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Abstract—A full-wave electromagnetic model for analyzing
waveguide discontinuities of arbitrarily shaped piecewise planar
boundaries is presented. The analysis is facilitated by using the
finite plane-wave series expansion of circular cylindrical modal
functions. Since electromagnetic fields on each of the planar
boundary surfaces of the inhomogeneous region are expressed
in terms of plane-wave modal functions, the complete solution
is carried out analytically without any numerical integration.
To verify the formulation, a number of practical waveguide
components are analyzed. The calculated results are compared
with other full-wave electromagnetic models. Excellent agreement
is obtained for all the cases.

Index Terms—Full-wave modal analysis, inhomgeneous wave-
guide junctions.

I. INTRODUCTION

ELECTROMAGNETIC modeling of waveguide discon-
tinuities with irregular shapes has drawn the attention

of many researchers for decades [1] due to its wide appli-
cation in microwave systems. The analysis methods for the
waveguide discontinuities can be classified in two categories:
the numerical or the analytical. The numerical ones, such as
the finite-element method (FEM) [2], [3], boundary-element
method (BEM) [4], or other hybrid techniques [5], in spite
of their great advantages of flexibility and versatility, suffer
from the errors of discretization and rounding off. On the
other hand, the existing analytical methods are only applicable
to the few regularly shaped waveguide discontinuities whose
eigenmode functions can be solved analytically, such as wave-
guide T-junctions [6]. Although the segmentation method has
been used in conjunction with modal analysis to solve some
of the irregularly shaped discontinuities, e.g., mitered-plane
waveguide bend [7], since it still requires eigenmode functions
for each divided subregion, very few nonregularly shaped
waveguide discontinuities can take advantage of it. A power
series solution of Maxwell’s equations was also proposed to
solve waveguide discontinuities of arbitrary shape; however,
it has been found that some spurious solutions may occur in
its eigen equation for higher order modes [8].
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A general full-wave analysis of arbitrarily shaped wave-
guide discontinuities was reported by Reiter and Arndt in
[9] using the boundary contour mode-matching method. The
method can solve - and -plane waveguide discontinuities
of virtually any shape. The significance of the work is that it
formulates, for the first time, the problem with general cylin-
drical modal functions, representing the wave motion in all the
directions. Unfortunately, since the Bessel–Fourier functions
are involved in the field expression on the boundary of the
inhomogeneous region, a numerical integration is needed to
carry out the Galerkin solution procedure. The errors caused
by the numerical integration may deteriorate the accuracy of
the full-wave formulation.

In this paper, the general full-wave analysis is facilitated
by using the finite plane-wave series expansion of the cylin-
drical Bessel–Fourier modal functions [10]. This work can be
considered as an analytical extension of Reiter and Arndt’s
work [9]. The cylindrical modal functions are converted to a
finite series of simple exponential plane-wave functions. Since
electromagnetic fields on the piecewise planar boundary of
the inhomogeneous region are expressed in terms of plane-
wave modal functions, the complete solution is carried out
analytically without any numerical integration. This feature
retains the accuracy and efficiency of the full-wave solution.

This paper begins with the modal field expressions of the
inhomogeneous region in terms of plane-wave functions. The
detailed field-matching procedure is described. A number of
practical waveguide components are analyzed both by the pro-
posed analytical formulation and other numerical techniques.
Excellent agreement is obtained for all the cases. It is worth
mentioning that the original finite plane-wave series expansion
has been extended to the cases where the radial argument
of the cylindrical Bessel function is purely imaginary. This
extension permits the use of all the possible modes existing in
an inhomogeneous region of arbitrary shape.

II. THEORETICAL FORMULATIONS

A waveguide discontinuity of arbitrary shape can be mod-
eled by an inhomogeneous cavity region having arbitrarily
located planar sidewalls and waveguide apertures or ports

, and with planar top and bottom walls located at and
, respectively, as illustrated in Fig. 1. In this particular

case, there are six sidewalls and three rectangular apertures,
i.e., a rectangular waveguide three-port junction. As particular
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Fig. 1. An inhomogeneous waveguide discontinuity with planar side-
walls fed by rectangular waveguides through planar aperturesAk, with
s = 1; 2; � � � ; 6; k = 1; 2; 3:

(a) (b) (c)

(d) (e)

Fig. 2. Various inhomogeneous waveguide discontinuities. (a)E-plane
T-junction. (b)E-plane mitered bend. (c)E-plane Y-junction. (d)H-plane
mitered bend. (e)H-plane T-junction. The inhomogeneous region is
cross-hatched.

examples of such inhomogeneous regions, Fig. 2 shows-
and -plane T-junctions, an -plane Y-junction, and - and

-plane mitered bends. In each case, the inhomogeneous
region is cross-hatched.

