and Rahtu’s approach. The examples shown in the bottom
part of Fig. 13 further demonstrate that it is generally difficult
to obtain satisfactory salient object segmentation results on

Fig. 13. Subjective comparison of more salient object segmentation results.
From top to bottom: original images, ground truths, Achanta’s segmentation
results, Rahtu’s segmentation results, and our segmentation results.

such complicated images as the examples in Fig. 12. For an
unsupervised salient object segmentation approach, it is gen-
erally unreliable to compose many heterogeneous regions into
a complete salient object, remove visually salient background
regions, and separate salient object regions from background
regions with very similar colors, since it is likely that such
object (resp. background) regions show very low contrast with
the correctly suppressed background regions (resp. highlighted
object regions) in the saliency maps.

C. Objective Evaluation of Salient Object Segmentation

We further objectively evaluate the quality of salient object
segmentation results using the measures of precision and recall,
and an overall performance measure, F-measure, which is de-
fined as

precision recall
precision recall

(30)

where the coefficient is set to 0.5 in our experiments. The
precision and recall are calculated for each image using (28)
and (29), in which denotes the binary salient object mask
obtained using each approach. The three measures are aver-
aged over all 1000 test images to evaluate the segmentation
performance of each approach. Table II shows the three mea-
sures achieved using Achanta’s approach, Rahtu’s approach,
and our approach with different pre-segmentation results, which
are generated by adjusting the parameter in the mean shift al-
gorithm. As already shown in Fig. 9, the overall quality of our
saliency maps is similar when is not greater than 0.03. We
can see from Table II that our approach achieves a consistently
higher segmentation performance in terms of F-measure when
is not greater than 0.03, and outperforms Achanta’s approach

and Rahtu’s approach on all the three measures when is not
greater than 0.05. Therefore, Table II not only demonstrates the
overall better segmentation performance of our approach, but
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TABLE II
OBJECTIVE COMPARISON ON SEGMENTATION PERFORMANCE OF ACHANTA’S APPROACH, RAHTU’S

APPROACH, AND OUR APPROACH WITH DIFFERENT PRE-SEGMENTATION RESULTS

Fig. 14. Salient object segmentation results obtained with different pre-segmentation results.

also shows its overall robustness to different pre-segmentation
results.
Based on the observation of our segmentation results, we

have found that for most images, the quality of our segmenta-
tion results is not sensitive to different pre-segmentation results
obtained with different values of . Fig. 14 shows a series of
pre-segmentation results, saliency maps, and salient object seg-
mentation results by setting to 0.015, 0.03, and 0.05, respec-
tively. For most images such as the former four examples in
Fig. 14, the saliency maps obtained with different pre-segmen-
tation results have a similarly high quality, and thus the different
salient object segmentation results are visually acceptable. Al-
though a suitable pre-segmentation result, in which salient ob-
ject boundaries are well preserved with a reasonable number of
segmented regions cannot always be obtained using the mean
shift algorithm, especially for in these examples,
our saliency maps show the robustness to and guarantee the
quality of segmentation results. However, we also notice that for
some complicated images such as the latter three examples in
Fig. 14, the under-segmentation of a heterogeneous salient ob-
ject (the 5th example) and the over-segmentation of the complex
background (the last two examples) in the pre-segmentation re-
sults affect the quality of saliency maps, and finally degrade the
quality of segmentation results. The best segmentation quality is
achieved by setting to 0.015 for the 5th example, 0.03 for the

6th example, and 0.05 for the last example, respectively. There-
fore, it is possible to improve the segmentation quality by tuning
for some complicated images. In summary, we can conclude

from Table II and Fig. 14 that the pre-segmentation performance
of the mean shift algorithm does not affect the overall robust-
ness of our approach, but may affect the segmentation quality
of some complicated images.
However, we notice that for some complicated images, it is

nontrivial to preservewell-defined boundaries between different
regions in the pre-segmentation results by parameter tuning of
the mean shift algorithm. In order to improve the pre-segmen-
tation quality, which partly affects the quality of saliency map
and salient object segmentation result, we will try to develop
a more suitable image segmentation algorithm to replace the
mean shift algorithm in our future work. Specifically, some su-
perpixel segmentation algorithm [40] can be first used to ob-
tain an over-segmentation result with uniform-sized regions,
and then a scale-aware region merging algorithm using statis-
tical models will be designed to obtain a moderate segmentation
result.

D. Discussion

As demonstrated by previous two subsections, our approach
shows an overall better segmentation performance both sub-
jectively and objectively. It should be noted that unsupervised
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Fig. 15. Some preliminary results of human object segmentation.

salient object segmentation approaches are designed to be gen-
eral for a variety of images, and it is likely that any unsuper-
vised approach cannot segment the user-desired salient objects
from some complicated images. Our approach can serve as a
base for developing an efficient interactive object segmentation
tool, which can permit the user to flexibly refine the unsatis-
fied salient object segmentation results for some complicated
images using simple user interactions. Besides, the proposed
two-phase graph cut framework can serve as a general segmen-
tation tool for different applications. For example, we are cur-
rently developing a frontal human object segmentation system
for virtual video conference, and some preliminary results of
human object segmentation are shown in Fig. 15. We incor-
porate the specific high-level knowledge about human object,
i.e., a template-based human model, with our two-phase graph
cut framework, and can efficiently segment single or multiple
human objects.

V. CONCLUSION

In this paper, we have presented an efficient unsupervised
salient object segmentation approach using KDE and the two-
phase graph cut. The proposed saliency model utilizes the color
saliency and spatial saliency of KDE models to generate a more
appropriate saliency map for salient object segmentation. The
proposed two-phase graph cut exploits the saliency map in the
first phase, and combines the KDE model based graph cut, it-
erative seed adjustment based on the analysis of minimum cut,
and the balancing weight update scheme in the second phase,
to enhance the segmentation reliability for complicated images
and improve the overall segmentation quality. Experimental re-
sults on a collection of 1000 test images demonstrate the better
segmentation performance of our approach. We believe that the
proposed salient object segmentation approach can be incorpo-
rated into object-based image retrieval and image adaptation
systems to improve their performances. In our future work, we
will extend the current framework to segment salient objects
from videos by developing a spatiotemporal saliency model and
incorporating an efficient object tracking method.
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