Modal Functions in the Inhomogeneous Region

To represent the electromagnetic fields in the various inho-
mogeneous regions, short circuited at and , but with
quite arbitrary sidewalls and apertures, we can use the- and
-type Bessel–Fourier modal potential functions, which have

been introduced in [9]

(1)

(2)

From (1) and (2), one obtains, respectively, the modal- and
- fields

(3)

(4)

The origin of the circular cylindrical coordinate is located
centrally within the inhomogeneous region (see Fig. 1). In both
cases, we have

(5)

where is the wavenumber in the inhomogeneous
region. Using (1) in (3), we obtain the-type electric modal
field

(6)

and the associated magnetic field is obtained from Maxwell’s
equations

(7)

Similar field expressions can be obtained for the-type
modes using (2) and (4).

However, because of the planar nature of the boundary
walls and boundary apertures of the inhomogeneous
region, circular cylindrical coordinates are not convenient for
the task of analytically satisfying the electromagnetic boundary
conditions on and This problem is addressed in the
following section.

Plane-Wave Expansion of the Circular Cylindrical Mode
Functions in the Inhomogeneous Region

We wish to convert the electric- and magnetic-mode func-
tions, as given by (6) and (7), from circular cylindrical
coordinates to rectangular coordinates. In
the analysis of scattering at large circular to small rectangular
waveguide junctions [10], the authors have shown that the-
type modal -field, as given in circular cylindrical coordinates
by (6), can be represented by a finite series of plane wave in
rectangular coordinates

(8)
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Fig. 3. The coordinate system of the conducting wallWs and waveguide
port with apertureAk:

where

and

As described in [10], the number of terms in the plane-
wave series is determined by the inequality of

where relaxation constant is a small integer and is
the inhomogeneous region’s maximum radial dimension (see
Fig. 1).

Now, for field matching on the planar side wall , we
define a coordinate system whose origin (see
Fig. 3) is at With perpendicular
to , which is at an angle with respect to the -axis, we
find that

(9)

(10)

and

(11)

By taking the scalar product of (8) with and using
(9)–(11), we obtain

(12)

with

and (13)

Consequently, the n-pth-type tangential -field on the
inhomogeneous-region boundary wall is obtained by set-
ting in (12). Using the same transformation technique,
we can obtain the and components of all the - and

-field mode functions of - and -type. For the sake of
completeness, we list them below.

For TE modes,

(14a)

(14b)

(14c)

and for TM modes,

(14d)

(14e)

(14f)

where and are
constant.

It should be mentioned that these plane-wave expression are
valid even if is pure imaginary, which
occurs when
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The Fields-Matching Procedure

The inhomogeneous waveguide region can be considered as
a section of homogeneous waveguide in the-direction. The
total electric and magnetic fields are simply the superposition
of the TE and TM modes with respect to the-direction.
Specifically, the total tangential fields on the boundarycan
be expressed as

and

(15)

Here, the are the weighting coefficients of each of the
mode fields in the inhomogeneous region, which are defined
in (14); is a combined mode index

In each of the waveguide apertures ,
the tangential electromagnetic fields must be continuous. We
represent the rectangular waveguide fields by the traditional
set of TE and TM modes. For example, at waveguide port
with rectangular coordinates ,

(16a)

(16b)

where is the combined-mode index, is the
wave impedance of the corresponding mode, andand are
the mode coefficients for the incident and reflected waves,
respectively. The mode functions in rectangular waveguide
can be expressed as

(17a)

(17b)

where are the local coordinates of theth wave-
guide.

The boundary conditions on the waveguide ports and con-
ducting walls need to be imposed to solve the waveguide
discontinuity problem

elsewhere
(18a)

(18b)

By taking outer products of (18a) on both sides with

and , respectively, to enforce the electric-field continuity
condition, we have (19), shown at the bottom of this page,
where the outer products are defined as

(20a)

where is the total transverse surface of the
inhomogeneous region with apertures and sidewalls.

Moreover,

(20b)
Next, by taking the outer products of (18b) on both sides

with and , respectively, to enforce the magnetic-field
continuity condition, we have, due to mode orthogonality in
the waveguides,

...

(21)

By eliminating

(19)
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from (19) and (21), we obtain

...
...

... (22)

or

(23)

where is the identity matrix, and are the col-
umn vectors of incident and reflected rectangular waveguide
amplitudes, and is the general scattering matrix of the
waveguide discontinuity. It is worth mentioning that because
of the use of the plane-wave series expansion on the planar
matching surfaces of and , all the matrix elements in the
above equations can be analytically evaluated. No numerical
integration is required in the formulation. This feature is very
important to retain the accuracy and efficiency of the analysis.
Although, in the analysis, the height of each waveguide ports is
the same as that of the inhomogeneous region, the formulation
does not lose any generality since the field variation of the
higher order modes in the height direction has been taken into
account.

III. N UMERICAL RESULTS

A general full-wave analysis computer-aided design (CAD)
program has been developed based on the theory of the
finite plane-wave series expansion. In all the calculations, the
relaxation constant is set to seven. It is worth mentioning
that to improve the numerical condition of the matrix ,
an appropriate normalization process needs to be applied in
calculating (20a). To validate the theory, the five waveguide
components, shown in Fig. 2, have been analyzed using the
plane-wave expansion theory and are compared with other
analytical and numerical methods. A very good agreement can
be observed for all the cases.

WR75 Waveguide T-junctions of the- and -plane types
are considered first. The waveguide dimensions are

and The T-junctions are also analyzed
by conventional mode-matching techniques using rectangular
waveguide eigenmode expansion [6]. Figs. 4 and 5 show the
magnitudes of some typical scattering parameters of the-
and -plane waveguide T-junctions, respectively, calculated
by the formulation using plane-wave expansion and by the
conventional mode-matching technique. It can be seen that
the correlation is excellent.

A WR75 -plane Y-junction has been taken as another
example for the three-port waveguide component. The mag-
nitudes of scattering parameters calculated by the plane-wave
expansion theory and those by the full-wave BEM [4] are
superposed in Fig. 6. Excellent agreement can be observed.

Fig. 4. The magnitude of scattering parameters or a WR75 waveguide
E-plane T-junction witha = 0:75 in, b1 = b2 = b3 = 0:375 in.

Fig. 5. The magnitude of scattering parameters for the WR75 waveguide
H-plane T-junction witha1 = a2 = a3 = 0:75 in, b = 0:375 in.

Fig. 6. The magnitude of scattering parameters of a WR75 waveguide
E-plane Y-junction witha = 0:75 in, b1 = b2 = b3 = 0:375 in.

Although the waveguide mitered bend is one of the most
commonly used waveguide components, there is no analytical
CAD model available so far for its practical design. For
software verification, both - and -plane WR75 mitered
bends were designed using the formulation of plane-wave
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Fig. 7. The magnitude of scattering parameters of a WR75H-plane mitered
bend witha = 0:75 in, b1 = b2 = 0:375 in, andW = 0:7266 in.

Fig. 8. The magnitudes of scattering parameters of a WR75 waveguide
E-plane mitered bend witha = 0:75 in, b1 = b2 = 0:375 in, and
W = 0:4746 in.

expansion. As shown in Fig. 7, the designed-plane mitered
bend has been verified by the results calculated using the BEM.
As another independent verification, the analysis of an-plane
WR75 mitered bend using the plane-wave expansion has been
verified by the full-wave FEM software packageeminence
developed by Ansoft corporation. As shown in Fig. 8, a good
agreement is also obtained.

IV. CONCLUSIONS

This paper presented an analytical full-wave electromag-
netic model for rectangular waveguide discontinuities of ar-
bitrary shape. The finite plane-wave series expansion is used
to facilitate the full-wave analysis. The analytical expressions
for the elements of the field-matching matrix retain the ac-
curacy and efficiency of the full-wave model. To validate the
formulation, a number of practical waveguide components are
analyzed. The calculated results are compared with other full-
wave electromagnetic models. Excellent agreement is obtained
for all the cases.

Although only the formulation for the piecewise planar
boundaries are presented in the paper, the formulation can
easily be extended to the cases with the boundary consisting
of planar surfaces and segments of circular cylinders.
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